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Abstract: Linear feature networks are the roads, trails, pipelines, and seismic lines developed
throughout many commercial boreal forests. These linear features, while providing access for
industrial, recreational, silvicultural, and fire management operations, also have environmental
implications which involve both the active and non-active portions of the network. Management
of the existing linear feature networks across boreal forests would lead to the optimization of
maintenance and construction costs as well as the minimization of the cumulative environmental
effects of the anthropogenic linear footprint. Remote sensing data and predictive modelling are
valuable support tools for the multi-level management of this network by providing accurate and
detailed quantitative information aiming to assess linear feature conditions (e.g., deterioration and
vegetation characteristic dynamics). However, the potential of remote sensing datasets to improve
knowledge of fine-scale vegetation characteristic dynamics within forest roads has not been fully
explored. This study investigated the use of high-spatial resolution (1 m), airborne LiDAR, terrain,
climatic, and field survey data, aiming to provide information on vegetation characteristic dynamics
within forest roads by (i) developing a predictive model for the characterization of the LiDAR-CHM
vegetation cover dynamic (response metric) and (ii) investigating causal factors driving the vegetation
cover dynamic using LiDAR (topography: slope, TWI, hillshade, and orientation), Sentinel-2 optical
imagery (NDVI), climate databases (sunlight and wind speed), and field inventory (clearing width
and years post-clearing). For these purposes, we evaluated and compared the performance of
ordinary least squares (OLS) and machine learning (ML) regression approaches commonly used
in ecological modelling—multiple linear regression (mlr), multivariate adaptive regression splines (mars),
generalized additive model (gam), k-nearest neighbors (knn), gradient boosting machines (gbm), and random
forests (rf). We validated our models’ results using an error metric—root mean square error (RMSE)—
and a goodness-of-fit metric—coefficient of determination (R2). The predictions were tested using
stratified cross-validation and were validated against an independent dataset. Our findings revealed
that the rf model showed the most accurate results (cross-validation: R2 = 0.69, RMSE = 18.69%,
validation against an independent dataset: R2 = 0.62, RMSE = 20.29%). The most informative factors
were clearing width, which had the strongest negative effect, suggesting the underlying influence
of disturbance legacies, and years post-clearing, which had a positive effect on the vegetation cover
dynamic. Our long-term predictions suggest that a timeframe of no less than 20 years is expected for
both wide- and narrow-width roads to exhibit ~50% and ~80% vegetation cover, respectively. This
study has improved our understanding of fine-scale vegetation dynamics around forest roads, both
qualitatively and quantitatively. The information from the predictive model is useful for both the
short- and long-term management of the existing network. Furthermore, the study demonstrates
that spatially explicit models using LiDAR data are reliable tools for assessing vegetation dynamics
around forest roads. It provides avenues for further research and the potential to integrate this
quantitative approach with other linear feature studies. An improved knowledge of vegetation
dynamic patterns on linear features can help support sustainable forest management.
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1. Introduction

Anthropogenic linear features are forest access infrastructure, namely forest roads and
seismic lines, and are essential for boreal forest natural resource provisioning and trans-
portation. These features may have distinct morphological characteristics and functions,
but their similar geometry and spatial patterns result in analogous environmental effects
which allow their approximation. Particularly, linear features (LFs) are similar in terms of
their disturbance legacies as they require the use of machines that result in the compaction
of the surface layer through construction operations and consistent traffic intensity [1–6].
A consequence of these legacies is prolonged post-clearing vegetation growth. LFs also
play a major role in expanding forest cover discontinuity as they represent an extensive
crisscross in terms of their spatial distribution. In terms of their geometry, LFs have higher
perimeter-to-area ratios and higher edge-to-area ratios [7,8]. Even if some of these LFs
are temporary or deemed to have a “low-impact” [9,10], they contribute to fragmentation,
with the majority (70%) of the world’s forests being within 1 km of a forest edge, leading
to diminished habitat suitability adjacent to LFs caused by edge effects [11,12]. Moreover,
LFs have direct effects on wildlife species [11,13–16], soil [5,17–19], seed dispersal and the
spread of wind-dispersed invasive species [20], abiotic conditions [21,22], forest structure
and composition, and their adjacent environment [23,24]. Since the most prevalent linear
anthropogenic feature in many regions of eastern boreal forest are forest roads, the man-
agement of this vast network to minimize the associated linear footprint on biodiversity
and wildlife habitat, requires an understanding of forest road vegetation characteristic
dynamics [25,26]. However, vegetation patterns around forest roads need to be further
explored: previous studies have shown that the growth process around linear features
is complex and slow [27,28]. Furthermore, fine-scale knowledge on growth mechanisms
around forest roads and the application of this knowledge to management of the linear
footprint is based on limited spatial levels and time scales. Previous studies assessing
the post-clearing, forest canopy spatio-temporal dynamic showed that the growth process
is conditioned by disturbance factors, site conditions, and location [29,30]. Moreover, in
natural canopy openings, factors such as light, nutrients, and water, have been shown to
contribute and interact to affect the growth of individual trees and saplings [31]. Abib
et al. [1] and Franklin et al. [21] confirmed this relationship for LFs and showed that varia-
tions in vegetation growth are explained by LF attributes (i.e., LF width and orientation),
local environmental factors (i.e., sunlight availability and the potential for the accumulation
of surface water) as well as terrain conditions. However, vegetation dynamics around forest
roads require more research for a better understanding of the conditioning factors. The anal-
ysis of vegetation characteristic dynamics can be challenging if in situ measurements are
used to acquire the information needed because forest roads are extensive throughout the
landscape and have variable clearing widths which are permanently fluctuating over time
due to vegetation growth in the immediate surroundings. Moreover, in situ measurements
are restricted to a limited number of data points (high precision measurements from a few
small plots) instead of continuous data, and require additional human resources to perform
the field surveys. For this task, up-to-date, spatially explicit, and continuous information
about vegetation three-dimensional characteristics (e.g., height and cover of the trees and
shrubs, presence or absence of strata, canopy closure, gap fraction) is essential [32,33].
Remote sensing techniques can reliably expand the measurement possibilities of vegeta-
tion characteristics, across multiple levels (e.g., plot, landscape, region) and multiple time
intervals. Particularly, LiDAR data can be used to accurately quantify a variety of metrics
describing vegetation [34] as well as subcanopy topography [35]. Coupled with the fact
that this information can be derived across a range of spatial scales from fine (e.g.,~1 m2)
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to coarse (e.g.,~100 km2) [36], the use of LiDAR data should provide a way to advance
the high-resolution quantification of vegetation and terrain characteristics around forest
roads. For instance, high-resolution LiDAR data, in conjunction with various sources of
ancillary data, have been recently incorporated into the modelling of fine-scale forest road
deterioration [37,38]. LiDAR structural metrics related to height, density, and complexity
are relevant for research on forest structural characteristics [39]. In our study, we considered
a density-related LiDAR-Canopy Height Model (CHM) metric to derive the percentage of
vegetation returns with a ≥1.3 height threshold [40]. This metric provides a measurement
of the road surface covered in vegetation. The potential factors conditioning the vegetation
cover response were selected to be available across the study area, consistent with the
spatial resolution of available LiDAR data, and with the published literature assessing
the influence on vegetation dynamics. In particular, the size of canopy openings [29,41],
years post-clearing, disturbance history [29,30], topography and climate [42] were the
main factors that have been shown to influence forest structural characteristic dynamics.
Forests’ structural characteristics are also determined by site conditions [43–46], species
composition [47], and successional status [48]. Previous studies showed that these afore-
mentioned candidate factors are relevant for the characterization of vegetation cover on
LFs [21,27,28,49–51]. The extraction of ecologically relevant information on forest road
vegetation characteristics requires the processing of canopy height model (CHMs) data
into suitable metrics such as height metrics (e.g., the mean and maximum percentiles
of height) and density metrics (e.g., percentage of vegetation returns ≥ a given height
threshold) [52,53]. These metrics are then used to develop products related to environ-
mental modelling and forest management (i.e., a predictive model or a set of predictive
models). For this purpose, machine learning (ML) approaches are usually the selected
tool in forestry applications in the form of both classification and regression tasks due
to the absence of distributional assumptions and the ability to fit nonlinear and complex
relationships characterizing environmental and ecological data. Examples of predictive
approaches include nearest neighbor methods (knn), e.g., [54–58], and multivariate adaptive
regression splines (mars), e.g., [59–61]. In particular, ensembles approaches, e.g., gradient
boosting machines (gbm) and random Forests (rf ), are the tools of choice in forestry [62–65],
and in forestry modelling applications with airborne LiDAR [1,66,67]. The widely used rf
tree-based ensemble approach [68] is based on an aggregation of decision trees and uses
several methods to introduce added randomness: i) through resampling, i.e., each tree is
grown on a subset of the training points, and ii) through factor restriction (i.e., each decision
tree uses a randomly selected subset of both the available factors and observations). At
each step of the decision tree building process, a subset of the factors is randomly chosen,
and the best factor and split point is chosen from that reduced set of factors. The average
of decision trees is used to predict new observations. Other characteristics of rf are the
reduced number of parameters to calibrate, and the choice of these parameters generally
having very little influence on the accuracy of the results [69]. Although the rf approach is
sufficiently versatile and widely used for such modeling, often the predictive capability of
other ML techniques is not explored. The gbm is another tree-based ensemble approach
and is a recent advance in predictive modeling [70]. The decision trees are sequentially
built from the residuals of the preceding tree(s) and iteratively perform boosting through
choosing, at each step, an arbitrary sample of the data, ultimately causing a progressive
improvement in the model’s performance [71,72]. However, gbm has yet to be tested to
predict vegetation characteristics. To optimize accuracy and avoid overfitting using ML
approaches, model parameter specifications are an important step. They usually involves a
number of interacting parameters that have to be calibrated (i.e., regularized) in order to
achieve optimal results [73]. Our primary aim is: (i) to investigate the predictive perfor-
mance of six modelling approaches (mlr, gam, mars, knn, rf, and gbm) for the characterization
of within-forest road vegetation cover dynamics, and (ii) to provide information on the
underlying factors conditioning vegetation cover dynamics. We assumed that machine
learning (ML) approaches would have better accuracies than ordinary least squares (OLS)



Forests 2023, 14, 511 4 of 25

approaches. More specifically, tree-based approaches would show improved vegetation
cover predictions. The evaluated approaches were constructed using ancillary geoclimatic
as well as field inventory data. The required parameters for model fitting were set by
using a 10-fold stratified cross-validation with 20 repetitions. For the final fitted model,
parameters with the lowest error metric (root mean square error) were used and accuracy
measures and analyses were conducted using both cross-validation and an independent
validation dataset. The combined use of LiDAR measurements and predictive modelling
allow for a fine-scale and representative measurement of forest road vegetation cover
dynamics. This would also enhance our ability to precisely predict this dynamic along a
spatial continuum and over extended timeframes.

2. Study Sites

For this study, we retrieved forest road clearing width data from the field, across three
study areas representative of Canadian forestry activity, between 47 and 49◦ N and 72
and 78◦ W, in the mixed and coniferous boreal forest of Quebec (Canada) (Figure 1). The
field data were collected in August 2019, as described in Girardin et al. [37]. The climate
across our study areas is typically boreal, with very cold winters and short cool summers.
The temperatures change according to latitude and altitude, with the southernmost and
northernmost sites being the warmest and the coldest, respectively, and the sites at higher
altitudes being the coldest in winter and the least warm in summer. Precipitation also varies
along the latitudinal gradient, with drier conditions toward the North. The mean annual
temperatures range between −5.9 and 4.2 ◦C and total precipitation ranges between 650
to 1424 mm. The May–September mean temperatures range between 9.1 and 17.7 ◦C. The
study areas are characterized by a gently rolling topography, with the highest mountains
concentrated in the southern part, and thick and undifferentiated glacial deposits [37,74–76].
Table 1 provides a brief description of our study sites.
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Table 1. Properties of forest roads and their bioclimatic data, grouped by study area (1−3). The
information in the table is in part adapted from [37,76–78].

Characteristic Study Area 1 Study Area 2 Study Area 3

Location
Northeastern

Abitibi-Témiscamingue
region

Mauricie region Northeast of the
Saguenay-Lac-Saint-Jean region

Latitude/Longitude (48.42◦ N,
77.23◦ W)

(47.51◦ N,
72.78◦ W)

(48.89◦ N,
72.23◦ W)

Mean elevation of sampled roads (m) 393 430 407

Total number of sampled plots 84 73 84

Cumulative length of sampled roads
(km) 4.2 3.65 4.2

Mean clearing width measured in the
field (m) 8.59 7.74 8.55

Mean years post-clearing (years) 9.23 6.83 6.17

Mean slope (%) 5.10 5.58 4.27

On-road mean vegetation coverage *
measured in the field (m) 0.47 0.41 0.46

On-road mean tree height measured
in the field (m) 4.22 6.08 5.22

On-road mean shrub height measured
in the field (m) 1.24 2.87 2.19

Average annual temperature (◦C) 1.5 3.8 1

Annual precipitation (mm) 875 928 999

Bioclimatic domain/Vegetation type
Balsam fir [Abies balsamea (L.)
Mill.]—White birch (Betula

papyrifera Marsh.)

Balsam fir—Yellow birch
(Betula alleghaniensis Britton)

Black spruce Picea mariana
(Mill.)—Moss domain

and
Balsam fir—White birch

* Vegetation coverage measured as the ratio of the mean width of the road covered in vegetation to the original
width of the road, both measured in the field.

3. Data
3.1. Reference Data

We used 240 rectangular field plots (50 m length) which were at least 250 m apart
from one another. These field plots were randomly sampled among a selection of forest
road stratified by the clearing width class (three classes: narrow, medium, and wide),
years post-clearing (YPC) class (two classes: short-term and long-term timeframes), and
slope class (two classes: low and high longitudinal slope, range: 0%–16%), following
Girardin et al. [37]. Clearing width varied between 4 and 14.4 m and included winter only
roads and all-weather gravel roads. Paved highways were not considered. YPC ranged
between 0 and 46 years and was estimated based on the time elapsed since the last clearing
(maintenance or construction). Maintenance activities usually consist of culvert repairs,
surfacing, layer gravelling, and vegetation clearing. These reference data were used for the
retrieval of geospatial information spanning from the road centerline, as described in the
data extraction step (Section 3.2) and Figure 2.

For visualization purposes, clearing widths were binned into narrow forest roads
(total narrow forest roads = 96), which were ≤7 m wide, and wide forest roads, which were
>7 m wide (total wide forest roads = 144) [6].
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Figure 2. Visualization of LiDAR-based data. (A) 3D point cloud. (B) Canopy height model (CHM)
over a forest road. (C) Extraction of forest road plot-level vegetation cover (%) using the CHM.
(D) Calculation of mean vegetation cover, continuously, within the five multi-buffer areas (length =
50 m, and width increment = 1 m).

3.2. Forest Road Data Extraction
3.2.1. Digital Surface Models (DSM) and Canopy Height Models (CHM)

LiDAR point clouds feature the heights of objects on the ground. Digital surface mod-
els (DSM), canopy height models (CHM), and digital terrain models (DTM) are common
layers derived from point clouds after the classification of individual LiDAR points. DSM
and CHM feature the highest elevation of ALS returns. DTM represents the elevation of
the ground. In vegetated areas, the CHM represents the heights of the trees on the ground.
It can be derived by subtracting the ground elevation (represented by the DTM) from
the elevation of the top of the surface, or the tops of the trees (represented by the DSM).
Different methods exist to create gridded DSMs and CHMs [79]. In this study, we used
LiDAR-based gridded products provided by the government of Quebec [80].

3.2.2. Spatial Buffering for Data Extraction

To recreate the footprint polygons of forest roads from field-inventoried centerlines, we
first delineated and digitized the centerlines using GPS coordinates (Trimble GNSS Hand-
held Geo7X, provided by Trimble Inc., Wesminster, CO, USA) (three sampling locations
for the edges and midpoint of the 50 m centerline) (Supplementary Material, Figure S1).
To ensure the proper alignment of the digitized centerlines, we used the LiDAR datasets
provided by the Government of Quebec’s airborne LiDAR surveys, consisting of 1 m × 1 m
grids [80], collected under growing season conditions between 2016 and 2020, with a mean
pulse density of 2−4 pulse/m2 [81]. More specifically, we derived the topographic posi-
tion index (TPI) from the digital terrain model (DTM) (spatial resolution of 1 m) to locate
topographic breaks and inspect roadside geomorphological attributes (i.e., the drainage
structures or ditches). We then performed a buffer analysis to partition the geographic
space around the digitized centerlines into multi-buffers with similar areas (1 m increment).
This spatial buffering step resulted in 1 m wide “hollow” multi-buffers that extend over
5 m, which we used to compute our input dataset (vegetation cover response and causal
factors) for the characterization of the vegetation dynamics (Figure 2). All data processing,
modelling, as well as validation were performed in the R project for statistical comput-
ing, software environment (Version 4.1, R Core Team) [82]. All regression models were
produced using the caret library 6.0 [83].
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3.2.3. Causal Factor Data Computation

We established a framework that used data from multiple sources, including airborne
LiDAR and geo-climatic data. We extracted these data from the 240 field plots using the
multi-buffer delineation approach described in Section 3.2.1 and Figure 2. The proposed
approach had a fixed length (50 m) and a variable width extending over 5 m, which allowed
us to derive our data with a distance increment from the road centerline. All training data
were extracted within the boundaries of the delineated multi-buffer areas, annotated 1
to 5, indicating the buffer width. For buffer areas more than one meter wide, data were
extracted within hollow bands to exclude data points from the other buffers.

Specifically, we used the LiDAR-CHM data to measure the vegetation cover response
and LiDAR-based terrain data (1 m resolution) to compute: (i) Slope, in degrees. (ii) ori-
entation (northernness) transformed to a continuous factor ranging between −1 and 1
(The northernness values closer to −1 are southwards and those closer to +1 are north-
wards) [28]. Orientation is typically transformed into a continuous factor because it is
circular (large values may be very close to small values). (iii) The topographic wetness
index (TWI) is used as a proxy for soil moisture. It provides information on the potential
for water accumulation over the land as a function of slope and accumulation at a given
pixel. More specifically, TWI integrates the water supply from an upslope catchment area
and downslope water drainage for each cell in a digital terrain model [84]. (iv) Hillshade is
a proxy for the shadow based on the surface elevation [85,86].

NDVI (normalized difference vegetation index) extracted from Sentinel-2, resampled to
1 m resolution, provides a measure of the difference between the reflectance of wavelengths
emitted by the sunlight in the near infrared (PIR) and in the visible red band [87,88].

Climate data were obtained from WorldClim (Version 2.1) for the time period
1970–2000 [89,90]. This dataset is based on historical climate records at a resolution of
30 s. The available monthly climate data of precipitation, incident sunlight (in units of
kj·m−2·day−1 wind speed (m·s−1), total precipitation (mm), and minimum, mean, and
maximum temperature (◦C), were used to compute the growing season climate dataset,
resampled to a 1 m resolution. Only two growing season averaged climatic factors, namely
incident sunlight and wind speed, were retained for further analyzes, because a high
correlation between the initial variables was found in Pradhan and Setyawan, 2021 [91].
Particularly, sunlight is a proxy for vegetation growth as it moderates the available photo-
synthetically active radiation. Sunlight and wind speed are proxies for the potential for
in situ evapotranspiration due to locally warmer/drier or cooler/shaded conditions, as
suggested in Stern et al. [22], and van Rensen et al. [28].

Prior to the modelling analysis, we checked for outliers using the interquartile range
and removed all values above the 95th and below the 5th percentile, as well as collinearity
(relationships between more than two covariates), and correlation (linear relationships
between two covariates), following Zuur et al. [92]. All uninformative metrics that showed
a variance inflation factor greater than 3 or were highly correlated with one another
(|r Pearson| > 0.7) were excluded from the analysis. We summarize in Table 2, the various
factors examined and their description.

Table 2. Overview of the factors used in the modelling of vegetation cover. Geospatial layers had a
cell resolution of 1 m or were resampled to 1 m prior to the modelling step, for all the factors.

Data Source(s) Factor(s) Unit Description Spatial/Temporal
Resolution

LiDAR-based,
CHM

Vegetation cover
(response) % Mean vegetation cover (height above

1.3 m) within the buffer area 1 m -
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Table 2. Cont.

Data Source(s) Factor(s) Unit Description Spatial/Temporal
Resolution

LiDAR-based,
Terrain

(i) Slope % Mean slope within the buffer area 1 m -

(ii)
Orientation

(Northernness)
Unitless Mean northernness index

within the buffer area 1 m -

(iii) TWI Unitless Mean TWI index
within the buffer area 1 m

(iv) Hillshade Unitless Mean hillshade index
within the buffer area 1 m

NDVI Unitless Mean NDVI index
within the buffer area 1 m

Climate
Solar radiation Kj·m−2·day−1 Mean solar radiation

within the buffer area 1 m 30 s

Wind speed m·s−1 Mean wind speed
within the buffer area 1 m 30 s

Linear feature
attributes

Clearing width m
Line width derived from three
measurement plots along the

50 m plot
-

Years since last
clearing (clearing)

(YSC)
years Time since last clearing

(establishment or maintenance) - -

4. Methods
4.1. Statistical Approaches

To provide an optimal predictive model for the estimation of vegetation cover on
forest roads, we compared the performance of the following OLS regression approaches:
(i) multiple linear regression (mlr), (ii) multivariate adaptive regression splines (mars), (iii) general-
ized additive model (gam), (iv) k-nearest neighbors (knn), (v) random forests (rf), and (vi) gradient
boosting machines (gbm).

mlr was assessed for its straightforwardness and simplicity and was extended to gam,
a flexible approach used to identify and characterize non-linear regression effects [93].

gam was included because it presents an advantage over predefined basis functions to
achieve nonlinearities and is relatively easy to interpret [94].

The parsimony of mlr and gam approaches were assessed with the Akaike information
criterion (AIC) [95]. All possible combinations of factors and interaction effects were
analyzed with the MuMIn library in R [96]. This step was essential because the inclusion of
uninformative factors in parametric and semi-parametric models (i.e., mlr and gam) can
reduce their overall predictive performance.

mars is also regarded as an extension of linear models and is an adaptive non-linear
estimation method that can present interaction between influencing attributes without any
assumptions about input data distribution [97]. It structures a relation from established
basis functions and coefficients, which are generally determined from the regression in-
formation [98]. The construction phase of a mars model involves adding and removing of
basic functions. mars is considered as a modification of the classification and regression
tree (CART) method, to improve the latter’s performance in a regression setting, owing to
mars’ ability to capture additive effects [93]. Therefore, mars could simplify the challenges
of solving non-linear relationships, compared to other non-parametric approaches [98].

We used the basic knn method [99], a simple and intuitive approach in which each
observation is predicted based on its similarity to other observations [69]. More specifically,
the prediction of new observations values uses the sampled observations from a training
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data set that are the closest (nearest neighbor(s)) to each new observation. The similarity
between new and training samples is based on a Euclidean distance metrics (or other
related metrics) [100]. knn is considered a simple approach as there is no model to be fit and
the prediction results depend on feature scaling, measurement of similarity, and the value
of k. Other advantages include decent predictive power, especially when the response
is dependent on the local structure of the features [100], flexible assumptions regarding
normality and homoscedasticity required by parametric methods, and the preservation of
much of the covariance structure among the metrics that define the response and factors’
vectors [99].

rf is tree-based ensemble which builds a large collection of independent decision trees
to further improve predictive performance by averaging individual predictions. More
specifically, rf s use a combination of bagging, which randomly selects factors with replace-
ment as training for growing the trees, which makes it robust against overfitting [101]. The
training is carried out on datasets created from a random resampling on the training set
itself, which adds an extra layer of randomness [68,101].

gbm is another recent tree-based ensemble which builds a base model (i.e., trees
with only a few splits) [102] and the additional trees iteratively correct mistakes made by
the previous trees, which progressively improves prediction accuracy. Particularly, gbm
sequentially generates base models from a weighted version of the training data to find the
optimal combination of trees and optimize predictive performance [69,103].

Both rf and gbm present the numerous advantages of tree-based ensemble methods,
accommodating different types of factors and efficiently dealing with missing data and
outliers. They have no need for prior data transformation, can fit complex non-linear hier-
archical relationships, and automatically handle interaction effects between the factors [94].

4.2. Model Parameter Tuning

ML model performance can benefit significantly from tuning as it may reduce over-
fitting [73,104]. The caret library [83] was used to execute a grid search for each model
where we assessed every combination of parameters of interest. More specifically, for mars,
relevant model parameters were related to the number of retained terms (nprune) and
the degree of interactions (degree) [69,105]. The implementation and performance of knn
approaches required choices for three parameters: the value for k, the number of nearest
neighbors (in a regression setting, for k = n, the average is used across all training samples
as the predicted value), a scheme for weighting neighbors when calculating predictions
(kernel function), and a similarity metric (distance). The prediction performance of rf is
influenced mainly by three model parameters: correlation between individual trees, the
performance of each tree, and the total number of trees [106]. Hence, we executed a grid
search to evaluate: ntree, which is the number of trees in a forest, and mtry, which defines
the number of random factors at each split [69]. For gbm, we performed sensitivity analyses
on tree complexity (interaction depth), learning rate (shrinkage), and the minimum number
of observations in nodes (minobs) [69,105]. During the tuning phase, a stratified 10-fold
cross-validation resampling method allowed us to partition the training set for each fold.
Model performances of every parameter combination were computed at the tuning level
and averaged across all folds. The parameter combination with the lowest RMSE was
used to train our model during the performance assessment phase. Details about the
parameter values and combinations that optimized the RMSE for our data can be found in
Supplementary Material Table S1.

4.3. Model Performance, Comparison, and Diagnostics Using Cross-Validation and
Independent Dataset

Inheriting spatial information from dependent observations is one of the main chal-
lenges of spatial statistical modeling using ML techniques [73,107–110]. In this regard, to
account for spatial dependencies in our spatially explicit data and reduce prediction bias,
the choice of cross-validation (resampling technique) emerged as an important step in
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the implementation of our approaches [73,109,111]. Therefore, we performed a stratified
10-fold cross-validation, with the forest road identifiers being the stratifying factor. This
allowed the condition of equal distribution of our stratified samples between (i) training,
testing, and validation samples, and (ii) the cross-validation folds to be met (e.g., [112]),
which showed that dividing by strata produces similar distributions between training and
testing sets for the majority of validation folds. The stratified partitioning was conducted
prior to modelling and the samples were randomized with respect to the established strata.
It is suggested that when the set of factors affect the response in different ways (posi-
tive/negative and/or linear/non-linear) and a model’s output is transferred to unsampled
locations, more rigorous validation is necessary [113]. We conducted a 60%–40% training–
validation combination to evaluate our model’s performance. In addition, to avoid skewed
results, each model was run 20 times (20 repetitions). Both stratified cross-validation and
independent validation (using the hold-out 40% of our data) performance were evaluated
with the RMSE and the mean absolute error (MAE) metric to assess the accuracy. The R2

metric was used to evaluate the goodness-of-fit. Model performance metrics were taken as
the mean from the number of repeats. After the models were trained and compared, we
assessed visual diagnostics and factor importance computed from the fitted model that
yielded optimal results (i.e., rf ). rf typically includes a permutation-based importance mea-
sure which assesses the decrease in accuracy averaged over all the trees for each factor. The
factors with the largest average decrease in accuracy across all trees are considered the most
important [69]. The factor importance computation was implemented using the varImpPlot
function in the Random Forest library [114]. Partial dependence plots (PDPs) are especially
useful for visualizing the relationships discovered from ML approaches by isolating the
effect of a single factor on the response [115]. We evaluated the partial dependence from
our fitted rf model using two functions partial and plotpartial [116] as there are advantages
for model specific interpretations such as a close relation to the model performance and an
accurate incorporation of the correlation structure between factors [115].

5. Results
5.1. Modelling Approaches’ Performance

For the study, vegetation cover (LiDAR-measured vegetation cover (%)), forest road
attributes (clearing width (m) and years post-clearing (years)) by means of in situ measure-
ments, climatic factors (sunlight (kj·m−2·day−1) and wind speed (m·s−1)), terrain factors
(slope (%), northernness (index), TWI (index) and shade (index)) were computed. An
overview and the distribution of these input data are summarized in Table 3.

Table 3. Distribution of model input data for the characterization of vegetation cover dynamics on
forest roads.

Input (s) Min Max Range Median Mean Standard
Deviation

LiDAR measured vegetation
cover (%) 0 100 100 0 22.07 33.36

Slope (%) 0 27.73 27.73 6.71 7.94 5.41

Northernness (index) −0.55 0.46 1 −0.01 −0.03 0.2

TWI (index) 1.72 16.46 14.74 6.52 6.88 2.81

Hillshade (index) 139.68 202.97 63.29 178.82 177.7 9.85

NDVI (index) 0.12 0.89 0.77 0.66 0.62 0.19

Sunlight (kj·m−2·day−1) 17,228.74 17,729.8 501.06 17,598.99 17,545.63 136.74

Wind Speed (m·s−1) 2.2 2.88 0.68 2.34 2.45 0.2

Clearing width (m) 4 14.47 10.47 7.4 8.24 2.48

Years post-clearing (years) 0 39 39 7 7.79 8.35
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The predictive performance of ML approaches (rf, gbm, knn, and mars) and OLS (gam
and mlr) approaches using stratified cross-validation and independent datasets are shown
in Figure 3A,B, respectively. ML approaches consistently had higher testing and validation
RMSE and higher R2 values than OLS approaches. The greatest accuracy was obtained
with the rf approach (RMSE ranging from 18.69% to 20.29% and R2 ranging from 0.69 to
0.62), followed by gbm (RMSE ranging from 19.23% to 21.16% and R2 ranging from 0.68
to 0.59), and finally knn (RMSE ranging from 21.59% to 21.73% and R2 ranging from 0.59
to 0.56).
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Figure 3. R2, RMSE, and MAE for ML and OLS approaches for the characterization of vegetation
cover dynamics obtained from (A) 10-fold stratified cross-validation (results from 20 repetitions were
considered) and (B) an independent validation dataset. rf = random forests, gbm = gradient boosting
machines, knn = k-nearest-neighbors, mars = multivariate adaptive regression splines, gam = generalized
additive model, mlr = multiple linear regression.
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Assessed using RMSE and R2 (Figure 4A,B), the highest relative improvement in
predictive performance was found using tree-based ensemble approaches (i.e., rf and
gbm). Particularly, rf and gbm were similar in terms of predictive capability; they showed
the highest predictive accuracy. knn and mars approaches showed slight reductions in
the predictive capability compared with the rf and gbm, and significant reductions were
obtained with the mlr approach compared with rf.
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The causal factors which contributed most to the accuracy of vegetation cover char-
acterization using rf are shown in Figure 5. Because rf generally provided optimal per-
formance results, factor ranking was derived using this approach. Clearing width was
the most important factor explaining vegetation cover dynamics around forest roads. The
importance of all the other factors was lower: years post-clearing (YPC), NDVI, as well as
geoclimatic (wind speed, sunlight, slope) and shade factors were of intermediate impor-
tance. The PDPs of the rf regression revealed a general downward trend of vegetation cover
with increasing clearing width, sunlight, hillshade and TWI as well as a general upward
trend with increasing years post-clearing, wind speed, slope, northernness and NDVI. PDPs
for clearing width show that vegetation cover drops substantially as the clearing width
increases until the width was approximately 6 m (Supplementary Material, Figure S3).

Forests 2023, 14, 511 14 of 26 
 

 

 

Figure 5. rf-based factor importance by permutation accuracy. A higher average importance of the 

variable (X-axis) indicates a greater contribution of this individual variable in explaining within-

forest road vegetation cover dynamic. A ranking of all factors is included. 

5.2. Characterization of Vegetation Cover Dynamic around Forest Roads 

rf-based vegetation cover dynamics grouped by buffers extending from the road cen-

terline (1–5 m), timeframe (short-, mid- and long-term), and clearing width (narrow and 

wide) are shown in Figure 6A using the cross-validation predictions, and Figure 6B using 

the independent dataset predictions. Overall, vegetation cover predictions were greater 

within the buffers furthest from the centerline. For the short-, mid- and long-term 

timeframes, the patterns were consistent: vegetation cover increased with YPC, with veg-

etation cover predictions on narrow forest roads slightly exceeding those on wide forest 

roads. Particularly, predictions grouped by timeframe showed that long-term vegetation 

cover (>20 YPC timeframe) exceeded those experienced in the mid- ([10–20] YPC 

timeframe) and short-term ([0–10] YPC timeframe), indicating a positive effect of YPC. 

Vegetation cover varied also across forest road types: narrow forest roads exhibited higher 

predictions over time across all five buffers with a higher range and higher mean predic-

tions. The lowest prediction (~1.6%) was shown for wide roads for the short-term 

timeframe and the highest (~82.3%) for narrow forest roads for long-term timeframes. 

Wide forest roads showed an average vegetation cover of ~3%–53% and ~14%–52% in the 

mid- and long-term, respectively. Narrow forest roads showed an average of ~17%–51% 

and ~40%–82%, in the mid- and long-term, respectively (Supplementary Material, Figure 

S2A,B). 

As shown in Figure 3A,B, the stratified cross-validation testing dataset had a higher 

accuracy of prediction than the independent validation dataset. Both testing (cross-vali-

dation) and independent validation datasets were considered as stratified random sam-

ples, but the testing dataset had a closer relationship with the training dataset (reference 

population), as records from all strata were included in both the training and the test sub-

sets (Figure 6A,B). In general, we found the ML approaches evaluated here to be useful 

tools for improving predictions of vegetation cover dynamics on forest roads. 
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5.2. Characterization of Vegetation Cover Dynamic around Forest Roads

rf -based vegetation cover dynamics grouped by buffers extending from the road
centerline (1–5 m), timeframe (short-, mid- and long-term), and clearing width (narrow
and wide) are shown in Figure 6A using the cross-validation predictions, and Figure 6B
using the independent dataset predictions. Overall, vegetation cover predictions were
greater within the buffers furthest from the centerline. For the short-, mid- and long-
term timeframes, the patterns were consistent: vegetation cover increased with YPC, with
vegetation cover predictions on narrow forest roads slightly exceeding those on wide forest
roads. Particularly, predictions grouped by timeframe showed that long-term vegetation
cover (>20 YPC timeframe) exceeded those experienced in the mid- ([10–20] YPC timeframe)
and short-term ([0–10] YPC timeframe), indicating a positive effect of YPC. Vegetation
cover varied also across forest road types: narrow forest roads exhibited higher predictions
over time across all five buffers with a higher range and higher mean predictions. The
lowest prediction (~1.6%) was shown for wide roads for the short-term timeframe and
the highest (~82.3%) for narrow forest roads for long-term timeframes. Wide forest roads
showed an average vegetation cover of ~3%–53% and ~14%–52% in the mid- and long-term,
respectively. Narrow forest roads showed an average of ~17%–51% and ~40%–82%, in the
mid- and long-term, respectively (Supplementary Material, Figure S2A,B).
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Figure 6. (A) Boxplots representing cross-validated rf model predictions (R2 = 0.69, RMSE = 18.69%)
of vegetation cover recorded within the multi-buffers extending from the road centerline, across
forest road types (wide and narrow roads) for the post-clearing timeframes: >20 YPC (long-term,
black boxes), [10–20] YPC (mid-term, dark grey boxes), and [0–10] YPC (short-term, light grey boxes).
(B) Boxplot of vegetation cover predictions values from the rf model (R2 = 0.62, RMSE = 20.29%)
considering the independent validation dataset. The X axis indicates the width of every individ-
ual buffer. Boxplots present the median (dark black line), ±1 standard deviation (rectangle) and
maximum-minimum value (vertical lines or whiskers).

As shown in Figure 3A,B, the stratified cross-validation testing dataset had a higher ac-
curacy of prediction than the independent validation dataset. Both testing (cross-validation)
and independent validation datasets were considered as stratified random samples, but the
testing dataset had a closer relationship with the training dataset (reference population), as
records from all strata were included in both the training and the test subsets (Figure 6A,B).
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In general, we found the ML approaches evaluated here to be useful tools for improving
predictions of vegetation cover dynamics on forest roads.

6. Discussion
6.1. Modelling Approaches’ Performance

The performance results of OLS and ML approaches demonstrated that rf was the
most reliable model, exhibiting the best prediction accuracy rates among the gbm, knn, mars,
and gam approaches. The least accurate model was mlr. These results suggest that using
ML approaches was appropriate for the characterization of vegetation cover dynamics
around forest roads. Furthermore, compared to rf and gbm, knn, mars, and gam showed min-
imal accuracy reductions. Conversely, mlr performed poorly. The significant performance
difference between mlr and rf can be explained by the limitation in handling non-linear
relationships between the vegetation cover response and causal factors, as well as model
assumptions about the non-linear distribution of input data: rf better accommodates nonlin-
ear relationships between factors that mlr could not adequately solve [117–119]. Consistent
with our hypothesis, tree-based ensemble approaches outperformed their nonensemble
counterparts. rf and gbm are extremely randomized trees and are both based on ensemble
learning theory. The ensemble—aggregation of decision trees [117]—considerably im-
proves the accuracy and certainty of the predictions by suppressing the weaknesses and
disadvantages of each individual decision tree, and by taking advantage of the responses
of the combined decision trees [66,68,120,121]. ML approaches require the setting of pa-
rameter specifications prior to modeling to reduce overfitting and enhance performance.
For this reason, the use of rf can be more straightforward because of its ability to yield
accurate results when default parameters are used [122]. These findings, and previous
results, suggest that no single ML algorithm might serve best for every task and that many
models should be calibrated to identify the most accurate model for a given prediction
task [55,104,113,118,123,124].

6.2. Factors Conditioning Vegetation Cover Dynamic around Forest Roads
6.2.1. Factors Associated with Vegetation Dynamics

Our results identified that the most influential factors that explained significant veg-
etation cover variations were clearing width and years post-clearing (YPC). Particularly,
vegetation cover was greatest in samples with narrow widths and long post-clearing time
frames. NDVI, terrain (i.e., slope, hillshade, TWI, and northernness) and climatic factors
(i.e., wind speed and sunlight) ranked lower. The samples where vegetation cover was most
advanced had higher NDVI values, steeper slopes, higher orientation values, higher levels
of wind speed, lower incident sunlight, shade, and TWI levels. Abib et al. [1], and Franklin
et al. [21], showed that variations in proximity-based vegetation cover are explained by
LF attributes (i.e., LF width and orientation) and local environmental factors (i.e., incident
sunlight and the potential for accumulation of surface water). More evidence comes from
van Rensen et al. [28], where clearing width was a strong predictor of growth occurrence
within LFs (>3 m height cut-off was applied as a criterion for growth occurrence). It was
suggested that clearing width implicitly reflects the severity of soil disturbance moisture
supplies. Additionally, the ecosite type was the most important factor associated with
growth (LF lines in bogs and fens were less likely to experience growth than those in
drier conditions). Similarly, Finnegan et al. [125], suggested that soil wetness, nutrients,
and adjacent stand affected growth levels. LFs in wet areas were least likely to promote
vegetation growth and wet seismic LFs that were adjacent to more open forest stands were
more likely to promote the occurrence of disturbance-tolerant taxa.

6.2.2. Clearing Width and Its Relationship to Disturbance Legacies

Narrow-width forest roads experienced higher levels of vegetation cover, likely be-
cause of reduced disturbance (i.e., use of machinery in the construction phase and continu-
ous vehicular traffic), supporting findings from the LF literature [27,28]. Particularly, LF
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construction and design specifications can differ with respect to their characteristics (e.g.,
bearing capacity) and moisture conditions [126]. These differences are reflected in their
trafficability, frequency, and intensity of use [127]. For instance, coarse material with higher
levels of granular content (coarse gravel and/or crushed rock) is frequently used as a top
layer on wide LFs to ensure higher bulk density and bearing capacity [127,128]. Due to
their high trafficability, wide LFs are also prone to experience an increased intensity of use
by heavy machinery (heavy vehicles inflict more damage to the surface layer than lighter
vehicles), trucks, and off-road vehicles, which lead to severe disturbance of the top surface
over longer time frames [6,38,127,129,130]. A consequence of compaction is the alteration
of the hydro-physical properties in the surface layer. Therefore, it is likely that increased
trafficability results in higher levels of compaction, which reduce porosity and infiltration,
increase pore water pressure in the road material, and lead to long-term restricted water
exchanges, flow, and moisture storage capacity. Gartzia-Bengoetxea et al. [131], showed that
soil compaction caused by shearing and ripping persisted for 15 years. In addition, water
holding capacity was lower in mechanically prepared plots 15 years after site preparation.
Cambi et al. [132], showed that except for coarse textured excessively drained soils, soil
compaction reduces oxygen and water availability to roots and microorganisms. Zang
and Ding [51], suggested that compaction potentially interferes with the establishment
of woody species on the surface of the LFs by reducing water infiltration, soil moisture
availability, aeration, and rooting space, and by increasing the physical resistance for plant
root growth which result in increased recruitment difficulty [133–135]. Unlike wide LFs,
the surface layer of narrow LFs consists of material excavated from ditches, and a thin
layer of construction material aggregates. The poor physical condition of the surface layer
and low bearing capacity interfere with narrow LFs’ intensity of use [6,127,130]. Hence,
it is very likely that the integration of LF clearing width captured underlying differences
in hydrological conditions such as water and nutrient availability, driven by compaction
and construction substrate type. Additionally, due to uneven vehicular activities, different
traffic intensity patterns on wide and narrow LFs likely explain variation in vegetation
cover levels between forest road types.

6.2.3. Clearing width and Its Relationship to Local Environmental Conditions

The advanced vegetation cover levels on narrow-width forest roads can be attributed
to a combination of limited disturbance and favorable growing conditions. Our data
support that a range of vegetation covers can be observed, depending on variations in
incident sunlight, shade, and wind conditions. Evidence on wind and incident sunlight
patterns on LFs come from Stern et al. [22], where LF openings exhibited double incident
sunlight intensity and double maximum wind speed compared to the adjacent forests.
The abiotic conditions were different between LFs with different clearing widths: wide
LFs exhibited increased sunlight penetration that extended into the forest. Centers of
wide seismic lines were characterized by >1.5 times higher sunlight intensity than those
of narrow seismic lines. These results corroborate the findings in Franklin et al. [21],
showing that the microclimatic conditions in the middle of LFs were generally intermediate
between the interior forest and anthropogenic infrastructures, such as well pads, with
narrow seismic lines more similar to the interior forest and wide seismic lines more similar
to well pads. The width and orientation of LFs also influenced growth trends, as shown in
Franklin et al. [21], by changing the abiotic environment: regeneration density on seismic
lines increased by 5.8 times for each 10-fold increase in sunlight intensity. Our findings
showed that wide forest roads experienced lower vegetation cover levels compared to
narrow forest roads. Sunlight was a limiting factor and higher wind speed promoted higher
levels of vegetation development. These results are not contrary to the findings in Franklin
et al. [21], as their sampled wide LFs were older than the narrow LFs and therefore had
more time for tree establishment and growth. Moreover, given the ranking of our factors
conditioning vegetation cover, it is very likely that the clearing width moderates the changes
in abiotic conditions leading to significant variations in vegetation cover levels between
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forest road types. Conceptually, clearing width influence various processes: on wide
LFs, greater sunlight availability could result in higher temperature and lower moisture
levels (warmer and drier conditions near the ground on wide lines) [9,21]. On narrow
LFs, however, significant shading from the adjacent canopy provides more favorable
conditions for vegetation cover. This supports the assumption that the clearing width is
a modulator of online abiotic conditions including sunlight, wind, and moisture [28,136].
Hence, research on the abiotic environment within LFs is needed to provide insight into
potential explanations for abiotic–biotic associated patterns. Additionally, the floristic
aspect of online communities should be considered for an integrative investigation of
vegetation characteristics within LFs [27,137]. Forest roads with low NDVI levels exhibited
limited vegetation cover, likely because low NDVI values indicate less or no vegetation.
Contrary to van Rensen et al. [28], YPC was among the most influential factors, and it is
possible that our continuous factor better accounted for the variation in vegetation cover.
Steeply sloped forest roads (i.e., slopes greater than 15%) experienced advanced vegetation
cover. A likely explanation for this is that steeper slopes provide favorable subsurface
water exchanges and flow, which promote drier terrain conditions. This is supported by
the TWI data indicating that increased water accumulation reduces vegetation cover on
forest roads.

6.3. Characterization of Vegetation Cover Dynamic around Forest Roads

Our model predictions showed that for extended timeframes (>2 decades post-clearing),
vegetation cover sustained an overall upward trend; however, slight variations occurred
between wide and narrow forest roads, meeting our expectations of a more advanced cover
on narrow-width forest roads. Early studies assessing vegetation cover were carried out in
Latin America [138,139], South East Asia [51,134] and Central Africa [140]. They provided
evidence of the increased disturbance on wide LFs, as well as variations in density, diversity,
and vegetation structure across the LF surface and their proximal environments (edge and
adjacent forest). These results and findings in Lee and Boutin [27], allowed us to com-
pare our results with respect to the factors associated with vegetation growth and further
confirm that disturbance legacies on wide LFs can persist for decades in boreal forests. A
characterization of post-clearing vegetation growth patterns within LFs across the range
of forest ecosystems is still in development and different definitions of vegetation growth
have been proposed in the forest and LF literature (e.g., spectral indices [141], structure:
closure through both height (regeneration), and lateral growth [142–144]). These notable
limitations in previous studies and data availability over long timeframes constrained our
quantitative analysis. Our ability to compare vegetation cover predictions was further con-
strained by the small number of studies available: many individual studies have not been
conducted over the longer timeframes necessary to detect vegetation growth, or growth
has not been properly defined to efficiently compare patterns across forest ecosystems, or
across different forest regions in Canada [29]. A quantitative study in a Central African
forest [145] demonstrated the potential for vegetation growth on abandoned LFs (logging
roads) through natural processes: for an average of a 20 m clearing width, twenty-five
years following abandonment, canopy closure recovered to 83% (very close to the value in
the adjacent forest in their study area). In our study, wide forest roads showed an average
vegetation cover of ~3%–53% and ~14%–52% for the mid- ([10–20] YPC) and long-term
(>20 YPC) timeframes, respectively. Narrow forest roads showed an average cover of
17%–51% and 40%–82%, in the mid- and long-term, respectively. The differences could be
attributed to forest ecosystem specifications (e.g., vegetation and soil conditions), the metric
used to quantify vegetation characteristics on the roads, or road construction specifications
(e.g., clearing widths). Findings in Lee and Boutin [27], for the boreal forest ecosystem
showed low woody vegetation growth increments thirty-five years post-clearing: most
LFs in the study (i.e., ~65% of total LFs) remained in a cleared state with a cover of low
forbs, and only 8.2% of LFs across all forest types had exhibited more than 50% woody
vegetation growth. LF vegetation predictions in Finnegan et al. [125], showed a 1–2 m
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height growth increment 10 years post-clearing, with low lateral cover, and it was mostly
disturbance-tolerant taxa. Further evidence comes from Revel et al. [146], where the growth
increment of saplings was low with most saplings less than 2 m tall 10 years post-clearing.
These quantitative measures for LFs highlight the importance of a unified protocol for the
study of vegetation growth within LFs, which better standardize the spatiotemporal com-
ponent to allow for comparisons. This would require the establishment of a coordinated
long-term network of monitoring sites within the existing LF network. Moreover, the use
of LiDAR data to estimate post-clearing growth patterns would be more straightforward if
LFs were stratified by number of years/decades post-clearing. This would help integrate
more structure into the sampling scheme and compensate for the large extent of the road
network which can make the monitoring task difficult. The examination of growth patterns
following fire or harvest in plot-level studies across forest ecosystems showed variable
annual increments [29]. The timeframe is five years for cleared areas to attain a bench-
mark canopy cover of 10% post-fire, compared to 10 years to attain 10% of canopy cover
post-harvest. Furthermore, Senf et al. [30], provided a direct quantification of post-clearing
vegetation growth increments; the average is 84% of the disturbed areas reaching recovery
benchmarks (i.e., a minimum tree cover of 40% and minimum stand height of 5 m), 30 years
post-clearing. While comparisons with post-harvest and post-fire growth increments allow
us to contextualize and evaluate our findings, some key differences should be noted. For
example, linear (e.g., forest roads) and polygonal (e.g., cutblocks) openings differ with
respect to spatial footprint, canopy clearing technique, and disturbance legacies.

6.4. Research Limitations

The prediction accuracy of the rf approach can benefit from the inclusion of additional
factors such as transport flux, compaction levels, and specifications on the construction
materials. From the comparison results, ensemble approaches such as rf and gbm showed
low error rates. However, additional model calibration and testing are needed to further
validate these findings and evaluate the generalization capabilities of these approaches.
Additionally, other techniques for factor importance and ML interpretation should also
be tested. Similar to the proximity-based analysis in Abib et al., 2019 [1], both cross-
validated and independently validated rf results satisfied the accuracy and goodness-of-fit
criteria. Since repeated measurements provide additional information, it is important that
dependencies in the input data are accounted for. For this purpose, stratified random
sampling is used when there are strata that need to be considered in the analysis: it
reproduces characteristics in the samples that are representative of the strata. Estimates
generated within strata are more accurate than those from random sampling because
dividing the input data into homogeneous strata often reduces sampling error and increases
precision. Nonetheless, we suggest that spatial autocorrelation should be a factor of
further analysis in this spatial application. Future studies could further assess model
performance in the context of clustered data [147]. In general, the main disadvantages with
ML approaches compared to OLS approaches are: (i) simple linear functions are highly
approximated; (ii) for certain data sets, it is difficult to constrain the model by selecting
the optimum parameters through cross-validation; and (iii) the output can be unstable,
for example, small changes in data can produce highly divergent trees for example [119].
In this study, ML approaches, compared to OLS approaches yielded satisfactory accuracy
results for the prediction of vegetation dynamics, but there are limitations concerning
the generalization of the results of this study. The models were calibrated and tested
with samples collected from a range of forest road sizes (i.e., clearing width) and over a
bounded years post-clearing interval. Moreover, the samples were taken from three study
areas which share common soil and climatic properties. This means that the predictive
models could not be generalized for the prediction of the same characteristics in any
unsampled location or within-forest roads with different specifications. Because large-area
generalization (e.g., regional, national) depends on the variability of the training and test
samples, more observations are needed. This would require a greater range of geoclimatic
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conditions within forest roads as well as a higher diversity of forest road specifications.
Our findings are consistent with recent LiDAR-based studies in the boreal region which
have shown that the post-clearing vegetation dynamic is complex and growth increments
are low. Our long-term predictions suggest that a timeframe of no less than 20 years
must be expected for both wide and narrow LFs to exhibit ~50% and ~80% of vegetation
cover, respectively. Future studies could compare growth patterns and evaluate whether
the differences between polygonal features (resulting from fire and harvest) and LFs lead
towards distinct successional trajectories [133,148]. Another consideration can emerge from
this comparison and is related to the linear aspect of anthropogenic infrastructures which
makes the application of chrono-sequence approaches difficult [149]. In our analysis, our
plots represent points along a spatial continuum; however, the temporal component was
constrained to specific data points in time. Therefore, it is important to predict post-clearing
growth patterns along a temporal continuum.

7. Conclusions

In this study, we characterized within-forest road vegetation cover dynamics for boreal
forest ecosystems using LiDAR-based CHM data and predictive modelling. Our predic-
tive accuracy findings demonstrated that the ML approaches performed better than OLS
approaches, with the rf model providing a better fit over that obtained with other OLS
and ML models (RMSE ranging from 18.69% to 20.29% and R2 ranging from 0.69 to 0.62,
using stratified cross-validation and independent datasets, respectively). The rf model was
closely followed by gbm, which suggests that tree-based ensemble approaches can improve
prediction accuracy. The inability of OLS approaches to handle non-linear relationships
between the vegetation cover response and the causal factors is the main limitation for an
accurate characterization of forest road vegetation cover dynamics. Clearing width was
found to be the most important factor and was followed by years post-clearing, NDVI,
shade, and climatic variables in predicting vegetation cover at a fine scale. Vegetation cover
varied by forest road type, with narrow-width roads having higher mean vegetation cover
predictions (~17%–51% and ~40%–82% across all five buffers extending from the road
centerline, for the mid- and long-term timeframes, respectively) compared to wide roads
(~3%–53% and ~14%–52% across all five buffers extending from the road centerline, for the
mid- and long-term timeframes, respectively). The rf prediction capability, though satisfac-
tory, requires further testing for large-area generalization. Additionally, transport flux and
volumes, compaction levels, and the construction materials are among the potential factors
that could be included to evaluate possible decreases in model error. With the increasing
availability of remote sensing datasets, there is potential for broad-scale mapping of vegeta-
tion dynamics around forest roads (landscape or regional level). Further investigations are
also required to improve the temporal resolution of vegetation measurements with LiDAR.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f14030511/s1, Figure S1: Field inventory plot design used to reconstruct the centerlines (Di-
mensions: 50 m*clearing width). Table S1: Hyperparameters (ranges and types) and their definitions.
Figure S2: (A) Summary of vegetation cover predictions (means and means +/- standard deviation
error bars) grouped by different forest road categories and timeframes, from cross-validated rf model
(R2 = 0.69, RMSE = 18.69%) recorded within the multi-buffers around the road centerlines, across
forest road types (wide roads and narrow forest roads) for the post-clearing timeframes: >20 YPC
(long-term, black boxes), [10–20] YPC (mid-term, dark grey boxes), and [0–10] YPC (short-term,
light grey boxes). (B) Vegetation cover mean predictions using independently-validated rf model
(R2 = 0.62, RMSE = 20.29%) across forest road types and post-clearing timeframes. Figure S3: rf -based
Partial dependence plots (black curves) showing impacts of single factor on vegetation cover when
all remaining factors are constant. Smooth curves are shown in blue.
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