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Abstract: Land use and land cover (LULC) information plays a crucial role in determining the trend of
the global carbon cycle in various fields, such as urban land planning, agriculture, rural management,
and sustainable development, and serves as an up-to-date indicator of forest changes. Accurate
and reliable LULC information is needed to address the detailed changes in conservation-based and
development-based classes. This study integrates Sentinel-2 multispectral surface reflectance and
vegetation indices, and lidar-based canopy height and slope to generate a random forest model for
3-level LULC classification. The challenges for LULC classification by RF approach are discussed
by comparing it with the SVM model. To summarize, the RF model achieved an overall accuracy
(OA) of 0.79 and a macro F1-score of 0.72 for the Level-III classification. In contrast, the SVM model
outperformed the RF model by 0.04 and 0.09 in OA and macro F1-score, respectively. The accuracy
difference increased to 0.89 vs. 0.96 for OA and 0.79 vs. 0.91 for macro F1-score for the Level-I
classification. The mapping reliability of the RF model for different classes with nearly identical
features was challenging with regard to precision and recall measures which are both inconsistent
in the RF model. Therefore, further research is needed to close the knowledge gap associated with
reliable and high thematic LULC mapping using the RF classifier.

Keywords: forest classification; mapping; forest degradation; agriculture; machine learning; sustainability

1. Introduction

Capturing and reporting the status of earth’s land use and land cover (LULC) is
indispensable in reducing emissions from deforestation and degradation (REDD) and in
mitigating global warming as it plays a crucial role in determining the trends of the global
carbon cycle [1–4]. Areas of forest coverage, healthy and structural components such as
forest types and species, are critical information for forest monitoring and sustainable
management [5]. LULC conversion is a complex process that involves anthropogenic activ-
ities and biological, environmental, and meteorological factors, and could also directly or
indirectly affect its environment in terms of climate, global climate change patterns, services
such as economy, biodiversity, forest growth, food, and water cycle [6,7], and aesthetic and
economic value [8]. Change in LULC could hasten the risk of natural hazards due to the
loss of protective services that LULC offers and could also lead to increased fragmentation
and structural destruction of protected areas [9]. Diverse degrees of LULC changes can
significantly affect the ecosystem as this interferes with natural ecological processes, such
as nutrient cycling, water cycle, energy flow, and succession. The changes that provide
critical information to address and control the impacts should be measured and assessed.
From the point of view of forest resources assessment, forest inventory must be reliable in
measurement, report, and validation [10]. Derivation of accurate LULC to disclose details
of forest status is of particular importance in achieving sustainable management.

Accurate mapping of LULC is highly related to the resolutions and features inherited
from the diverse remotely sensed data delivered by spaceborne, airborne, and drone
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platforms. In terms of spectral features, multispectral satellite data with high spatial
resolution at a low cost of data acquisition appears to be a major application. Although
much research demonstrated the advantages of global and regional mapping, the hundred-
meter scale resolution of LULC products has the problem of information uncertainty.
Fortunately, image fusion techniques extend the capability of retrieving high spectral
resolution and high spatial resolution from the satellite data, providing the opportunity
to produce accurate LULC maps to support constant monitoring of changes in forest
ecosystems [11]. In contrast to the MODIS with significant low spatial resolution and
SPOT data with a large view angle of observation, Landsat and Sentinel-2 sensors collect a
broad range of visible-NIR-SWIR spectra. In a nadir-view, operational mechanisms become
more convenient and preferable with a view to LULC mapping. This is more evident
when shadow covers significant areas of the whole image because minimizing impacts
of shadow-induced abnormal variations of spectral features to derive surface materials’
properties is still a considerable challenge. LULC classification accuracy is most likely
questionable due to the increasing shadow caused by the sensor’s view angle and terrain
morphology interactions.

As disclosed in various articles, the problems being encountered in LULC classification
or forest species inventory include low variability of the spectral profile of the different
LULC, and high intra-class variability [12,13]; noises embedded in satellite data, low
spatial resolution of freely acquired satellite data especially when working at rural level,
and lack of classifiers that can be easily interpreted and automated. Recently, machine-
learning techniques, including decision trees, neural networks, support vector machines,
and random forest, have been widely applied to Landsat [14,15], SPOT [16], MODIS [17–19],
and Sentinel-2 imagery [20–23]. Recently, deep learning techniques have been intensively
explored in diverse applications, such as pest detection [24], segmentation [25,26], species
classification [27], and LULC classification [28]. Although deep learning techniques are
excellent in retrieving multidimensional features to recognize, detect, and segment objects
for labeling, it is challenging to describe how deep learning techniques deal with multiple
features to achieve the work. Therefore, machine learning techniques such as random
forest (RF) and support vector machine (SVM) are more appropriate. From the existing
and numerous classifiers, the performance of random forest has already proved superior
in comparison to other methods [29–31] regardless of the source satellite data such as
multispectral and hyperspectral satellite sensor imagery [13,32–41]. Random forest requires
fewer parameters and minimal manual intervention in high-dimensional data processing;
it can rapidly obtain classification results with high accuracy [32,37,38].

In the practical management of forest ecosystems, developing an appropriate strategy
to minimize competition for land or resources between agriculture and forest services [42,43]
to support anthropogenic needs and sustainable forestry has always been a key issue in
recent decades. The Ex-Mega Rice Project (EMPR) of Indonesia, 1997–1999, is a typical
example showing inappropriate land use planning damage to the forest ecosystem; the
project attempted to increase agricultural production but ultimately led to a devastating
loss of forest resources and biodiversity in the Kalimantan area [44]. As noted, detailed
spatial-explicit information of species and forest-type composition over forest lands helps
diagnose areas of forest degradation and deforestation. Classifying LULC with remotely
sensed data faces the challenge of differentiating conservational and degrading-oriented
classes. Specifically, the similarity of spectral features in the areas of well-covered tree
species/forest type, crops, and grasses, as well as the areas with homogeneous features of
bare soil in flat land and eroded land. A classification that concerns only primary materials,
such as vegetation, built-up, soil, and water, is insufficient to provide detailed information
for planning with regard to a rural landscape. In other words, forest inventory-oriented
LULC mapping is indeed required to retrieve detailed attributes of LULC from satellite
images by appropriate classifiers to support diagnoses of agricultural expansion, forest
degradation, and disturbance [45,46], temporary updates of land cover maps [47], and the



Forests 2023, 14, 816 3 of 18

drivers of forest changes [48,49]. This kind of management-oriented LULC classification
issue has been rarely explored in the literature.

As noted, many studies also suggested that appropriate classifiers in combination
with good-quality data are crucial in LULC classification. Therefore, this study aims to
determine the supplementary abilities of the well-performing RF technique in establishing
forest composition-oriented LULC information. Information classes are the end-members
frequently observed in agriculture-forest mosaic landscapes whose occurrence and distri-
bution can disclose the condition related to forest management, forest degradation, and
disturbances. Confusion in the end-members classification is considered uncertainty. The
SVM technique was also applied to explore the uncertainty and challenges in the 3-level
LULC classification.

2. Materials and Methods
2.1. Study Site

Lishan, located in Heping, Taichung (Figure 1), is part of the Jade Mountains of Taiwan.
The study site, which was delineated within the boundary of the site for the fuel project
conducted by [50], has a total area of 20,288 ha and has an average altitude of 2001 m above
sea level (masl) with a minimum of 1386 and a maximum of 3088 masl. The standard
deviation of the elevation in the study site is 326.79 m. The temperature of the area ranges
from 24◦ during summer to −4◦ Celsius during winter. Lishan is a hub connecting the east,
west, and north and south in Central Taiwan. It is surrounded by Taroko National Park to
the east, Shei-Pa National Park to the west, Wushe to the south, and Taipingshan National
Forest Recreation Area to the north. Due to its accessibility and scenic sites, Lishan became
a getaway for holidays and weekends to escape the island’s summer heat. However, it is
also threatened by forest disturbances, such as fire and agricultural expansion [50]. For
instance, an average of 526 ha per year were destroyed by fire within and around the area
from 1963 to 2019 [50]. Lishan is noted for producing pears, apples, peaches, and tea, and
for its mountainous scenic view.

Figure 1. The digital elevation model (DEM) of Taiwan overlaid with the boundary of the study site
(a); and geolocations of the validation dataset overlaid with a Sentinel-2 natural-color image (b).
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2.2. Data Processing and LULC Classification

Two Sentinel-2B L1C top-of-atmosphere digital number images with the ID of
L1C_T51QUG_A014086_20191117T022951 and L1C_T51RUH_A014086_20191117T022951
acquired on 17 November 2019, were downloaded freely from the open-access hub of
the ESA-Copernicus (https://scihub.copernicus.eu/ (accessed on 16 February 2021)). As
shown in Figure 2, the images were first atmospherically corrected to retrieve bottom-of-
atmosphere surface reflectance through the sen2cor utility [51] and then pansharpened
using the Sen2Res algorithm [52] to generate a spatially registered multispectral dataset of
10-m resolution. The bands with a lower resolution of 20 m or 60 m were super-resolved
based on the geometry and reflectance consistency of neighboring pixels between the
higher and lower resolution bands. Next, every band of the super-resolved image was
layer-stacked. Finally, the two preprocessed Sentinel-2 images were mosaicked, subset, and
subjected to LULC classification.

Information on LULC from remotely sensed images is mainly interpreted via spectral
characteristics. Excluding built-up areas, vegetation, bare soil, and water are major land
cover classes in nature. Since both the chemical and physical properties of the components
tend to make the pattern of the reflectance curve highly variable, mapping accurate and
reliable LULC classes remains challenging [53]. A combination of appropriate image
normalization and classification techniques can likely differentiate the nature of land
covers. It is, therefore, the key to deriving precise LULC information at the landscape and
national levels. In remote sensing, a difference in reflectance indicates the dissimilarity
of the pixels; in addition, a change of reflectance in multi-temporal images for the exact
location reveals the conversion of the components. Since the properties of vegetation and
bare soil control the depth of classes among the levels of classification, this study utilized the
bare soil index (BSI) [54], modified difference normalized water index (MNDWI) [55], and
normalized difference vegetation indices (NDVI) to help in the differentiation of reflectance
profile of the LULC classes. The vegetation indices were generated from the SR image and
collectively coded as Sentinel-2 optical metrics.

The integration of the height information during the LULC classification allows the
separation of grasses or short vegetation from bare soil, medium and high vegetation, and
buildings. Slope information provides the steepness of a particular area. Object height
and terrain slope information were derived from airborne lidar scanner (ALS) point cloud
data which were acquired in December 2018 using the Riegl LMS-Q780 lidar system [50].
During the data collection, the operating flight altitude ranged from 3400–4000 m and the
laser pulse repetition rate was 240–270 kHz. Briefly, the original point cloud data which
has a ground and canopy point cloud density of ~2.5 and ~15 points/m2, respectively,
were first subjected to denoising and classification, then sent to generate a digital elevation
model (DEM) and digital surface model (DSM) with a resolution of 1-m size using linear
interpolation technique. Next, the canopy height model (CHM) was derived by subtracting
the DEM from the spike-free DSM. The slope was generated from the DEM. The CHM was
then subjected to pitfall removal using the filtering method for object height determination.
Alternatively, CHM data can also be derived from spaceborne full-waveform lidar data such
as geoscience laser altimeter system (GLAS) and global ecosystem dynamics investigation
(GEDI), and advanced topographic laser altimeter system (ATLAS)—a photon-counting
lidar [56,57]—when integrating with moderate-resolution images. Though GLAS, GEDI,
and ATLAS lidar can only provide footprint information, wall-to-wall CHM can be de-
rived through regression techniques and with ancillary data. As a result, a layer-stacked
image with 17 features, including 12 spectral features (the cirrus band was excluded),
three vegetation indices, and two lidar-derived metrics, was generated for this study. The
continuous values of all the data were used in the LULC classification. The Sentinel-2 SR
range from 0 to 0.41 across the bands and the values of BSI, MNDWI, and NDVI derived
from the Sentinel-2 SR image were between −1 and +1. Meanwhile, the values of the
ALS-derived slope and CHM of the study ranged from 0%–4806% and 0–63.74 m, respec-
tively. As supplementary data, the orthoimage of the study site, which was collected
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simultaneously with the ALS point clouds, was used purposely for visualization and verifi-
cation purposes of the ground truth data. The overall flowchart of the data collection and
processing until the LULC classification and validation is summarized in Figure 2.

Based on the USGS LULC system for use with remote sensor data [58], the six types of
Level-I LULC represented in this area are forest, grassland, agriculture, built-up, bare land,
and water, which are categorized further into 10 Level-II LULC and a total of 13 Level-III
LULC types namely building, broadleaf, pine, cypress, other conifers, orchard, tea farm,
vegetated cropland and non-vegetated cropland, grassland, water, sand, and eroded land.
Table 1 shows the hierarchical classification of the LULC classes in this study. Figure 3
demonstrates the overall conceptual model of the random forest classification. To imple-
ment the LULC classification by random forest method [59], the parameters used were
16 features and 500 decision trees as the lowest error was reached at this combination. A
sum of 26,769 sample pixels covering the 13 Level-III LULCs were randomly collected.
Through simultaneous visual inspection of the orthoimage and Sentinel-2 image of the
study site, representative samples were collected. In cases of conflicting classes of the
same pixel, e.g., vegetated cropland in the orthoimage but non-vegetated cropland in the
Sentinel-2 image, the prevailing class in the Sentinel-2 image was followed. The collected
samples were then randomly separated into two datasets: 80% for modeling and the re-
maining 20% for validation. The 13 Level-III LULCs were then aggregated into 10 Level-II
LULCs, and finally into 6 Level-I LULCs based on the class’s attributes. The aggregation
of classes was based on the hierarchical level as is presented in Table 1. To compare the
performance of the RF models with other high-performing machine learning algorithms,
the LULC classification was again performed but this time, using the SVM classifier. The
SVM modeling was implemented via the radial basis function. Using the 20% validation
data, the classification accuracy of the LULC products was evaluated using the recall,
precision, and F1-score from the viewpoint of particular classes and overall accuracy (OA),
kappa coefficient (κ), and the macro F1-score for the general measures [28]. The class-based
accuracy indices are further described in Equations (1)–(3). The OA is the ratio of the total
number of correctly predicted classes to the total number of validation data while the macro
F1-score is calculated as the average of all the per-class F1-scores.

Recall =
True positives

(True positives + False negatives)
(1)

Precision =
True positives

(True positives + False positives)
(2)

F1-score = 2 ×
[
(Recall × Precision)
(Recall + Precision)

]
(3)

In Equations (1)–(3), true positives are the observations that were correctly predicted
by the model, false positives are those predicted data that were included in a class but do
not actually belong to the class, and false negatives are those that were removed from a
particular class and included wrongly in a different class. The class-based error matrix was
presented in probability values instead of the traditional method which uses the actual
number of samples.

Table 1. Hierarchical classification of the Level-III, -II, and -I LULC classes.

Level-III Level-II Level-I

1. Broadleaf (Br) 1. Br

1. Forest (F)
2. Cypress (Cy)

2. Conifer (Co)3. Pine (P)
4. Other Conifers (OC)
5. Grassland (Gl) 3. Gl 2. Gl
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Table 1. Cont.

Level-III Level-II Level-I

6. Orchard (Or) 4. Or

3. Agriculture (Ag)7. Tea farm (TF) 5. TF
8. Vegetated cropland (Clv) 6. Cropland (Cl)
9. Non-vegetated cropland (Clb)
10. Built-up (Bu) 7. Bu 4. Bu
11. Eroded land (EL) 8. EL

5. Bareland (Bl)12. Sand (Sa) 9. Sa
13. Water (W) 10. W 6. W

Figure 2. Flowchart of integrating Sentinel-2 and ALS data for LULC classification via RF and SVM
machine learning technique. The classifications were performed using the package randomForest
of [60] in R statistical software (version 4.1.2) and the SVM tool in ENVI software (version 5.5.3).
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Figure 3. The processes of the random forest classifier in generating independent decision trees for
LULC mapping. The highlighted red path from the root node through the decision node to the leaf
node demonstrates the prediction of that decision tree. The final result is the ensemble predictions
based on the majority of the prediction made by all the trees in the random forest.

3. Results
3.1. Generalized Spectral Features of LULCs

In remote sensing, surface reflectance is usually used to describe the spectra behavior
of end-members. As shown in Figure 4, the reflectance curves are generalized from training
samples of the Sentinel-2 SR images. The curves can be characterized or grouped into
three particular patterns: double peaks in visible and infrared regions such as vegetation
classes, a single peak in the infrared region such as bare-soil-based classes, and a single peak
in the visible region such as water. Obviously, these three primary categories appeared dis-
tinguishable through the spectral features from the visible to near-infrared and shortwave
infrared. Apparently, the surface reflectance of tea farm and vegetated cropland differs
from those forest-relevant classes. Additionally, the curve trend in the green-red edge
wavelengths highlighted in Figure 4b also shows a positive opportunity to differentiate
grassland, vegetated cropland, and orchard from each other and even forest-relevant classes.
Unfortunately, the separability in generalized spectral curves of vegetation LULC classes
became ambiguous or unclear when considering the variance of spectral reflectance. This
is evident in Figure 5, which demonstrates spatial and spectral variations of the Level-III
LULC classes in a tabular form with very high-resolution orthoimages, high-resolution
Sentinel-2 SR images, and correspondingly their VNIR-SWIR spectral reflectance curves.
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The orthoimage and Sentinel-2 image provide spatial features of the classes at a scale of
0.2 m and 10 m, and the reflectance curve shows the generalized spectral features of the
LULC classes. The spectral pattern of vegetative and non-vegetative classes is distinct,
allowing us to differentiate them through Sentinel-2 SR image.

Figure 4. Spectral features of the end-members for Level-III LULC classes: (a) the line graph combines
the spectral curve of each class for better comparison in which, the circles that come across the water
reflectance curve indicate the central-wavelength locations of the Sentinel-2 multispectral bands
(No. 1-8, 8a, 9, 11, 12) except the cirrus band (No. 10 center at the wavelength 1375 nm) that
is excluded in the classification; (b) the enlarged line graph of visible wavelengths in subfigure
(a) highlights the surface reflectance differences among the eight vegetation classes.

In contrast to the non-vegetative LULCs, the vegetative classes show a similar re-
flectance curve over the spectral region. Although the average reflectance of those classes
appeared with different levels in Figure 4, reflectance between classes is overlapped when
considering their significant standard deviation as shown in rows three and six of Figure 5.
Looking at the enlarged map to the right of Figure 4, the spectral patterns of the grassland,
vegetated cropland, and orchard are quite different from the others. The reflectance of
vegetated cropland in wavelengths 440–559 nm acts almost identically to the grassland
while the former drops lower, but the latter raises significantly at the wavelength 665 nm.
This kind of different reflectance behavior increases the opportunity to differentiate classes.

Based on the region-of-interest areas for generating RF models, the average metric
value of each class is presented in the line graph in Figure 6. For visualization purposes,
the CHM and slope are rescaled to 0–1 by dividing a rescale factor (SF) of 22.41 and 107.35,
respectively. The SF is the maximum average value of the CHM and slope of the different
LULC classes. As can be seen in the CHM map in Figure 6, lower rescaled values of
CHM are mainly distributed along with the river system and agricultural areas next to
the river while higher values are distributed over the forest area. This is evident in the
line graph where the forest-relevant classes are far from zero. In contrast, the agriculture-
relevant classes are quite close to zero. In addition, the ALS-derived feature slope is of
particular importance to differentiate the eroded land from the non-vegetated cropland,
sand, and building. Furthermore, the NDVI of those non-vegetation classes is so small that
can be recognized and separated from vegetation classes. All the classes have negative
MNDWI values except for the water which has a positive value. The vegetation has lower
MNDWI values than the non-vegetation. Building and open land classes, the eroded
land, sand, and bare cropland, have the highest BSI, and the others are with negative
BSI values. To summarize, the dissimilarity of spectral and lidar metrics among LULC
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classes offers additional opportunities for generating decision trees of the RF model for
better classification.

Figure 5. Variations of spectral feature for Level-III LULC classes. Images list in rows 1, 2, 3 and
rows 4, 5, 6 represent high-resolution orthophoto image (1 and 4), Sentinel-2 image (2 and 5), and
VNIR-SWIR spectral curve (3 and 6) (the cirrus band is excluded), respectively, of the specific class
that came above them. Every spectral curve in rows 3 and 6 whose x-axis is with a range identical to
the integrated line graph while the range of y-axis is extended to 0.52 to show the data variation. The
black and red lines depict the reflectance curves in the form of µ ± SD, where µ and SD stand for the
mean and standard deviation of reflectance, respectively. Please refer to Table 1 for the abbreviations
of Level-III LULC classes.

3.2. Performance of Multi-Level LULC Classifications

Figure 7a–c show the Level-III, Level-II, and Level-I LULC thematic maps performed
by the classifiers RF and SVM, respectively. Based on 80-20 training and test random
partition process, the validation samples highlighted in Figure 1 were used to evaluate the
classification performance. The details of the error matrix, including false-negative, false-
positive, precision, recall, and F1-score, for the 13 end-members in Level-III classification
of the study site simultaneously for RF and SVM are summarized in Table 2 and Figure 8.
The precision and recall ranged from 47% to 100% meanwhile the F1-score was between
0.5 and 1.0 for all classes at the Level-III. The OA, kappa, and macro F1-score of the
classifiers for the Level-III, -II, and -I are summarized in Figure 7d. It could be observed
that the post-classification by attribute-based aggregation improved the accuracy from
Level-III to Level-II, and eventually to Level-I for both the RF and SVM. The increase in
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accuracy in Levels-II and -I is obviously contributed via the decrease in false-negative,
false-positive in those classes that belongs to each of the forest, agriculture, and bare land
categories. This indicates that both RF and SVM can address the attributes of LULC via
multispectral features, their vegetation index derivatives, canopy height, and terrain slope.
The comparison of the performance of the two classifiers revealed that the SVM achieved
better OA, kappa, and macro-F1 score than the RF (Figure 7d). The area coverage of the
thematic maps provided by the classifiers are significantly different for both the vegetated
and non-vegetated classes (Table 3).

Figure 6. Sentinel-2 and ALS metric maps and average values of the Level-III LULC classes. The
scale factor (SF) in the y-axis is 22.41 for CHM, 107.35 for slope, and 1 for BSI, MNDWI, and NDVI.
The metrics revealed a dissimilarity among the classes beneficial for generating the RF model. Refer
to Table 1 for the meaning of class code in the line graph.

Table 2. A joined confusion table of RF and SVM classifiers * at the Level-III LULC classification.

Observed LULC

Class Br (356) Cy (33) P (1366) OC (396) Gl (31) Or (744) TF (215) Clv (846) Clb (375) Bu (20) EL (38) Sa (140) W (794)

Pr
ed

ic
te

d

Br 0.73 0.85 0.09 0.03 0.04 0.03 0.03 0.06 0.01 0.04 0.09 0.01 0.20
Cy 0.52 0.73 0.01 0.01 0.01 0.01
P 0.09 0.09 0.12 0.86 0.88 0.26 0.19 0.01 0.04 0.04 0.01 0.02

OC 0.06 0.18 0.12 0.07 0.05 0.68 0.74 0.003 0.05 0.02 0.02
Gl 0.65 0.84 0.01 0.01 0.20 0.10
Or 0.22 0.12 0.01 0.01 0.02 0.19 0.16 0.88 0.78 0.36 0.07 0.07 0.23 0.02 0.03 0.05 0.07
TF 0.03 0.01 0.03 0.004 0.04 0.55 0.73 0.002 0.01
Clv 0.02 0.01 0.16 0.04 0.11 0.66 0.75 0.02 0.08
Clb 0.004 0.03 0.04 0.72 0.77 0.05 0.11 0.10 0.04
Bu 0.03 0.70 0.85
EL 0.01 0.10 0.47 0.79
Sa 0.11 0.20 0.05 0.64 0.89
W 0.01 0.04 0.005 0.22 0.21 0.53 0.26 1.0 1.0

* Yellow and green columns present the RF and SVM classifiers, respectively. The number in parenthesis comes
after LULC class name indicating the number of validation pixels for the corresponding class.
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Figure 7. LULC classified images of the study site derived by RF and SVM approaches: (a) Level-III,
(b) Level-II, (c) Level-I, and (d) summary of the classification accuracy. Please refer to Table 1 for
the abbreviations of classes’ legends for Level-III LULC. For the legend of Level-II LULC, the codes
Co stands for conifer which is aggregated from Cy, P, and OC in Level-III; Cl indicates cropland
including Clv and Clb in Level-III.

Table 3. Comparison of the area coverage (%) of each thematic class in each level provided by
the classifiers.

Level-III Level-II Level-I

Class RF SVM Class RF SVM Class RF SVM
Br 36.37 44.64 Br 36.37 44.64 F 66.53 79.02
Cy 0.02 0.77 Co 30.15 34.39
P 26.89 29.46

OC 3.24 4.16
Gl 0.07 1.54 Gl 0.07 1.54 Gl 0.07 1.54
Or 23.80 13.91 Or 23.80 13.91 Ag 31.14 16.95
TF 2.38 0.76 TF 2.38 0.76
Clv 4.40 1.73 Cl 4.96 2.28
Clb 0.55 0.55
Bu 0.004 0.19 Bu 0.004 0.19 Bu 0.004 0.19
EL 0.001 0.22 EL 0.001 0.22 Bl 0.94 1.16
Sa 0.94 0.95 Sa 0.94 0.95
W 1.33 1.14 W 1.33 1.14 W 1.33 1.14

The colored box highlights the subclasses aggregated to a lower level of LULC class.
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Figure 8. A paired-bar chart for comparison of precision, recall, and F1-score in every class at Level-III
LULC classification obtained by RF and SVM. As noted, the two classifiers appeared equal efficiency
in pine, while SVM achieved reliable classification in cypress (Cy), other conifer (OC), grassland (Gl),
and built-up (Bu) as it obtained all the accuracy measures substantially greater than RF. The strength
of RF was its ability torecognize orchard more efficiently than SVM. In general, the capability of RF in
classifying LULC is generally poorer than SVM based on F1-score of all classes.

4. Discussion
4.1. Inherited Complexity of Biophysical Properties May Induce Reflectance Variation of Endmembers

Land cover, water, soil, and vegetation can be considered the simplest raw materials.
They can be divided into various subcategories based on their physical, chemical, usage, and
even biological properties, thus formulating diverse land cover land use. LULC mapping
is a key to investigating information regarding end-members’ properties, distributions,
and effects on the land to support appropriate management for sustainability. However,
due to the collective effects of environmental and temporal factors, the end-members’
spectral features tend to be more divergent. This is evident, particularly in the progress of
physiological activities. The complexity is naturally inherited, resulting in precise LULC
classification being more difficult.

As can be seen in Table 2 (Section 3.2) and Figure 8, the classes’ precision and recall
achieved by the RF method were significantly lower than SVM method. Specifically, the
cypress and building have a precision of less than 60%, at the same time the classes with a
recall of less than 60% were the cypress, tea farm, and eroded land. More evidently, the
RF method appeared to fail in differentiating vegetation classes because a pronounced
false-negative and/or false-positive percentage (>20%) occurred in the broadleaf, cypress,
other conifers, grassland, tea farm, and vegetated cropland. Meanwhile, the significant
misclassification also indicates the RF failed to distinguish the open land classes, such
as bare cropland, building, eroded land, and sand. In particular, there was 22%, 21%,
53%, and 26% of vegetated cropland, bare cropland, eroded land, and sand that were
misclassified as water which does not merely show a significant omission in the former
four classes but also an evident commission error in the latter class. Looking at the high
false-positive and false-negative errors of eroded land and sand classes in the RF approach,
the better classification accuracy of the SVM approach in differentiating the two classes
indicates that the RF unfortunately is not optimal. Figure 9 shows some examples of LULC
classification discrepancy in classifiers and ground truth. For diagnosing the development
of desertification and the transformation of global drylands [61], the RF remains challenging.
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Images in rows (1–3) show the orthoimage and RF and SVM classified Level-III images for
(a) eroded land, (b) grassland, (c) built-up, and (d) sand; (e) the legend of LULC classes.

Figure 9. A close look at examples of LULC classification discrepancy in classifiers and ground truth.
Images in rows (1–3) show the orthoimage and RF and SVM classified Level-III images. In (a), the
eroded land was misclassified as water by RF but eroded land as it is by SVM. (b) is composed of
grassland and other conifer which is classified as water, vegetated cropland, pine, broadleaf, and
orchard by RF but mostly accurately classified as they are by SVM. (c) has built-up on the center
and surrounded by orchard. Both RF and SVM recognized the orchard successfully; the built-up
was mostly recognized as it is by SVM but mostly misclassified as sand by RF. (d) the sand was not
correctly recognized by RF and SVM. (e) the legend of LULC classes.

4.2. Challenges in Deriving Robust Random Forest

In general, RF technique generates uncorrelated decision trees by random sampling
with replacement from sampling dataset. Numerous independent decision trees that inte-
grate features with appropriate decision nodes and homogeneous leaf nodes are formulated
based on the bagging (or bootstrap aggregating) and splitting procedures. It is known
that noise in training dataset may decrease the capability of decision trees in classification.
Fortunately, the noise effect can be minimized by a feature importance tuning process,
in which the least important features that contribute insignificant marginal classification
accuracy will be removed from the decision tree generation. In addition, RF is flexible
in generating deep models through increasing the number and depth of decision trees.
However, the former increases voting accuracy with significant time cost while the latter
tends to result in overfitting and reducing the accuracy or aggregation efficiency.

Based on the work demonstrated in this study, an interesting challenge might be to
apply the RF technique to LULC classification as follow:

1. Considerable reflectance variations in vegetation classes increase the RF model’s
prediction uncertainty.

Supervised classification involves a process of image interpretation, objects or end-
members of interest determination and sampling, spectral feature learning and modeling,
and finally labeling and classification. For LULC mapping, the process can be flexible
in view of the details of objects to be extracted from images for land and resources man-
agement. The Sentinel-2 spectral signatures of broadleaf, conifer, and agricultural classes
observed in this study appeared to overlap each other partially. A similar condition of spec-
tral signatures overlap also occurred in built-up and bare soil relevant classes. Obviously,
this kind of spectral confusion has raised an issue of model reliability or prediction uncer-
tainty of the RF model because node splitting for generating decision trees with a lowest
impurity index becomes troublesome. Increasing complexity of LULC categories [62] and
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vegetation phenology [63,64] will also increase the challenges in applying RF in achieving
accurate LULC mapping.

2. Complexity and difficulty of LULC classification increase as the number and homo-
geneity of classes to be dealt with increases.

As noted, the 13 classes of interest at Level-III LULC classification have similar spectral
signatures, and most are characterized as vegetation and bare soil materials. The homo-
geneity in the spectral dataset is moderately mitigated by incorporating canopy height,
slope, and spectral indices BSI, NDVI, and MNDWI. The RF model with 500 decision
trees was generated for classification. As can be seen in Figure 10, the error rate gradually
reduced and reached a stable level as trees increased meanwhile the OOB error rate reached
the lowest level when 16 features and 500 decision trees were assigned for the machine
learning. The vegetation-relevant classes appeared with higher error rates in the modeling
training and lower precision and recall accuracy in the validation dataset as well. For the
best learning result, the RF model can characterize the Level-III LULC map with a macro
F1-score of 0.72, increasing to 0.75 for the 10 classes Level-II map and 0.78 for the 6 classes
Level-I map. This demonstrates that aggregating the higher-level LULC classes to generate
a lower-level LULC map is feasible.

Figure 10. The trend of error rate changes in the process of generating entire RF model: (a) class-based
and OOB error rate before tuning; and (b) the OOB error rate reduction achieved by tuning process.

3. High-level LULC classification with complicated and homogeneous classes seems to
require a flexible non-linear model to derive reliable information.

In contrast to the performance of the RF approach, the SVM approach can formulate
a more appropriate hyperplane with the same training dataset to achieve better accuracy
based on the same evaluation dataset. The macro F1-score obtained was 0.81, 0.84, and 0.91
for Level-III, -II, and -I LULC, respectively, the improvement for each of the 3-level maps
was 0.09, 0.09, and 0.13. Since the SVM modeling was implemented with the radial basis
function, the excellent performance of SVM indicates that a non-linear-based hyperplane
should be the key to achieving acceptable LULC classification. Recall that the generation
process of an RF model mainly relies on node splitting and the structure of multiple decision
trees, a method that can control the complicated non-linear feature space of LULC classes
is expected.

4. Looking for possible ways to improve RF modeling for LULC classification.

RF technique can deal with quantitative prediction and qualitative classification. For
the prediction, the response variable is numerical, and the outcome is determined as the
average of all estimates from each of the multiple decision trees. However, the classification
is a probability-based voting system for non-numerical class labeling, and the outcome
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is determined as the majority of predictions. The learning process of developing the
entire structure of a random forest is considered RF modeling. In general, a classification
dealing with multiple classes requires more decision trees [65]. In an RF model without a
sufficient number of decision trees and informational features, the accuracy measures such
as precision, recall, and F1-score of interested classes will definitively not be acceptable,
and therefore macro F1-score is also not satisfied.

Efficient management of land and natural resources needs accurate and reliable LULC
information. This is particularly sensitive and important in the ecotone area, which is
generally a mosaic of both rural and forest landscapes and whose land cover land use may
frequently change due to anthropogenic activities and disturbances. Accurate mapping
of LULC helps monitor the changes and moreover diagnose the drivers of corresponding
changes. It is critical to constantly collect reliable LULC information as a part of FAO forest
resources assessment for sustainable management.

An effective RF modeling must be able to differentiate LULC classes with nearly the
same features as vegetative LULCs, with a large amount of decision trees expected as
one potential key to accurate LULC mapping. Again, as observed in Figure 10a, the RF
attained the lowest error when the trees were increased to 500. In addition, the integration
of multispectral image, derived spectral indices, and ALS-based metrics is a potential
way to improve RF modeling. To increase data dimensionality, multi-temporal images
particularly can extend the spectral features at a single image to multiple images from a
particular date to time serial dates. Consequently, the augmented dataset provides more
opportunity to generate multiple decision trees with heterogeneous spectral features, which
helps increase the number of decision trees while decreasing the risk of accuracy reduction
or over-fitting problem. Accordingly, the generated multiple decision trees model is likely
more robust, and the RF model is expected to reduce diversity of prediction outcome while
raising the confidence of voting.

5. Conclusions

LULC classification is critical work for land and forest resources management. This is
particularly significant for regular monitoring and assessment programs conducted by FAO.
For example, the change of forest area, which can be monitored through multi-temporal
LULC monitoring, is an indicator of sustainability. In addition, forest degradation and
deforestation can be detected by extracting detailed attributes of forest types and species
distribution which can also be provided by time-series LULC classification. Improving
LULC classification helps land/resources management in an efficient way. The random for-
est technique has been well-developed and widely applied to LULC classification globally
and has been reported for its excellent performance to this end. Nevertheless, challenges
are still present when using the classifier in LULC mapping. The major challenge being
faced by the RF which were revealed in this study is accurately differentiating different
LULC classes with similar features. Although increasing the data dimensionality by inte-
grating ancillary data can reduce the problem, it is still insufficient to completely improve
the performance of the classifier. Given the findings of this study, additional techniques
or modifications are still needed to fill the knowledge gap of accurate and high thematic
resolution LULC mapping using the RF classifier.
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