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Abstract: With the development of computer vision technology, its applications in forestry are steadily
becoming wider. To address the problems of inconvenience in transporting unmanned aerial vehicles
(UAVs), as well as the complex operation of large instruments for measurement, a new method
based on multi-vision image segmentation and coordinate fusion (MISF) is proposed in this paper
for measuring the size of standing trees. In MISF, after images of a standing tree are captured using
a camera from multiple angles, a semantic segmentation method based on deep learning is used
to segment the main body of the standing tree and automatically detect the edge feature points.
Next, the effects of visual field splicing and fusion are analyzed collaboratively using the correlations
among images, so as to restore the three-dimensional spatial information of the feature points of the
tree to be measured. Lastly, the size attributes of the standing tree, such as height, diameter at breast
height (DBH), and crown width, are automatically measured. The urban environment measurement
experiment showed that the relative errors of tree height, DBH, and crown width measured using the
proposed method, i.e., MISF, were 1.89%, 2.42%, and 3.15%, respectively, representing a significant
enhancement compared with binocular measurement. On the one hand, the experimental results
exhibited a high degree of measurement accuracy; therefore, MISF can be used for the management
inventory of typical forests. On the other hand, MISF cannot be used if a tree’s images cannot be
acquired due to environmental or other reasons.

Keywords: standing tree segmentation; multi-vision; dendrometric variables; spatial information;
image processing; deep learning

1. Introduction

In forestry, collecting tree-related information is essential for analyzing forestry re-
sources [1,2]. This information consists of the height, diameter at breast height (DBH), and
other data of standing trees. Traditional methods measure standing trees using rulers or
other measuring tools [3], which is time-consuming and labor-intensive. On the other hand,
precise equipment, such as electronic theodolites and total stations, is inconvenient to use
because of its relatively complex operation [4,5].

At present, most measurements of standing trees are conducted using hardware, such
as laser unmanned aerial vehicles (UAVs), terrestrial laser scanners, and other height-
equipment measurement methods [6,7]. For example, Li et al. [8] proposed a new tree
diameter measurement instrument developed using a self-reset displacement sensor, which
was equipped with a personal computer to enable the measurement, transmission, storage,
and analysis of tree diameters. Olofsson et al. [9] proposed a method to automatically
detect trees in a TLS-scanned field plot, classify the laser return as either into stem or
canopy for each of the detected trees, and extract forest variables from the classified
data. Yuan et al. [10] developed a measuring device for tree DBH and tree height using a
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high-precision laser ranging sensor. The combination of the accurate identification and
segmentation of standing trees using multi-vision measurement is less well-studied. The
traditional fixed binocular measurement model still has certain limitations and flexibility,
whereas multi-vision measurement can make up for these shortcomings, improving the
stability and accuracy [11,12].

With the continuous development of science and technology mirroring the progress of
computer vision, more and more measurement methods have been proposed. Adilson et al. [13]
presented an automatic technique for the mapping and measurement of individual tree
stems using vertical terrestrial images collected with a fisheye camera. Krause et al. [14]
used UAV photogrammetry to semiautomatically obtain the height of standing trees.
Ramli et al. [15] proposed the use of an UAV to capture images of oil palm trees, followed
by the generation of digital models and the processing of orthophoto images using Agisoft
software; then, they calculated the crown size of oil palm trees by implementing the seed
generation tool of the quantum geographic information system (QGIS) and the system for
automatic geological analysis (SAGA) segmentation methods. Wu et al. [16] proposed a
method based on monocular vision to measure the DBH of standing trees by photographing
a single image using a camera.

Addressing the shortcomings identified from the literature review, a flexible method
for the measurement of standing trees using multi-vision image segmentation and coordi-
nate fusion (MISF) is proposed in this paper.

The main contributions of this paper include three aspects:
(1) A new multi-view measurement model (MISF) for standing trees is proposed,

combining the advantages of image processing to realize the noncontact automatic mea-
surement of standing trees. A camera is used to capture standing trees from three angles,
thereby obtaining a wider field of view and improving the accuracy of the matching position
of feature points.

(2) The image matching algorithm SURF (speeded up robust features) is improved
to enable the matching of feature points in standing tree images. The original SURF
algorithm has good stability and low computing complexity. However, the SURF algorithm
transforms color images into grayscale, thus partially losing the color information. In
view of this problem, we improved the algorithm SURF by adding a 48-dimensional RGB
color information descriptor. Accordingly, the color information could be well-retained
compared with the original SURF algorithm, thus increasing the matching performance
and the robustness of the algorithm.

(3) Extensive experiments were conducted so as to evaluate the performance of the
proposed method (MISF). In the experiments, some tree size attributes such as height, DBH,
and crown width were measured using MISF to verify its applicability. Its performance was
also compared with traditional binocular measurement and other measurement methods
in the literature. The experiments revealed that the performance of MISF could meet the
requirements of forest management inventory.

The method proposed in this paper achieves a significant improvement in measure-
ment accuracy over the traditional binocular measurement method, improving the practical
application. The measurement errors of tree height, diameter at breast height, and crown
width were comparable with those of other measurement methods, in addition to meeting
the accuracy requirements for the continuous inventory of forest resources.

2. Materials and Methods
2.1. Main Ideas

In the theory of close-up photogrammetry, the utilization of a single camera to capture
an image in order to acquire stereo information regarding the target is referred to as
monocular measurement. This method is low cost but limited to obtaining only two-
dimensional information about the target, and cannot ascertain the distance of the measured
target. On the other hand, binocular measurement involves using two cameras to capture
images from different perspectives, thereby enabling the acquisition of three-dimensional
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coordinate information of the target. However, this method is constrained by a certain
range of field of view and requires the use of two parallel cameras, which may introduce
some degree of error due to human factors.

On this basis, the present paper proposes an innovation that incorporates the intersec-
tion measurement method [17]. This approach eliminates the need for parallel optical axes
between cameras and instead involves capturing multiple images from varying angles of a
standing tree to reconstruct its three-dimensional information. During the image capture
process, it is only necessary to ensure that the main body of the tree being measured is
within the common field of view among the three shooting perspectives. This condition en-
sures that the common field of view is sufficiently large to enhance measurement accuracy
without requiring strict location specifications.

The main concept behind the proposed method for measuring the size of standing
trees, known as MISF, is based on multi-vision image segmentation and coordinate fusion,
as illustrated in Figure 1. To facilitate measurement, three binocular subsystems were
established using cameras to capture images of standing trees from varying perspectives.
In the following step of the method, the segmentation of standing trees in the images is
performed to accurately identify their positions. Next, three sets of binocular sub-models
are utilized to obtain the group of largest measurements via comparison. The final standing-
tree factor measurement is achieved through the fusion of the results obtained from the
segmentation of standing trees and size measurement.
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Figure 1. Main framework of MISF.

When compared to binocular stereo vision measurement methods and height equip-
ment measurement techniques, such as UAV and scanner 3D reconstruction, the MISF
method exhibits distinct differences and notable advantages in several key areas, including:

(1) The MISF method employs a deep learning-based image segmentation technique
to extract the standing tree factor, which enables automatic contour extraction and seg-
mentation results without requiring manual intervention. As a result, the MISF method is
characterized by enhanced efficiency and automation, significantly reducing manpower
and time costs.

(2) Compared to a conventional binocular camera, the MISF method can acquire
additional views and feature point information. While binocular cameras only cap-
ture two parallel-view images, resulting in improved accuracy, the MISF method em-
ploys three cameras that can cross-verify each other, thereby increasing the reliability of
measurement results.

(3) When compared to high equipment measurement methods, the MISF method is
characterized by a lower cost. This approach eliminates the need for repeated measurements
by humans in the field; instead, the camera position only needs to be fixed once to achieve
repeatable measurements.
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2.2. Multiple Vision Image Acquisition
2.2.1. Single Camera Calibration

The MISF method adopts Zhang’s [18,19] camera calibration approach using a checker-
board for calibration. This method accounts for both radial and tangential distortion and
facilitates the capture of multiple sets of images from various angles and directions by
moving the calibration board. This flexible, convenient, and accurate technique requires
a checkerboard image containing 9 x 12 angle points, with each checkerboard measuring
15mm in physical length, as shown in Figure 2.
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The calibration process for a single camera primarily comprises four steps. First, the
physical coordinates of the feature points on the calibration board are optimized to solve
the homologous matrix. Second, the stack matrix B is calculated during the calibration
process, which allows for the acquisition of the camera’s intrinsic parameter matrix. Third,
the extrinsic parameters of the camera are solved, followed by the derivation of the camera
distortion coefficients.. Fourth, the maximum likelihood method is utilized to optimize
the intrinsic parameters and improve the estimation accuracy. Each step is described in
detail below.

(1) Solving homologous matrix
After the physical coordinates of the characteristic points on the calibration plate were

transposed, the homologous matrix was solved. As for computer vision, a homologous
matrix is defined as a two-dimensional coordinate point mapped onto a camera image.
Assuming that the coordinate of the feature point is Q =

[
Xm Ym Zm

]T , the coordinates

of the image on the camera are q =
[
u v 1

]T . The monograph relationship between the
calibration plate plane and the camera image plane is shown as Equation (1):

sq = P[R, T]X (1)

In Equation (1), s is the scale factor, P represents the parameter matrix of the camera,
R represents the rotation matrix, and T denotes the translation vector. Suppose that
[R, T] =

[
r1 r2 r3 t

]
, the world coordinate system is established on the checkerboard

in the calibration process, namely, Z = 0 in the checkerboard plane, and then the homologous

matrix D can be derived by s

u
v
1

 = D

X
Y
1

.

(2) Calculation of camera internal parameter matrix
Through the above, the homologous matrix D follows the expression of Equation (2):

D =
[
h1 h2 h3

]
=

P
[
r1 r2 t

]
s

(2)
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The camera intrinsic parameter matrix contains five unknowns, and the homologous
matrix can generate two equations, so at least three calibration plates are required for
calibration. For the convenience of later calculation, the stacking matrix B is assumed as
Equation (3), where there are six unknowns. The vector b is assumed as Equation (4):

B = P−T P−1 =

B11 B12 B13
B21 B22 B23
B31 B32 B33

 (3)

b =
[
B11 B12 B22 B13 B23 B33

]T (4)

Then, the following Equation (5) is reached:

hT
i Bhj = vT

ijb (5)

Because of the constraint of Equation (6) on the calibration process, it is necessary
to obtain the matrix B through multiple checkerboard images, and finally to obtain the
intrinsic parameter matrix P through Cholesky decomposition:[

vT
12

(v11 − v22)
T

]
b = 0 (6)

(3) Solving the camera extrinsic parameters
According to Equation (2), let λ = 1

s , then, Equation (7) can be derived:

r1 = λP−1h1
r2 = λP−1h2
r3 = r1 × r2
t = λP−1h3

(7)

In Equation (7), λ = 1
‖P−1h1‖

= 1
‖P−1h2‖

. Then, the extrinsic parameter matrix [R, T] of

the camera can be calculated.
(4) Results optimization
According to the derivation of above equations, the results can be obtained under

ideal conditions. However, in reality, the results are often affected by Gaussian noise, which
usually leads to suboptimal results. Therefore, it is necessary to optimize the results. In
MISF, the maximum likelihood estimation method is adopted to optimize the results, mainly
optimizing the intrinsic parameters of the camera for single-camera calibration results.

Assuming that n calibration board images were acquired, each of which contains m
corner points, the j-th corner point in the i-th image can be calculated using the above
projection equations and the following Equation (8) can be obtained:

m
(

P, Ri, ti, Mij
)
= P[R|t]Mij (8)

In Equation (8), P denotes the camera internal parameter matrix, Ri denotes the rotation
matrix of the i-th image, and ti denotes the translation vector of the i-th image. Thus,
the corresponding likelihood function is established as Equation (9), and the Levenberg–
Marquardt [20] algorithm is used to find the optimal solution.

L
(
P, Ri, ti, Mij

)
=

1√
2π

e
−∑n

i−1 ∑m
j−1
(
m̂
(
P, Ri, ti, Mij

)
−mij

)2

σ2 (9)

The form of the distortion coefficient matrix is shown as Equation (10), where (u, v) is
the ideal pixel coordinates, (u′, v′) represents the pixel coordinates that produce distortion
in the real state, (u0, v0) represents the position of the main point on the image, (x, y)
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represents the continuous coordinates in the optimal state, and k1, k2 are the distortion
coefficients of the first two terms.[

(u− u0)
(

x2 + y2) (u− u0)
(
x2 + y2)2

(v− v0)
(
x2 + y2) (v− v0)

(
x2 + y2)2

][
k1
k2

]
=

[
u′ − u
v′ − v

]
(10)

Transform Equation (10) to the form Hk = d, which leads to Equation (11):

k = [k1k2]
T =

(
HT H

)−1
d (11)

Finally, the distortion coefficient k is obtained, and the maximum likelihood estimation
method is used to estimate the distortion coefficient accurately, as is shown in Equation (12).

∑n
i=1 ∑m

j=1

∥∥m̂
(

P, k1, k2, Ri, ti, Mij
)
−mij

∥∥2
(12)

2.2.2. Trinocular Vision Calibration

In MISF, the calibration method by Zhang [18,19] is adopted, which is used in the
previous monocular camera calibration to obtain the intrinsic and extrinsic parameters
of three cameras. However, in order to calculate the three-dimensional coordinates of
feature points, it is also necessary to obtain the inter-camera visual parameters. Based on
the results of individual camera calibration, coordinate transformation is used to achieve
mutual calibration among the three cameras, as shown in Figure 3.

Forests 2023, 14, x FOR PEER REVIEW 6 of 24 
 

 

The form of the distortion coefficient matrix is shown as Equation (10), where (u, v) 
is the ideal pixel coordinates, (u’, v’) represents the pixel coordinates that produce distor-
tion in the real state, (u0, v0) represents the position of the main point on the image, (x, y) 
represents the continuous coordinates in the optimal state, and k1, k2 are the distortion 
coefficients of the first two terms. 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

22 2 2 2 '
0 0 1

'22 2 2 2 2
0 0

u u x y u u x y k u u
k v vv v x y v v x y

 − + − +  −   =     −   − + − +  
 

(10) 

Transform Equation (10) to the form Hk = d, which leads to Equation (11): 

[ ] ( ) 1

1 2
T Tk k k H H d

−
= =  (11) 

Finally, the distortion coefficient k is obtained, and the maximum likelihood estima-
tion method is used to estimate the distortion coefficient accurately, as is shown in Equa-
tion (12). 

( ) 2

1 21 1
ˆ , , , , ,n m

i i ij iji j
m P k k R t M m

= =
−   (12) 

2.2.2. Trinocular Vision Calibration 
In MISF, the calibration method by Zhang [18,19] is adopted, which is used in the 

previous monocular camera calibration to obtain the intrinsic and extrinsic parameters of 
three cameras. However, in order to calculate the three-dimensional coordinates of feature 
points, it is also necessary to obtain the inter-camera visual parameters. Based on the re-
sults of individual camera calibration, coordinate transformation is used to achieve mu-
tual calibration among the three cameras, as shown in Figure 3. 

 
Figure 3. Trinocular vision measurement calibration. (a) Camera self-calibration. (b) Position rela-
tionship of three cameras. 

In the trinocular vision measurement model, the external parameters of camera 1, 
camera 2, and camera 3 are Ri and Ti (i = 1, 2, 3), respectively, and represent the relative 
position relationship between their respective cameras and their corresponding world co-
ordinate system. For a point E to be measured, En represents its world coordinate position, 
E1 represents the coordinates of camera 1 in the self-coordinate system, E2 represents the 
coordinates of camera 2 in the self-coordinate system, and E3 represents the coordinates 
of camera 3 in the self-coordinate system. They comply with Equation (13): 

Figure 3. Trinocular vision measurement calibration. (a) Camera self-calibration. (b) Position
relationship of three cameras.

In the trinocular vision measurement model, the external parameters of camera 1,
camera 2, and camera 3 are Ri and Ti (i = 1, 2, 3), respectively, and represent the relative
position relationship between their respective cameras and their corresponding world
coordinate system. For a point E to be measured, En represents its world coordinate position,
E1 represents the coordinates of camera 1 in the self-coordinate system, E2 represents the
coordinates of camera 2 in the self-coordinate system, and E3 represents the coordinates of
camera 3 in the self-coordinate system. They comply with Equation (13):

E1 = R1En + T1
E2 = R2En + T2
E3 = R3En + T3

(13)

The rotation matrix and translation vector between camera 1 and camera 2 are R12 and
T12, respectively, the rotation matrix and translation vector between camera 2 and camera
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3 are R23 and T23, respectively, and the rotation matrix and translation vector between
camera 3 and camera 1 are R13 and T13, respectively, so Equations (14)–(16) can be obtained:

R12 = R2R−1
1

T12 = T2 − R2R−1
1 T1

(14)

R23 = R3R−1
2

T23 = T3 − R3R−1
2 T2

(15)

R13 = R3R−1
1

T13 = T3 − R3R−1
1 T1

(16)

After knowing the rotation matrix and translation vector of the three cameras, the
position structure parameters of the trinocular vision measurement model can be calculated
by Equations (14)–(16).

The calibration of the trinocular vision model is similar to the single camera calibration
method. As the last step, the parameter values of three cameras (R12, T12), (R23, T23), and
(R13, T13) are obtained using the Levenberg–Marquardt method for optimization. In the
solution of the optimization, the internal parameters and distortion coefficients of the three
cameras’ self-calibration will also change. That is to say, in the first measurement group,
the original internal parameters of camera 1 and camera 2 are P1 and P2, and they are
changed to P1

12 and P2
12 after optimization. Similarly, the internal parameters of the second

and third measurement groups are optimized as P2
23, P3

23 and P1
13, P3

13, respectively. After
nonlinear optimization, all parameters required for the calibration of the trinocular vision
measurement model are obtained.

2.2.3. Image Acquisition

To ensure the inclusion of a common target standing-tree subject in all three images,
we acquired images of the standing tree using a camera at three different locations. In
contrast to the traditional binocular parallel measurement approach that requires keeping
the optical axes parallel to each other, the MISF method proposed in this paper requires
orienting the camera optical axes towards the target tree. To obtain images of standing
trees from multiple directions, we recommend positioning the three cameras in a triangular
configuration with a certain horizontal angle (30◦–45◦) between the optical axes of two
adjacent cameras. The shooting schema is depicted in Figure 4.
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2.3. Multiple Vision Image Processing
2.3.1. Semantic Segmentation of Tree Images Based on Deep Learning

In the real-world environment, photos often exhibit complex backgrounds with signif-
icant amounts of noise. To effectively extract the required size information of standing trees
from images, image segmentation is crucial. Within MISF, we leverage SEMD, a lightweight
model for standing-tree image segmentation that we previously proposed in [21]
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The SEMD segmentation model utilizes MobileNetV2 + SENet as the backbone net-
work in the encoder section. This structure can calculate and extract features with any
resolution, and the ratio of the input image spatial resolution to the output image spatial
resolution is used as the output stride. To perform multi-scale fusion, different dilated
convolutions are employed to process features calculated by MobileNetV2 + SENet, which
effectively reduces the running time without compromising segmentation accuracy. In
the decoder section, a similar convolutional network is utilized to reduce the number of
information channels and address difficulties encountered during training due to an excess
of low-feature channels.

2.3.2. Image Feature Point Extraction and Matching

Feature point extraction and matching between two images is the basis and prerequi-
site for measuring the size of standing trees. In MISF, the algorithm SURF [22] is adopted
and improved to obtain feature point information.

In SURF, feature points are mainly achieved through three aspects: (1) setting a
threshold: remove feature points smaller than the threshold; (2) suppressing non-maximum
values by only selecting the total attack of the set scale and the upper and lower adjacent
scales 26; (3) using the fitted three-dimensional quadratic function to obtain the sub-pixel
position of the feature point after interpolation.

For the feature point extraction of the original SURF algorithm, the color image needs
to be converted to grayscale [23], which may lead to a loss of the color information of the
picture. In view of this, the MISF algorithm improves SURF by adding a 48-dimensional
RGB color descriptor to preserve the color information and increase the robustness of
the algorithm.

First, change the direction of the coordinate axis of the coordinate system so that the
coordinate axis is consistent with the main direction of the feature point. Then, divide the
area of 16s × 16s (s is the scale where the feature point is located) centered on the feature
point into 4 × 4 = 16 sub-regions. Calculate the RGB color mean value of the image in
these 16 sub-regions, so that each small region will generate a three-dimensional color
description vector, as shown in Equation (17), where Ravg, Gavg, and Bavg represent the
means of the RGB colors. In this way, 4× 4 small regions become 3× 4× 4 = 48-dimensional
color descriptors:

C =
(

Ravg, Gavg, Bavg
)

(17)

Finally, the 112-dimensional descriptor composed of the 64-dimensional feature de-
scriptor obtained by the SURF algorithm and the 48-dimensional color descriptor are used
to represent the feature point information [24]. An example of the matching result is shown
in Figure 5.
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2.4. Measurement of Multi-Vision Standing Tree Size
2.4.1. Trinocular Convergence Vision Model

After the feature points in two images are obtained and matched using the improved
SURF algorithm as described in Section 2.3 and the internal and external parameters of the
orientation obtained as described in Section 2.2, the 3D information of the feature points of
the standing trees can be obtained with following presentation calculations.

The photogrammetry technique is used to obtain the size attributes of the standing
trees, which require the interconversion of the physical coordinate system, camera co-
ordinate system, and world coordinate system, i.e., to complete the mapping between
two-dimensional information and three-dimensional information.

In MISF, an additional camera is added according to the theory of the binocular vision
ranging model, so that the respective optical axes of the three cameras form a certain angle,
which can also be interpreted as three groups of binocular vision model. The schematic
diagram is shown in Figure 6.
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Suppose E is a point in space, and e1, e2, and e3 are its corresponding points on the
imaging plane of cameras 1, 2, and 3, respectively. Without considering the existence
of any error, the measurement value E1 measured by the binocular vision measurement
composed of camera 1 and camera 2, the measurement value E2 measured by the binocular
vision measurement composed of camera 2 and camera 3, and the measurement value
E3 measured by the binocular vision measurement composed of camera 3 and camera 1
should coincide with the actual measurement value E at one point. That is, the three lines
O1e1, O2e2, and O3e3 converge to the same point E. However, in the real environment, there
may be an error in binocular vision ranging, which leads to the three points not coinciding
with the actual measurement points, and then the generated points are three new points E1,
E2, and E3 formed by the intersection of the three lines in pairs. Their 3D coordinates can
be calculated by the binocular vision ranging algorithm.

Assuming that the coordinates of point E to be measured are E(Xn, Yn, Zn), the actual
coordinates of the point E are optimally estimated by the objective function of Equation (18):

F = min(‖E− E1‖+ ‖E− E2‖+ ‖E− E3‖) (18)

The coordinates of the three points e1, e2, and e3 projected by point E on the imaging
plane of cameras 1, 2, and 3 are calculated. Then, since the cameras have been calibrated
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and M1, M2, and M3 are their projection matrices, respectively, the coordinates can be
converted as Equations (19)–(21):

Zc1

u1
v1
1

 = M1


Xn
Yn
Zn
1

 =

m1
11 m1

12 m1
13 m1

14
m1

21 m1
22 m1

23 m1
24

m1
31 m1

32 m1
33 m1

34
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1

 (19)

Zc2

u2
v2
1

 = M2
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1

 =
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24
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34
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Zc3

 u3
v3
1
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1
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 m3
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14
m3

21 m3
22 m3

23 m3
24

m3
31 m3

32 m3
33 m3

34




Xn
Yn
Zn
1

 (21)

In Equations (19)–(21), Mi represents the respective projection matrices of the three
cameras, where Mi = Ai [Ri Ti] (i = 1, 2, 3), (ui, vi, 1), (i = 1, 2, 3) are the corresponding
homogeneous coordinates of the pixel coordinates on the imaging of the three projection
points, respectively. (Xn, Yn, Zn, 1) represents the homogeneous coordinates of the point E to
be measured. Suppose the coordinates of the three measured points are Ei(Xni, Yni, Zni, 1),
i = 1, 2, 3, respectively. The least square result of this coordinate can be calculated using the
binocular vision measurement algorithm as Equations (22)–(25):

Ei :

Xni
Yni
Zni

 =
(

KT
i Ki

)−1
KT

i Ji, (i = 1, 2, 3) (22)
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Then, Equation (26) is reached, and the three conditions shown in Equation (27) should
be satisfied for the validity of Equation (26):

F = min(‖E− E1‖+ ‖E− E2‖+ ‖E− E3‖ )
= (Xn − Xn1)

2 + (Yn −Yn1)
2 + (Zn − Zn1)

2

+(Xn − Xn2)
2 + (Yn −Yn2)

2 + (Zn − Zn2)
2

+(Xn − Xn3)
2 + (Yn −Yn3)

2 + (Zn − Zn3)
2

(26)
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f1 = min
{
(Xn − Xn1)

2 + (Xn − Xn2)
2 + (Xn − Xn3)

2
}

f2 = min
{
(Yn −Yn1)

2 + (Yn −Yn2)
2 + (Yn −Yn3)

2
}

f3 = min
{
(Zn − Zn1)

2 + (Zn − Zn2)
2 + (Zn − Zn3)

2
} (27)

The sum of squared deviations between each variable and their arithmetic square
number is the smallest, so the optimal value of the measured point E(Xn, Yn, Zn) can be
obtained as follows:

Xn = Xn1+Xn2+Xn3
3

Yn = Yn1+Yn2+Yn3
3

Zn = Zn1+Zn2+Zn3
3

(28)

Using this method, the coordinate values of the point to be measured can be optimized
so as to improve the accuracy of measurement.

2.4.2. Solving the Initial Value in 3D Space

For the convenience of expression, the combination of camera 1 and camera 2 is called
the first measurement group, the combination of camera 2 and camera 3 is called the second
measurement group, and the combination of camera 3 and camera 1 is called the third
measurement group. For the first and third measurement groups, the coordinate system
of camera 1 is considered as the world coordinate system, and the coordinate system of
camera 2 is considered as the world coordinate system for the second measurement group.

When calibrating the trinocular vision measurement system, the calibration results
of the internal and external parameters of camera 1, 2, and 3 have been optimized to a
certain degree. According to Mi = Ai [Ri Ti] (i =1, 2, 3) mentioned above, the projection
matrices of camera 1, 2, and 3 are composed of the internal and external parameters of the
cameras. So, M1, M2, and M3 will also change along with the optimization of the internal
and external parameters of the camera. In other words, for each binocular measurement
model composed of two cameras, their respective internal projection matrix results are
optimized into Ai

ij, Aj
ij, and Mi

ij, Mj
ij, where both i and j represent the index of camera, 1, 2,

or 3.
Let S be a matrix of third-order units and O = [0 0 0]T, then, the respective internal

parameters and projection matrices of the two cameras in each measurement group should
satisfy Equations (29) and (30), and they can be expressed as Equations (31) and (32) in the
model, respectively:

Mi
ij = Ai

ij

[
S OT

]
(29)

Mj
ij = Aj

ij
[
Rij Tij

]
(30)

Zci
ij

ui
vi
1

 = Mi
ij


Xn
Yn
Zn
1

 (31)

Zcj
ij

uj
vj
1

 = Mj
ij


Xn
Yn
Zn
1

 (32)

Here, Zci
ij and Zcj

ij represent the depth direction values in the camera coordinate system
of the binocular measurement model composed of pairwise cameras (i, j). Combined with
Equations (19)–(25) and (29)–(32) mentioned above, the initial values of the feature points
of the three groups of binocular vision models can be solved.
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2.4.3. Coordinate Fusion

The camera 1 coordinate system is used for measurement group 1 and measurement
group 3 and is considered as the world coordinate system, but the world coordinate system
in measurement group 2 is based on camera 2. In MISF, camera 1 is selected as the reference
camera of the whole system, and its coordinate system is regarded as the global coordinate
system. In order to merge the three sets of initial value information into the same global
coordinate system, the original measurement values of the second measurement group
need to be converted into the coordinate system of camera 1.

In the second measurement group, the coordinate system of camera 2 is used as the
world coordinate system, and the point to be measured satisfies E2 = R12E1 + T12 in the
coordinate systems of camera 1 and 3. Therefore, these three sets of initial values can be
unified in the world coordinate system by converting the initial value information provided
by the second measurement group into the camera 1 coordinate system. As a result, these
three sets of initial values are all fused into the world coordinate system of camera 1.

2.4.4. Measurement of Standing Tree Size

(1) Height of tree
In traditional methods, altimeters are used for the measurement of the height of

trees. This paper analyzes and measures the factors of standing trees by taking pictures
of standing trees from different perspectives. Based on the above description, standing
trees are segmented accurately. The three-dimensional homogeneous coordinates of the
two points are calculated by searching for the highest feature point of the standing tree
whose coordinates are

(
Xn1 Yn1 Zn1

)
and the root feature point whose coordinates are(

Xn2 Yn2 Zn2

)
. As shown in Figure 7, the tree height is calculated by Equation (33):

H =
√
(Xn1 − Xn2)

2 + (Yn1 −Yn2)
2 + (Zn1 − Zn2)

2 (33)
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(2) Diameter at breast height (DBH)
The DBH of standing trees is also an important attribute of standing trees in forestry.

It refers to the cross-sectional diameter of the standing tree at a distance of 1.3 m from the
ground. For those short standing trees with a trunk less than 1.3 m, the ground diameter
at a distance of 0.2 m from the root on the ground is measured. In MISF, based on an
image in which the trunk of the standing tree is clearly segmented, the two-dimensional
ordinate corresponding to the breast height of the standing tree at a distance of 1.3 m
from the ground and the coordinates of two intersection points of the trunk contour of
the standing tree under the same axis are calculated first. Then, the three-dimensional
coordinates corresponding to the two intersection coordinates are calculated, and finally
the distance between the two three-dimensional coordinates are calculated, which is the
DBH of the standing tree, as shown in Figure 8.
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(3) Crown width
Using the three binocular measurement groups in the trinocular vision measurement,

the two pixels points on the leftmost and rightmost sides of the standing tree crown are
determined, and the pixel points are converted into points in the three-dimensional space
using the camera imaging principle so as to obtain the distance, and the greatest distance
among the three sub-models is considered as the final result of the crown width, as shown
in Figure 9.
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2.5. Experimental Design
2.5.1. Datasets

The data for the following experiments were collected from standing trees in the
campus or the surrounding area of Zhejiang A&F University, within about five kilometers
(Figure 10).

The dataset for the training of semantic segmentation consists of images of 778 standing
trees captured by digital cameras under different backgrounds and different shooting angles.
The dataset includes standing tree images in simple and complex backgrounds. Every
image includes a single tree or multiple standing trees, so as to improve the accuracy of the
semantic segmentation results of standing tree images.

The datasets for the experiments of measurement of three attributes of standing tree
size include images of 25 standing trees for the measurement of height, DBH, and crown
width, respectively.

2.5.2. Evaluation Indicators

The experiment evaluated the measurement accuracy of the three size attributes of
standing tree, namely height, DBH, and crown width. The relative error was used as the
evaluation metric, which was calculated using Equation (34).
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In Equation (34), V′ means the value of measured, V means the reference value:

δ =

∣∣∣∣V′ −V
V

∣∣∣∣× 100% (34)

2.5.3. Comparison Methods

In the conducted experiments, both the method MISF proposed in this paper and
the binocular measurement method [25] were utilized to measure and compare the three
size attributes (tree height, DBH, and crown width) of each standing tree sample, with the
aim of evaluating the performance of MISF. The binocular parallel measurement method,
which utilizes two cameras with identical configurations arranged in a parallel orientation,
was employed as the most commonly used structure of the vision model for comparison
purposes. This approach is referred to as the parallel stereo model, also known as the
standard vision model.

Furthermore, in order to evaluate the effectiveness of MISF in measuring tree height, a
comparison was made with an alternative method proposed by Ganz et al. [26] that utilizes
UAV images. For the measurement of DBH, the performance of MISF was compared
against another method proposed by Putra et al. [27] that employs optical sensors. Lastly,
for the measurement of crown width, the performance of MISF was compared with that of
Wu et al. [28], who proposed a method using a single image obtained via mobile phone
and triangulation calculations to derive crown width values.

2.5.4. Experimental Scheme

The multi-vision measuring model employed in this study utilizes three cameras
positioned at different angles to extract the primary information related to standing trees.
By integrating the multi-dimensional information obtained, accurate measurements of the
height, crown width, and DBH can be achieved, with the final result being the maximum
value determined across the three measurement models. The experiments conducted in
this paper are primarily focused on the following three aspects.

(1) Standing tree segmentation
SEMD, a lightweight model proposed in our previous study [21] for standing tree

image segmentation, is utilized in this work for the segmentation of standing tree from
images. The model was trained using the dataset described in Section 2.5.1.

(2) Measurement of tree size
To measure the size attributes (e.g., height, DBH, and crown width) of standing

trees, three datasets, each comprising 25 standing trees, were utilized as described in
Section 2.5.1. Image processing was performed using the deep learning framework PyTorch
on a computer running Windows 11 64-bit operating system, equipped with an AMD Ryzen
7 5800H CPU with Radeon Graphics @3.20 GHz, and 16 GB of memory. The development



Forests 2023, 14, 1054 15 of 23

environment used was Python 3.6. The images were of the size 2736 × 2736 and were
captured using cameras with a focal length of 27 mm (camera type: BMH-AN10), positioned
at a height of 1.4 m.

(3) Accuracy comparison of tree size
The measurement accuracy of tree height, DBH, and crown width was compared

against other methods described in Section 2.5.3. The performance of the three attributes
was evaluated by combining the measurement results and regression analysis, with a focus
on analyzing the underlying reasons for any observed differences.

3. Results

The principal objective of the MISF, as proposed in this paper, is to achieve automatic
and precise measurement of the size of standing trees. Through experimental validation,
MISF has demonstrated high accuracy and efficiency. The approach to measuring standing
tree size according to MISF is comprised of two stages: image segmentation and calculation
of tree size attributes.

3.1. Results of Standing Tree Segmentation

The results of segmentation of some standing tree image using SEMD are shown in
Figure 11.
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segmentation results.

The SEMD exhibits noteworthy segmentation performance, enabling the precise detec-
tion of standing trees and facilitating successful segmentation within real-world scenarios,
as depicted in Figure 11.

3.2. Measurement of Tree Height

In order to assess the efficacy of the proposed method, MISF, a comparative analysis
was conducted against the binocular measuring method. Table 1 presents the results
obtained from both methods with respect to tree height measurements.

Table 1 illustrates that the trees selected for measurement range in height from 3.15 m
to 8.76 m. The results obtained using MISF exhibit measurement errors ranging from
0.76% to 2.91%, with an average error of 1.89%. Conversely, when employing the binocular
method, the measurement errors range from 1.28% to 5.53%, with an average error of 3.72%.
Therefore, it can be concluded that the proposed approach, MISF, offers an improvement in
accuracy of 1.83% compared to the binocular measuring method.

Table 1 indicates that there is no significant correlation between tree height and mea-
surement error. This can be attributed to the fact that the error of measurement primarily
hinges on the complexity of the tree background when employing the MISF method. In
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this regard, simpler backgrounds correspond to higher segmentation accuracy and smaller
errors. Conversely, the binocular measuring method relies on two-dimensional images
taken under parallel vision, with measurement errors predominantly caused by occlusion
of the highest point of the tree or the invisibility of pixels from other angles. By contrast,
MISF employs a convergent imaging approach, capturing multiple images of standing trees
from diverse angles. This expands the common field of view, providing greater amounts
of relevant characteristic information pertaining to standing trees, ultimately leading to
an improved measurement accuracy. The results of the linear regression of measured and
actual tree height values are shown in Figure 12.

Table 1. Comparison of tree height measurement results.

Sample True Value (m)
Binocular Measurement MISF

Results (m) Relative Error (%) Results (m) Relative Error (%)

1 8.76 9.13 4.27 8.51 2.83
2 7.83 8.05 2.83 7.96 1.63
3 7.62 7.42 2.69 7.44 2.35
4 6.37 6.55 2.83 6.49 1.96
5 6.35 6.08 4.26 6.49 2.15
6 5.66 5.73 1.28 5.61 0.91
7 5.64 5.86 3.98 5.55 1.56
8 5.52 5.73 3.89 5.61 1.69
9 5.49 5.26 4.13 5.38 1.98

10 5.41 5.60 3.51 5.54 2.46
11 5.33 5.57 4.53 5.45 2.22
12 5.12 5.30 3.46 5.02 1.89
13 4.98 4.79 3.81 5.04 1.25
14 4.69 4.88 4.12 4.60 1.86
15 4.62 4.44 3.89 4.68 1.23
16 4.56 4.69 2.83 4.46 2.11
17 4.48 4.68 4.38 4.59 2.56
18 4.39 4.58 4.25 4.47 1.86
19 4.25 4.45 4.67 4.35 2.36
20 3.89 4.03 3.69 3.82 1.77
21 3.69 3.57 3.22 3.76 1.89
22 3.66 3.77 2.89 3.63 0.76
23 3.36 3.55 5.53 3.43 2.05
24 3.25 3.39 4.32 3.16 2.91
25 3.15 3.27 3.86 3.18 0.95

Average - - 3.72 - 1.89

Figure 12a depicts the linear correlation between actual tree height values and those
obtained through the binocular method. The correlation coefficient of tree height is 0.985,
with an average square root error of 0.179 m. Conversely, Figure 12b demonstrates a
significant linear correlation between reference values of tree height and those measured
using MISF, with the variance analysis indicating no statistically significant differences
between groups (p > 0.05). The correlation coefficient of tree height is 0.994, with an average
square root error of 0.112 m. In comparison to the binocular measurement, this represents
an improvement of 0.067 m.

In the context of tree trunk images captured by UAV in the literature [22], high levels of
accuracy with respect to individual tree height estimation can be achieved by ensuring a low
flight altitude, small camera lens angle, and accurate orientation. The resulting correlation
coefficient R2 of tree height is 0.97. However, in utilizing MISF for this purpose, a tree
height correlation coefficient of 0.994 is attained due to the convergent imaging approach
employed, which captures images from multiple directions and yields a superior field of
view, while also providing a simpler operation compared to the single-image approach
used by UAV.
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3.3. Measurement of DBH

The results of DBH measurements using MISF and the binocular measurement method
are shown in Table 2.

Table 2. Comparison of DBH measurement results.

Sample True Value (cm)
Binocular Measurement MISF

Results (cm) Relative Error (%) Results (cm) Relative Error (%)

1 30.63 31.65 3.32 31.23 1.95
2 27.56 26.66 3.25 26.96 2.19
3 26.92 27.91 3.69 27.58 2.47
4 26.39 25.48 3.46 25.78 2.31
5 25.69 26.61 3.59 26.28 2.28
6 25.46 26.39 3.65 25.97 1.99
7 23.58 22.67 3.88 23.05 2.23
8 22.69 21.83 3.79 23.14 1.98
9 21.58 20.69 4.12 21.11 2.18

10 20.31 19.58 3.59 20.76 2.21
11 20.16 21.02 4.25 20.65 2.42
12 19.55 18.73 4.19 20.01 2.36
13 19.23 18.39 4.36 18.77 2.41
14 18.65 17.86 4.22 19.12 2.53
15 18.57 19.34 4.17 18.11 2.49
16 17.69 16.89 4.54 18.13 2.51
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Table 2. Cont.

Sample True Value (cm)
Binocular Measurement MISF

Results (cm) Relative Error (%) Results (cm) Relative Error (%)

17 17.63 16.84 4.46 17.19 2.48
18 17.56 16.79 4.39 18.00 2.52
19 16.75 17.46 4.25 16.35 2.39
20 16.24 16.95 4.37 16.71 2.88
21 15.36 14.68 4.45 15.76 2.59
22 14.52 15.17 4.51 14.13 2.68
23 13.67 13.06 4.48 14.01 2.46
24 13.27 13.87 4.54 12.87 2.98
25 10.71 11.19 4.46 11.04 3.12

Average - - 4.07 - 2.42

Table 2 demonstrates that the DBH of the measured trees ranges from 10.71 cm to
30.63 cm. The resulting measurement errors using MISF range from 1.95% to 3.12%, with
an average error of 2.42%. Conversely, when utilizing binocular measurement, errors
range from 3.25% to 4.54%, with an average error of 4.07%. Thus, compared to binocular
measurement, MISF offers an improvement in accuracy of 1.65%.

Table 2 indicates that the size of the DBH exerts a significant influence on measurement
accuracy, with larger DBH values corresponding to higher levels of accuracy. This can be
attributed to the fact that trunks possessing a large DBH are more prominent in images,
resulting in improved segmentation accuracy. Meanwhile, trees with a smaller DBH are
more susceptible to the impact of the background and other factors during segmenting,
ultimately leading to reduced accuracy. The source of error may stem from the influence of
tree background factors during image capture, which results in inaccurate segmentation,
thereby causing feature points to become incorrect and producing errors in calculation.

Figure 13 depicts the results of linear regression between measured and actual DBH values.
Figure 13a illustrates the linear correlation between the actual DBH values and those

obtained using binocular measurement. The correlation coefficient of DBH is 0.974, with
a mean square root error of 0.817 cm. Conversely, Figure 13b demonstrates a significant
linear correlation between the reference DBH values and those measured using MISF, with
variance analysis indicating no statistically significant differences between groups (p > 0.05).
The correlation coefficient of DBH is 0.991, with a mean square root error of 0.486 cm.

The correlation coefficient of DBH as measured by the proposed MISF method has
achieved a score of 0.991. This accuracy surpasses that of the standing tree DBH measure-
ment using a single image captured by a smartphone, as outlined in the literature [23].
Additionally, the R2 correlation coefficient for DBH reaches 0.95. This improved accuracy
may be attributed to the expanded receptive field of the MISF method, which allows for
more accurate feature point detection at a distance of 1.3 meters from the standing tree and
subsequently more accurate distance calculations.

3.4. Measurement of Crown Width

The results of crown width measurements using MISF and binocular method are
shown in Table 3.

Table 3 displays a range of tree crown widths between 2.03 m and 4.89 m, with
measurement errors ranging from 1.31% to 5.23%, with an average error of 3.15%. The
binocular measurements exhibit errors ranging from 3.42% to 6.86%, with an average error
of 5.17%.

By comparison, the MISF method yields an accuracy improvement of 2.02%. Notably,
Table 3 reveals that the size of crown width does not significantly impact measurement
error. However, the crown width exhibits larger errors than the other two attributes, height
and DBH, due to the relatively sparse and irregular leaves at the edge, which can affect
segmentation results.
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Table 3. Comparison of crown width measurement results.

Sample True Value (m)
Binocular Measurement MISF

Results (m) Relative Error (%) Results (m) Relative Error (%)

1 4.89 5.14 5.11 5.06 3.56
2 4.69 4.43 5.62 4.84 3.12
3 4.6 4.42 3.81 4.44 3.46
4 4.56 4.80 5.23 4.69 2.86
5 4.43 4.25 4.05 4.28 3.32
6 4.28 4.49 4.79 4.40 2.69
7 4.18 4.40 5.22 4.33 3.58
8 3.73 3.57 4.28 3.63 2.76
9 3.69 3.87 4.81 3.83 3.69

10 3.63 3.51 3.42 3.70 2.06
11 3.62 3.82 5.49 3.79 4.64
12 3.59 3.41 4.99 3.47 3.46
13 3.51 3.72 5.95 3.58 2.13
14 3.47 3.29 5.07 3.57 2.98
15 3.46 3.68 6.36 3.28 5.23
16 3.42 3.19 6.67 3.52 2.83
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Table 3. Cont.

Sample True Value (m)
Binocular Measurement MISF

Results (m) Relative Error (%) Results (m) Relative Error (%)

17 3.36 3.54 5.36 3.25 3.19
18 3.14 3.33 6.12 3.25 3.36
19 3.12 2.97 4.77 3.04 2.69
20 2.93 3.08 4.96 3.03 3.46
21 2.68 2.54 5.06 2.75 2.79
22 2.61 2.75 5.43 2.52 3.35
23 2.39 2.25 5.69 2.45 2.49
24 2.14 1.99 6.86 2.17 1.31
25 2.03 1.94 4.26 1.95 3.82

Average - - 5.17 - 3.15

The results of linear regression between measured and actual crown width are shown
in Figure 14.

Forests 2023, 14, x FOR PEER REVIEW 21 of 24 
 

 

By comparison, the MISF method yields an accuracy improvement of 2.02%. Notably, 
Table 3 reveals that the size of crown width does not significantly impact measurement 
error. However, the crown width exhibits larger errors than the other two attributes, 
height and DBH, due to the relatively sparse and irregular leaves at the edge, which can 
affect segmentation results. 

The results of linear regression between measured and actual crown width are shown 
in Figure 14. 

 
(a) 

 
(b) 

Figure 14. Linear regression analysis of measured crown width versus true crown width. (a) Binoc-
ular measurement. (b) MISF. 

Figure 14a illustrates the linear correlation between reference and binocular meas-
urements of crown width. The crown width exhibits a correlation coefficient of 0.951, with 
an average square root error of 0.179 m. In contrast, Figure 14b shows a significant linear 
correlation between the reference and MISF measurements of crown width, with no sta-
tistically significant differences observed between groups (p > 0.05) upon variance analy-
sis. The correlation coefficient of the crown width is 0.980, with an average square root 
error of 0.114 m. 

Furthermore, the correlation coefficient of crown width measured by the proposed 
MISF method in this study is 0.980, surpassing the coefficient score of 0.961 obtained using 
a single standing tree image taken by a mobile phone, as reported in the literature [24]. 
This can be attributed to the limited field of view of the single image method which may 

Figure 14. Linear regression analysis of measured crown width versus true crown width. (a) Binocular
measurement. (b) MISF.



Forests 2023, 14, 1054 21 of 23

Figure 14a illustrates the linear correlation between reference and binocular mea-
surements of crown width. The crown width exhibits a correlation coefficient of 0.951,
with an average square root error of 0.179 m. In contrast, Figure 14b shows a significant
linear correlation between the reference and MISF measurements of crown width, with
no statistically significant differences observed between groups (p > 0.05) upon variance
analysis. The correlation coefficient of the crown width is 0.980, with an average square
root error of 0.114 m.

Furthermore, the correlation coefficient of crown width measured by the proposed
MISF method in this study is 0.980, surpassing the coefficient score of 0.961 obtained using
a single standing tree image taken by a mobile phone, as reported in the literature [24].
This can be attributed to the limited field of view of the single image method which may
result in relatively inaccurate feature point identification, leading to measurement errors.
Conversely, MISF leverages multi-vision images to overcome this issue and deliver a
superior performance.

4. Conclusions

This paper proposes a novel method for measuring the size of standing trees, called
MISF. The method leverages multi-vision image segmentation and coordinate fusion tech-
niques to achieve accurate recognition and segmentation of the main body of standing
trees. Specifically, in the process of image segmentation and measurement, we utilize the
SEMD segmentation model based on deep learning that we previously proposed to perform
multi-scale fusion of the convolutional features of the standing tree image. This approach
reduces the loss of the edge details of the standing tree and enhances the effective reading
of feature point information. Finally, we use the measurement information from the three
cameras to obtain the final measurements of the size attributes of the standing tree.

The experimental results demonstrate that the proposed method, MISF, achieves errors
of 1.89%, 2.42%, and 3.15% for tree height, DBH, and crown width measured, respectively.
These values represent significant improvements over traditional binocular measurement
results, with no statistically significant differences between groups as determined by
variance analysis (p > 0.05). The experiments verified the three contributions of this paper.
Firstly, the results demonstrate that the proposed method, MISF, outperforms binocular
measurement in terms of measurement accuracy. Secondly, the improved image matching
algorithm, SURF, successfully handles multi-vision images. Thirdly, real environment
experiments using MISF confirm the method’s ability to successfully obtain height, DBH,
and crown width measurements.

Despite the promising results of MISF, it is worth noting that some errors may still
exist in the measurement data. Possible reasons for these errors include: (1) the occlusion of
feature information in standing trees, leading to the imprecise acquisition of feature points;
(2) there may be some errors in the camera calibration values, resulting in deviations in
final calculation results. To achieve better measurement accuracy, future work will explore
improvements in camera calibration methods or more convenient measurement techniques.
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