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Abstract: The dynamic monitoring of forest resources is an integral component of forest resource
management and forest eco-system stability maintenance. In recent years, LiDAR (Light Detection
and Ranging) has been increasingly utilized in precision forest surveys due to its great penetrating
ability and capacity to detect forest vertical structure information. However, the present airborne
LiDAR data individual tree segmentation algorithms are not highly adaptable to forest types, par-
ticularly in mixed coniferous and broad-leaved forest zones, where the accuracy of individual tree
extraction is low, and trees are incorrectly recognized and missed. In order to address these issues,
in this study, spectral images and LiDAR data of a red pine conifer–broadleaf mixed forest in the
Changbai Mountain Nature Reserve in Jilin Province were chosen, and the normalized point cloud
was segmented iteratively using the distance-threshold-based individual tree segmentation method
to obtain the initial segmented individual tree vertices. For individual trees with deviations in the
initial vertex identification position, and unidentified individual trees, identification anchor points of
real tree vertices are added within the canopy of the trees. These identification anchor points have
strong position directivity in LiDAR data, which can mark the individual trees whose vertices were
misidentified or missed during the initial individual tree segmentation process and identify these
two tuples. The tree vertices may be inserted precisely based on the 3D shape of the individual tree
point cloud, and the seed-point-based individual tree segmentation method is used to segment the
normalized point cloud and finish the extraction of individual trees in red pine mixed conifer forests.
The results indicate that, compared to the previous individual tree segmentation approach based
on the relative spacing between individual trees, this study enhances the accuracy of individual
tree segmentation from 83% to 96%. The extremely high segmentation accuracy indicates that the
proposed method can accurately identify individual trees based on remote sensing techniques to
segment forest individual trees, can provide a data basis for subsequent individual tree information
extraction, and has great potential in practical applications.

Keywords: airborne laser radar; individual tree segmentation; mixed coniferous forest

1. Introduction

Forests serve as the basis for all living species to flourish and play a crucial role in
preserving the equilibrium of the planet’s ecology [1–3]. Sustainable forest management
must implement the dynamic monitoring of forest resources based on surveys of forest
resource data [4]. Forest structure metrics are important indicators that characterize forest
growth and evaluate ecological functions. For accurate and sustainable forest manage-
ment, it is essential to measure the structural characteristics of each individual tree in a
forest [5,6]. Commonly utilized individual tree metrics include crown width, diameter at
breast height, tree position, tree height, and tree species. The measurements of all individ-
ual tree parameters rely on the precise extraction of individual trees [7–9]; therefore, the
identification of individual trees is crucial in forestry. Airborne LiDAR can penetrate forest
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vegetation to rapidly collect large-area, high-precision three-dimensional information of
vegetation [1,10,11]. This provides topographic information of the horizontal structure and
generates spatial information of the forest canopy’s vertical structure, and can also realize
the mechanization and automation of forest surveys and satisfy the demand for precise
forestry [12].

Current LiDAR point cloud segmentation methods can be categorized into two groups:
(1) those that use a surface model, which is typically obtained by subtracting a digital surface
model (DSM) from a digital elevation model (DEM); and (2) those that segment individual
trees directly based on point clouds [13]. These algorithms typically vary in terms of the
approaches employed to smooth the canopy height model (CHM) and the window location
and window size used in the local extreme value search. The window size and smoothness
of the CHM are generally determined by a priori information or external inputs [14,15].
Persson et al. [16] produced a smoothed CHM using a two-dimensional Gaussian filter
and segmented and positioned the trees by searching for local maxima. Popescu et al. [8]
assessed the height of pine and deciduous trees based on their respective CHM and area
growth. Koch et al. [17] utilized a filter to locate treetops and a “water injection” method
to segment the canopy of coniferous and broadleaf woods with an overall segmentation
accuracy of 62%. The lower limit of the regression curve between tree height and crown
width was utilized to calculate the size of the searching window for the local maxima.
The majority of these individual tree segmentation methods are CHM-based individual
tree segmentation algorithms. However, there are inherent errors and uncertainties in
the process of generating CHM. For example, spatial errors may be introduced in the
interpolation process from the point cloud to the grid height model, which can reduce the
accuracy of individual tree segmentation [18,19].

In the second category, the point clouds are normalized to reduce the effect of to-
pography and are subsequently segmented directly based on the vertical and horizontal
spatial distribution characteristics of the point clouds to generate individual trees [20–22].
Morsdorf et al. [8] segmented individual trees from coniferous forest point clouds using a
K-means clustering algorithm, which first identifies the highest local points from the DSM
as the highest tree points and then uses each local highest point as a seed point for K-means
clustering. Li et al. [23] combined an area growth method with threshold judgment for
single-tree partitioning in coniferous forests. This approach makes full use of the distance
between trees, particularly at the tree tops, by first assuming that the highest point is
the tree height point, and partitioning tree point by area growth, etc., until all trees are
partitioned. Sackov et al. [24] summarized the relationship between tree distribution and
tree height, as well as the relationship between tree height and canopy size, based on the
measured data. These tree growth rules are combined with a moving window detection
treetop for single-tree segmentation in the broadleaf forest. However, the tree growth rules
used are not universally applicable.

The aforementioned previous research on single-tree segmentation algorithms based
on airborne LiDAR data has made great progress in the field. However, the majority of
algorithms are subject to the influence of forest land type and have a strong applicability
to single leaf trees, irrespective of whether the algorithm is based on CHM or a point
cloud. Note that in the segmentation of coniferous and broad-leaved mixed forests, due to
the large difference in the shape and crown width of a single tree crown, the traditional
single-tree extraction method based on a point cloud is used for crown detection as it
adopts a single segmentation scale. It is impossible to simultaneously and accurately
detect the range of individual tree crowns with large differences in crown width. The
under-segmentation and over-segmentation of individual trees is often observed within
the same ground area. The existing point cloud single-tree segmentation methods cannot
overcome these problems. Therefore, it is necessary to develop a single-tree segmentation
method with a strong adaptability and low robustness to different forest lands to segment
single trees in coniferous and broad-leaved mixed forests. In this study, we made use of
the strong texture information of high-resolution remote sensing images and the large gap
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between the height and canopy diameter of single trees in coniferous and broad-leaved
mixed forests. In particular, a single-tree segmentation method combining high-resolution
images and LiDAR data is proposed, which can deal with the problems of over-detection
and missed detection in the segmentation of coniferous and broad-leaved mixed forests,
and offers a solution for the accurate segmentation of single trees in coniferous and broad-
leaved mixed forests. We aimed to overcome the bottlenecks of single-tree missed detection
and single-tree over-segmentation in the single-scale segmentation results observed in the
current methods.

2. Materials and Methods
2.1. Study Area

The Baihe Conservation Management Station in the Changbai Mountain National
Nature Reserve, Jilin, was selected as the study area. It is in the heart of an original
dense forest, with an elevation of 700–1000 m and total area of 3.6 hectares. It has a
humid temperate continental climate with warm summers and long cold winters, an
annual average temperature of approximately 3 ◦C, and annual average precipitation of
approximately 700–1400 mm [25]. Pinus koraiensis, Larix olgensis, Betula costata, Tilia tuan,
Acer pictum, and Betula platyphylla are the predominant flora of the Pinus koraiensis broad-
leaved forest zone, one of four vegetation zones on Changbai Mountain [26]. Figure 1
depicts the geographic location and true-color spectral images of the study region. Due
to the broad area, the processing of point cloud individual tree segmentation is time-
consuming and inefficient. Hence, a small plot of the research area was selected for point
cloud segmentation of individual trees. Figure 2 presents a LiDAR image of this region.
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2.2. Data Acquisition

The field data were collected in June 2021 using a Bell helicopter equipped with a
LiDAR scanner and aerial camera. On the day of the data acquisition, the weather was
clear, with a sufficient amount of light and no wind, providing suitable conditions for the
collection of aerial images using a helicopter. For the collection of images, the flight height
was 500 m, the side overlap was approximately 45%, and the course overlap was 65%. The
laser radar sensor employed was a Galaxy PRIME scanner. Table 1 reports the specific
parameters of the instrument.The 100-million-pixel Feisi aerial camera was employed to
collect aerial imagery at the three bands of red, green, and blue (RGB), with a spatial
resolution of 0.03 m (Figure 1). The manual observation of the high-resolution images
reveals the study area to belong to a mixed zone of coniferous and broad-leaved forests.
The crown shape and crown width vary with the individual trees and, as the crowns of
broad-leaved trees generally form spherical clusters, the relative spacing between trees is
also different.

Table 1. Key parameters of the Galaxy Prime LiDAR sensor used in this study.

Parameter Value

Flight height/m 500
Laser wavelength/nm 1064

Scanning angle/◦ 10–60
Pulse frequency/kHz 50–1000

The average density of point cloud/(pts/m2) 160

2.3. Point Cloud Data Processing

The acquisition of the airborne LiDAR point cloud data will inevitably exhibit some
errors due to the LiDAR equipment, the characteristics of the measured object, and the
environment of the measurement area. This results in the presence of noise in the point
cloud data, which can be divided into high and low gross error. High gross error usually
refers to the error of the high elevation points caused by the influence of low flying objects
(e.g., birds) in the air during the laser radar acquisition process. This mixes the three-
dimensional spatial information of the real surface with the three-dimensional spatial
information of flying objects. Low gross error typically refers to the error caused by the
multipath effect during the acquisition process or the very low point error attributed to
the laser scanner equipment. The noise points generated by these errors will affect the
subsequent point cloud processing, thus reducing the accuracy of point cloud filtering,
normalization, and single-tree segmentation. Therefore, the initial point cloud data are
denoised, which effectively improves the calculation accuracy of the subsequent steps.
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The distance-based noise algorithm was used for denoising in this study [27]. For
this approach, the point cloud data were regarded as a set of points in the space, and the
noise point was far away from the majority of other objects. The adjacent points of the
specified quantity of each point were located and the average distance (D) from each point
to the adjacent points was calculated. The median meanD, standard deviation S, and MaxD
(Formula (1)) of all D were then determined. If D > MaxD for a point, it was considered to
be a noise point and was removed.

MaxD = meanD + meanK × S (1)

Based on the stand density of the forest in the study area determined from the forest
resources survey, the optimal neighborhood point experimental group was set to 4, 6, and
8, and the optimal field search radius experimental group was taken as 8, 10, and 12 m.
The parameters of the 2 experimental groups were combined in pairs to obtain a total of
9 experimental combinations. Following the group-by-group experiments, 6 neighborhood
points were denoised. The denoising effect was optimized for the search radius equal to
10 m. Figure 3 presents the results of the denoising process. The total number of initial
point clouds in the study area was 7,052,863, and a total of 8947 and 26,774 low- and
high-difference noise points were removed after denoising, respectively. A small number
of isolated noise points that cannot be eliminated were subsequently manually corrected to
complete the denoising of the initial LiDAR data.
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Figure 3. Comparison of lateral view (a) before point cloud denoising and (b) after point cloud
denoising.

The elevation information from the LiDAR data was obtained by superimposing the
tree height on the terrain elevation. However, the terrain elevation interfered with the
mono-wood segmentation process and exerted a significant impact on the individual trees
segmentation accuracy. Thus, prior to the mono-wood segmentation, the denoised point
cloud should be normalized to eliminate the influence of terrain elevation [28].

In this study, the point cloud was separated into terrestrial and non-terrestrial points
using improved progressive TIN (triangulated irregular network) densification (IPTD) [29],
a commonly used algorithm in point cloud filtering. Firstly, a default grid was constructed
and the lowest point in the grid was then taken as the starting seed point. The initial
triangulation was constructed using the starting seed point. All points to be classified
were subsequently traversed, and the triangles falling into the horizontal plane projection
of each point were queried. As shown in Figure 4, the distance d from point P to the
triangle and the maximum angles α1, α2, and α3 from point P to the three vertices V1,
V2, and V3 of the triangle were calculated and compared with the iterative distance and
iterative angle, respectively. If the distance and iterative angle of a point were less than
the corresponding threshold, the point was determined as the ground point and added
to the triangulation. This process was repeated until all ground points are classified. The
algorithm can effectively separate ground points in low terrain areas.
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Figure 4. Diagram of progressive encryption triangulation filtering method.

The terrain fluctuations in the study area were small, and thus the applicability of this
algorithm was high. In order to determine the optimal ground point separation parameters,
a total of 9 experimental groups were set up, with the iteration angle equal to 10◦, 20◦, and
30◦, and the distances group equal to 1 m, 1.5 m, and 2 m, respectively. The parameters in
the two groups were combined in pairs. By visual comparison and the elimination of noise
points, it was confirmed that the filtering effect was optimized at the iteration angle of 30◦

and iteration distance of 1.5 m. A total of 88,572 ground points were separated by filtering
(Figure 5) and the average ground point height was 1163 m (Figure 6).
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Figure 6. Separated ground points.

The airborne laser system emits a laser signal from the top to bottom, and the signal
receiver collects the laser signal returned by the ground object. The laser beam has a strong
penetrating ability and can penetrate several layers of leaves. However, as the number
of penetrating leaves increases, the beam intensity will decay until no signal is returned.
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Therefore, the occlusion of the dense canopy causes a large number of ground points to lose
information during the collection process. In order to solve this problem, after the ground
point separation process, the inverse distance weight interpolation method was adopted to
encrypt and interpolate ground point, thus obtaining the DEM of the study area (Figure 7).
By calculating the difference between the elevation value of a single tree and the DEM, the
true tree height that was not affected by the terrain is determined. This process is denoted
as point cloud normalization and the results are depicted in Figure 8. The tree elevation
ranges before and after normalization were 1167–1200 m and 0 m to 39 m, respectively.
The latter corresponds to the true value of tree height in the study area. The normalized
point cloud data retain rich information, which eliminates the influence of topographic
factors caused by surface undulations, while retaining the information of multiple point
cloud echoes and the stratification characteristics of the forest canopy structure. This had a
significant impact on the precision of individual tree segmentation [30].
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2.4. Methods

In this study, LiDAR data and high-resolution RGB images were collected by the
airborne platform. The forest in the study area belongs to the mixed forest type of Korean
pine and broad-leaved forest. As the airborne LiDAR was collected from the top of the forest
and the forest canopy in the study area was dense, information loss was experienced for the
lower half of the forest canopy [31]. This study aimed to estimate the characteristics of the
LiDAR data from the lower part of the forest canopy, as well as the distribution structure
of the tree species in the study area. Traditional single-tree point cloud segmentation
methods have a single scale and the extraction accuracy is greatly reduced due to the
different distribution densities of single trees in coniferous and broad-leaved mixed forest
areas [32]. In order to overcome this problem, the iterative segmentation method was
used to extract the tree top points from the LiDAR data, and the optimal single threshold
segmentation scale was determined iteratively. The multi-scale segmentation method was
adopted to segment the crown edge of the high-resolution image, which was then used
to constrain the results of the fixed-point detection of single trees. Accurate individual
tree vertex information was obtained and used as seed points to complete individual tree
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segmentation based on the LiDAR data. Figure 9 presents the segmentation processing
flow.
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2.4.1. Initial Single-Tree Vertex Detection Using LiDAR

A point cloud segmentation (PCS) algorithm was used to detect the vertex of a single
tree. This method assumes that there is a certain distance between trees, particularly at the
top. Firstly, the local maximum of the discrete point cloud was detected. It was assumed
that the local maximum point of the point cloud is the top point of the tree. Thus, the top
point of the tree was used as the seed point for the regional growth to segment a tree. In
this iteration, each segmentation was carried out from top to bottom, and the threshold
was evaluated. If the distance of a point was greater than the threshold interval, it was
determined as the top of the tree. If the point was within the interval threshold, then the
point was classified into a group with the existing segmentation tree. Figure 10 presents
the principle of the algorithm. In the two single-tree point cloud data, point A had the
highest elevation value in the region and was set as the treetop of the target tree. Point
B was the highest elevation point in the remaining point cloud and dAB, dAC, dBC, dBD,
dCD, dCE, and dDE were the horizontal distances between each point, respectively. If dAB
exceeded the set horizontal distance threshold, B was regarded as the vertex of tree 2. The
highest point C (dAC was less than the set threshold) in the point cloud data to be classified
was then determined, and the horizontal distances between point C to point A and point
B were calculated and evaluated. If dAC exceeded dBC, then C points belonged to tree 2,
otherwise, C points belonged to tree 1, and so on until the point cloud classification was
completed. The 2D Euclidean distance between the tree top points is key for the individual
tree segmentation in the point cloud segmentation algorithm [33]. However, determining
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the threshold interval proves to be a complicated task. The threshold is typically set to the
average crown radius of all individual trees in the sample plot, which requires the support
of the tree resource survey data in the sample plot. Furthermore, the forest type of the
sample plot cannot be too complicated. However, in this study, there was a lack of data on
the average crown diameter of individual trees in the plots provided by the second-class
survey. The segmented plots belonged to coniferous and broad-leaved mixed forests. The
distribution of individual trees was uneven, and the relative spacing between trees varied.
Some tree plots were more closely distributed than others, while other plots had larger gaps,
and the spacing threshold between trees was difficult to determine. Therefore, iterative
segmentation was adopted to determine the optimal threshold based on the tree relative
spacing segmentation algorithm.
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Figure 10. Principles of point cloud segmentation.

Due to the lack of average crown radius data, this study first randomly set the initial
threshold on the fixed segmentation scale to perform the initial segmentation of the sample
plot. After the segmentation was completed, each individual tree carried the crown diame-
ter data. The results of the initial segmentation were statistically analyzed, and the average
value of the crown radius of the individual tree was used as the distance threshold for the
second individual tree segmentation. This cycle was repeated until the difference between
the average crown diameter of the last two individual trees was less than 0.1 m, which
denoted the completion of the segmentation. The results reveal that when the segmentation
scale was determined, regardless of the initial segmentation threshold setting, the total
number and average crown of individual trees will always approach a fixed value after
continuous iteration. In this study, three segmentation scales were selected, namely, 1.0,
1.1, and 1.2, for the single-scale segmentation of LiDAR data. Figure 11 demonstrates that,
for a fixed segmentation scale, the initial single-tree segmentation threshold was set to 9,
and the average diameter of the single-tree canopy obtained by segmentation will increase
and subsequently stabilize after several iterations. The final segmentation results under the
three segmentation scales were compared with the spectral images, and the accuracy was
evaluated using the over-detection, missed detection, and wrong detection indexes. The
single-tree segmentation results at the segmentation scale of 1.1 were selected as the initial
results of single-tree segmentation. Figure 12 presents the extracted single-tree vertices, the
red point represents the vertices of the tree in Figures 12–20.
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2.4.2. Single-Tree Vertex Location Based on LiDAR Data and Spectral Images

The spectral image and LiDAR data are defined in the same projection coordinate
system (WGS84/UTM zone 52N) such that the tree vertices extracted by LiDAR can be
superimposed with the spectral image to obtain the position of the trees. The spectral
image at a 0.03 m resolution was used as the reference data for the accurate positioning
of individual tree positions. The key steps of the location procedure are described in the
following.

1. Extraction of single-tree crown range.
Multi-scale segmentation based on regional growth is used to extract the canopy

edge of high-resolution orthophoto data. The image and LiDAR data are simultaneously
collected. Firstly, a pixel is determined as the growth point of the region to be segmented,
and a threshold is set as the heterogeneity standard to calculate the heterogeneity between
the pixel neighborhoods. If the heterogeneity is less than the set threshold, the pixels
are merged into the region, and the calculation of the heterogeneity between the neigh-
borhoods of the new merged region is continued. When the heterogeneity between the
objects exceeds the set threshold, the merging stops [34]. The segmentation object can
effectively use the spectral and spatial structure feature information of the image and
maximize the homogeneity of each object while minimizing the average heterogeneity
of the object. Furthermore, the segmentation speed is fast and the application scope is
wide. This study selected the multi-scale segmentation algorithm to extract individual tree
canopies using eCognition. Multi-component segmentation scale experiments are required



Forests 2023, 14, 1009 11 of 24

to accurately segment the crown edge. The optimal proportional parameters are typically
determined by the proportional parameter estimation (ESP2) eCognition plug-in. However,
the segmentation range needs to be qualitatively evaluated. The ESP tool calculates the
local variance (LV) of all image objects to evaluate the segmentation results. The LV change
rate (Roc-LV) is used to evaluate the optimal segmentation ratio of a given object. The
maximum LV value produces a peak, and the optimal segmentation ratio corresponds to
the peak of a given ground object. Figure 13 depicts the LV line chart. The segmentation
scale corresponding to the peak in the LV line chart is tested, and the optimal segmentation
scale is subsequently determined.
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2. The tree vertices obtained by the initial detection of over-segmented trees are
filtered.

In the tree-vertex identification step of the single-scale segmentation of broadleaf
trees with large canopies and irregular canopy shapes, the elevation maxima at different
locations of a single canopy are identified as the vertices of a single tree. This results in
the over-segmentation of broadleaf trees with large canopies (Figure 14). As depicted in
Figures 15 and 16, the local elevation maxima inside a single canopy are used as tree apex
candidates. The elevation maxima are sieved when individual tree apexes are potentially
higher than the general canopy as trees grow. Therefore, if the maximum height point is
close to the edge of the canopy, it is disregarded, and the second highest point is chosen as
the individual tree vertex.
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3. The addition of vertices previously missed by error detection to individual trees.
When the only value to remain is the recognition result of the top single-tree point and

the position of the point has obviously deviated from the crown (Figure 17), the point is
deleted and a point in the center of the crown is added as the single-tree vertex (Figure 18).
Moreover, when performing single-scale segmentation, individual trees with a lower tree
height or smaller canopy than most trees may be missed during the detection process
(Figure 19). Thus, a point is also added at the center of its canopy as a single-tree vertex
(Figure 20).
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4. The addition of elevation attributes to the added vertices.
There exists a certain error between the position of the added tree top point based

on the canopy range in the spectral image and the actual position of the tree top point.
Furthermore, these points do not contain elevation information. Therefore, it is necessary
to combine LiDAR data to locate the real tree vertices. The edge of the single tree crown is
used to constrain and manually add the top point of the tree as the position information it
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carries will fall in the projection of the single tree crown on the ground (Figure 21). Through
the front view, side view, and top view can visually determine its own single tree, the
addition of points at the top of the single tree crown, that is, the precise positioning of the
single tree vertex is completed, the red line represents the change of vertex position after
adding elevation information. (Figure 22). A total of 50 treetops were added (Figure 23),
with an average height of 23.3 m.
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2.4.3. Single-Tree Extraction Based on Treetops

After the initial vertex detection and precise positioning of the single-tree vertex,
the final single-tree extraction was performed using the single-tree segmentation method
based on the tree vertex. The basic principle of this method is similar to that of the initial
single-tree vertex detection. It is a region-growing algorithm based on the relative distance
between point clouds for point cloud classification. In particular, under the premise of a
given seed point, that is, a single-tree vertex, the point cloud genus was determined, and
finally the crown detection of a single tree was completed.

2.5. Experimental Environment and Parameter Settings

The CPU used for this experiment was AMD Ryzen 7 4800 H with Radeon Graphics,
the GPU is NVIDIA GeForce RTX 3060 Laptop GPU 6 GB, the motherboard was LENOVO,
with a 16 G memory for the system. China Beijing Green Valley Lidar360 V5.2.2.0 and
Germany Munich Definiens Imaging eCognition V10.2 version were used to visualize and
analyze the data.

3. Results and Analysis
3.1. Accuracy Evaluation

In order to evaluate the accuracy of the individual tree segmentation, we used the
artificially labeled individual trees on the high-resolution images as the true values to
compare the individual trees obtained by the LiDAR segmentation. We randomly selected
10 equal-area rectangular plots in each plot and used 4 indicators (R, detection rate; r, recall
rate; p, precision rate; and F, harmonic value, Formulas (2)–(5), respectively) to evaluate the
effect of the individual tree segmentation using the detection rate. R reflects the detection
ratio of trees in the plot and, the closer to 1, the higher the detection rate. r reflects the
proportion of correctly segmented individual trees to the actual individual trees in the
plot; the closer to 1, the better the segmentation effect. p reflects the proportion of correct
segmentation in the single tree segmented by the algorithm; the closer to 1, the higher the
segmentation accuracy. F comprehensively evaluates the quality of segmentation and, the
closer to 1, the better the overall effect [35].

R = n/N, (2)

r = TP/(TP + FN), (3)

p = TP/(TP + FP), (4)

F = 2rp/(r + p), (5)

where N is the actual number of individual trees in the plot; n is the number of individual
trees segmented by the algorithm; TP is the number of individual trees correctly segmented;
FN is the number of single trees missed; and FP is the number of single trees inspected.

In order to evaluate the point cloud integrity of the individual tree segmentation effect,
we used three indicators based on the number of individual tree point clouds, namely,
the correct segmentation point cloud (NTP), under-segmentation point cloud (NFN), and
over-segmentation point cloud (NFP) ratios (Formulas (6)–(8), respectively).

NTP = (n1/n) × 100%, (6)

NFN = [(n − n2)/n] × 100%, (7)

NFP = [(n1 − n2)/n] × 100%, (8)
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where n is the number of individual tree point clouds obtained by manual interpretation; n1
is the number of single-tree point clouds obtained by the algorithm; and n2 is the number
of correctly classified single-tree point clouds.

3.2. Segmentation Results

We tested the segmentation scale corresponding to the peak in the LV line chart for
the application of high-resolution image data to extract the edge of a single tree crown.
Figure 24 compares the segmentation results at different scales, revealing the optimal
segmentation effect at 241. In addition, the segmentation scale 216 is too small, while the
segmentation scales 278 are 292 too large. Therefore, we choose 241 as the best segmented
scale.
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(d) 292.

We used the segmentation scale of 241 to test the shape factor and compactness param-
eter combinations. The shape factor is used to describe the degree of fragmentation of the
segmentation vector, and the compactness parameter is used to describe the irregularity of
the segmentation vector boundary, with a 0.1–0.9 range and 0.1 interval. One parameter
remains unchanged and the other parameter is adjusted. The optimal parameter combina-
tion is determined by the visual evaluation of the contrast and segmentation performances,
and four typical parameter combinations are selected for comparison (Figure 25).

The segmentation is then completed using the segmented single tree crown edge to
constrain the position of the single tree top point. In this study, a total of 588 individual trees
were segmented from the coniferous and broad-leaved mixed forest in the plot. Figure 27
depicts the overall segmentation results. Based on the individual tree segmentation method
used, the tree top detection results can be used to calculate the geographical location and
tree height of individual trees. Moreover, the delineation results of the canopy contour
can be used to estimate parameters including the individual tree crown width. Table 2
reports the extraction results of the individual tree location, tree height, and crown width
of individual tree parameters. For the accuracy evaluation, 10 rectangular plots of equal
area in the high-resolution image were randomly selected in the range of the study plots.
In order to verify whether the proposed single-tree extraction method with the combined
LiDAR data and spectral images achieved the expected accuracy improvements, the results
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obtained by using a single-scale segmentation method were selected for comparison using
the aforementioned 10 verification plots. Table 3 reports the accuracy evaluation results.
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(b) shape factor 0.4, compactness parameter 0.7; (c) shape factor 0.5, compactness parameter 0.6; and
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Following the experimental comparison tests, the segmentation results are optimized
at the scale of 241, shape factor of 0.1, and compactness parameter of 0.4 (Figure 26).
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Figure 27. Single-tree point cloud segmentation results. (a) Denoised original point cloud; (b) nor-
malized point cloud; (c) single tree crown segmentation results.

Table 2. Individual tree parameters obtained using partial segmentation (WGS84 coordinate system).

X Y Tree Height/m Crown Diameter/m

14,255,049.3 5,188,213.13 35.017 19.953
14,255,236.79 5,188,237.13 35.075 15.869
14,255,239.44 5,188,138.66 28.22 11.024
14,255,112.37 5,188,103.63 32.629 22.862
14,255,242.78 5,188,196.27 22.133 8.663
14,255,098.43 5,188,165.75 33.994 17.102
14,255,191.89 5,188,244.33 21.851 7.559
14,255,220.81 5,188,015.92 30.479 6.557
14,255,086.09 5,188,212.01 32.75 15.544
14,255,213.55 5,188,092.66 25.488 3.031
14,255,171.51 5,188,089.13 32.874 13.061
14,255,179.9 5,188,002.92 33.618 16.057

14,255,215.98 5,188,097.34 26.159 4.362
14,255,034.48 5,188,156.91 32.439 12.413

Table 3. Comparison of the accuracy of the individual tree segmentation method based on the initial
distance discriminant clustering and the improved segmentation method in this study.

Method N n R r p F NTP NFN NFP

Initial
method 173 203 1.17 0.91 0.83 0.87 1.17 0.17 0.34

Improved
method 173 158 0.91 0.95 0.96 0.95 0.91 0.13 0.05

The total number of actual individual trees in the sample area selected for accuracy
evaluation is 173, while the number of individual trees extracted by the original single-
scale segmentation algorithm and proposed individual tree segmentation are 203 and
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153, respectively (Table 3). The recognition rate of the original single-scale single-tree
segmentation method exceeds 1. Considering that the missing detection of short individual
trees in the process of segmentation will reduce the overall recognition rate of individual
trees in the study area, it can be inferred that the over-segmentation phenomenon of the
original single-scale segmentation method in the coniferous and broad-leaved mixed forest
is extensive. This results in the total number of individual trees obtained by segmentation
exceeding the actual number of individual trees. In this study, the over-segmentation
phenomenon generated by the single-scale segmentation method has been significantly
improved due to the combination of spectral images to screen the position and elevation of
the initial recognition individual tree vertices (Figure 27). In addition, some individual trees
are missed in the single-scale segmentation, which can be attributed to their low height.
The proposed method combines LiDAR data with high-resolution images to identify such
trees. As shown in Figure 28, the missed-detection phenomenon caused by the original
single-scale segmentation method is also significantly improved, with great improvements
in the individual tree recognition rate R, accuracy rate p, and harmonic value F. The original
single-scale segmentation method identified 678 individual trees in the study area, with
an average height of 28.6 m, while the segmentation method used in this study identified
589 individual trees, with an average height of 28.1 m. The results reveal that, as the
proposed method solves the over-segmentation phenomenon of individual trees in the
original segmentation method, there is a reduction in the total number of individual trees
identified. At the same time, the proposed method identified numerous short individual
trees (Figure 29)that were not originally identified, and thus there is a decrease in the
average height of individual trees.
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single-scale segmentation method; (b) over-segmented broad-leaved trees and surrounding trees;
(c) segmented broad-leaved trees of the proposed method; (d) segmented broad-leaved trees and
surrounding trees.
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Figure 29. Segmented short individual trees.

4. Discussion

In this study, a single-tree segmentation algorithm that combines LiDAR and spectral
data was used to segment a mixed plot of broad-leaved and coniferous forest with a high
canopy density with the purpose of improving the accuracy of the single-tree segmentation
of coniferous and broad-leaved mixed forest. In the single-tree segmentation of the forest
plot, the crown shape, tree shape, and tree point cloud distribution were fully considered.
Firstly, the iterative threshold segmentation algorithm was used to identify the single-tree
vertex. The multi-scale segmentation of the high-resolution image was then used to obtain
the crown edge, which was adopted to constrain the position of the detected tree top point
in the horizontal direction. The spatial three-dimensional information of the LiDAR data
was used to add elevation information to the tree top point. The real tree top point was
then obtained and the single-tree segmentation process was completed. Compared with
the traditional single-tree segmentation method based on distance discriminant clustering,
the proposed algorithm is more adaptable to forest land with different leaf types and has a
higher segmentation accuracy. The differences in accuracy between the two methods can
be explained in the following.

In order to maximize the amount of tree top points identified, the traditional segmen-
tation method based on distance discriminant clustering must set the segmentation scale
as small as possible. In this case, broad-leaved trees are mistakenly divided into multiple
single trees with small crowns because of their large crown area and irregular shape, which
leads to errors in the tree top extraction. Shorter trees may be blocked by taller trees nearby.
If the segmentation scale is not small enough, such small single trees will be considered
as a branch of the nearby tall trees when the tree top point is identified, thus causing
the vertex to be missed. In this study, in addition to the LiDAR data, high-resolution
imagery was used to detect individual tree crowns. The crown detection results from the
high-resolution images were used to constrain the position of the tree top points identified
by the LiDAR data. Compared with the traditional point cloud segmentation method based
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on distance discrimination, the single-tree segmentation method combined with LiDAR
and high-resolution images proposed in this study can effectively solve the problem that
the traditional method is not adaptable to the coniferous and broad-leaved mixed forest, its
segmentation threshold is difficult to determine, and its segmentation accuracy is not high.

The proposed method solved two problems associated with the traditional point cloud
segmentation method, thus improving the accuracy of the individual tree segmentation by
8%. It also avoids the limitations of the single-segmentation scale used by the traditional
point cloud segmentation method under coniferous and broad-leaved mixed forests. How-
ever, the proposed method involves a large amount of work, and it takes a lot of time to
compare the precise positioning process of the tree top point. Hence, it is not suitable for
large study areas, yet it works well for single tree parameters, plot volume, and carbon sink
extraction. Moreover, the proposed method requires remote sensing data that is accurate
and of a high resolution. Therefore, future work will focus on designing an algorithm
with a higher detection accuracy. The local and multi-threshold methods in the 2D image
segmentation method are introduced into the 3D point cloud single-tree segmentation. In
view of the large differences in the crown radius of single trees in coniferous and broad-
leaved mixed forests, as well as the distribution of single trees across leaf types and tree
species in different regions of the plot, the point cloud segmentation thresholds vary with
the plot region for single-tree segmentation, thereby improving the accuracy of single-tree
segmentation.

5. Conclusions

Effective and accurate individual tree segmentation is important to comprehensively
understand individual tree information and realize the efficient management of forest
resources. In this study, LiDAR and high-resolution image data were collected using a
helicopter platform, and a new method for individual tree segmentation based on LiDAR
and high-resolution image data was developed. The implementation of this method
includes two steps: (1) the detection and identification of tree vertices from the LiDAR data,
and the adoption of the iterative threshold method to segment the tree crowns from the
LiDAR data; and (2) the matching of the detected individual tree vertices with the canopy
contour in the high-resolution image to modify the individual tree vertices identified in
step 1, and the completion of the individual tree segmentation. The evaluation index of
the segmentation accuracy reveals that the proposed method works well in coniferous and
broad-leaved mixed forests with a high canopy density, with improvements in single-tree
segmentation and the parameter extraction accuracy on the single-tree scale. This provides
a new method for forest point cloud single-tree segmentation, facilitating data support for
‘precision forestry’ and ‘digital forestry’.
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