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Abstract: An ecological public welfare forest is an important basis for the construction of national
ecological security. This study took public welfare forests at the provincial level or above in Hunan
Province as the research object. Based on the in situ monitoring data and remote sensing data,
we constructed a random forest (RF) model for inversing the biomass of public welfare forests
with different types. Then, based on the inversion results, we investigated the biomass spatial
pattern. Combined with topographical and socio-economic factors, we constructed a geographically
weighted regression (GWR) model to analyze the biomass driving factors of different vegetation
types in public forests. The results showed the following: (1) The biomass of public welfare forests
in Hunan Province presented a strip distribution pattern that gradually increases from the central
to the southwest and northeast. The total biomass of public welfare forests in Hunan Province
was 338.13 million tons, with an average biomass of 68.31 t·hm−2. In the different types of public
welfare forests, the mean biomass of the types were as follows: shrub (4.65 t·hm−2) < broadleaf forest
(59.27 t·hm−2) < conifer–broadleaf mixed forest (62.44 t·hm−2) < bamboo forest (71.33 t·hm−2) <
coniferous forest (100.33 t·hm−2). (2) Topographic and socio-economic factors have a significant
impact on the spatial pattern of biomass in public welfare forests. Slope had the greatest effect on
coniferous forest, conifer–broadleaf mixed forest, and shrub forest, while POP had the greatest effect
on broadleaf forest and bamboo forest. This study investigates the spatial patterns and driving factors
of biomass in public welfare forests at the provincial level, filling the gap in forest biomass monitoring
in public welfare forests in Hunan Province. It provides a new method to improve the accuracy of
forest biomass estimation and data support for the sustainable management of public welfare forests.

Keywords: public welfare forest; biomass; vegetation type; spatial pattern; driving factors

1. Introduction

The ecological public welfare forest is an important shelter forest that provides forestry
ecology and social services, with the main functions of maintaining and improving the
ecological environment, maintaining ecological balance, and protecting biodiversity. [1]. It
is a critical foundation for the development of national ecological security [2]. However,
most of the sites involved in the project are areas with poor soil conditions and those prone
to water loss and soil erosion [3]. As a result, it is vital to clarify the spatial pattern of public
welfare forests and investigate the driving causes in order to develop feasible policies
for public welfare forest management, maintenance, and operations. In recent years, a
large number of scholars have used remote sensing technology combined with biomass
sampling plot surveys to estimate forest biomass in large regional scales [4,5]. Among
them, Landsat series satellites have unique advantages. They can provide long-term, free
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to access historical archives with high spatial resolution. Therefore, they have become
a main optical remote sensing data source for estimating forest biomass [6–8]. Machine
learning has become popular in this century and has been widely used in remote sensing
data processing. Nguyen et al. [9] compared 18 different models, and the results showed
that RF was the model with the highest accuracy. López-Serrano et al. [10] used four
machine learning methods to estimate the aboveground biomass of the temperate forests
of the Durango State on the western Sierra Madre, NW Mexico, based on Landsat 8 OLI
and forest resource fixed plot data. Jiang et al. [11] using spaceborne LiDAR and machine
learning algorithms to improved aboveground biomass estimation of natural forests on the
Tibetan Plateau, and the results show that the optimized extreme learning machine (ELM)
achieved the best estimation effect among all the analyzed models. Among a variety of
methods for biomass estimation, RF modeling was found to have the great advantages of
high estimation accuracy and operability. Forest biomass is affected by a variety of driving
factors. Topographic factors, including elevation, slope, and aspect, had been widely
considered to be the main factors affecting the spatial pattern of forest biomass [12,13].
Socio-economic drivers, including gross domestic product (GDP) and population (POP),
also play an irreplaceable role [14]. Alves et al. [15] studied the aboveground biomass
and forest structure on the elevation gradient in the humid zone of the tropical Atlantic
in Brazil, and it was found that the distribution of aboveground biomass was affected
by the local scale topographic changes related to elevation. Li et al. [12] analyzed the
dynamics and driving factors of mountain forest biomass in Southwest China from 1979 to
2017, and concluded that climate change has a negative impact on forest biomass and that
policy adjustments help maintain forest biomass in Southwest China. The geographically
weighted regression (GWR) model can fully indicate the characteristics of spatial structure
heterogeneity, revealing the underlying driving factors more effectively [16,17].

After 20 years’ protection, as one of the first 11 pilot provinces in China to protect public
welfare forests, Hunan Province has constructed ecological public welfare forests with
stable structure and complete functions. Currently, there is a lack of an overall evaluation
of the public welfare forests in Hunan Province, as well as a limited understanding of
the spatial pattern and driving factors of forest biomass. Therefore, the objectives of this
study are as follows: (1) extract modeling variables from Landsat 8 remote sensing imagery
using the Boruta algorithm for feature selection and construct biomass inversion models
for different types of public forests using the RF method; (2) inverse the biomass spatial
pattern in public welfare forests according to inversion results; (3) apply the ordinary least
square (OLS) method to select factors, and construct the GWR model to analyze the driving
factors of biomass in different types of public welfare forests; and (4) provide management
and sustainable operating strategies for different types of public welfare forests.

2. Materials and Methods
2.1. Study Area

The study area is located in Hunan Province (108◦47′–114◦15′ E, 24◦38′–30◦08′ N) in
the middle and upper reaches of the Yangtze River and south of Dongting Lake, which
belongs to the subtropical monsoon humid climate (Figure 1). The topography of Hunan
Province presents an asymmetric “U-shaped” form surrounded by mountains in the east,
west, and south, gradually tilting towards the center and northeast. According to the
“one map” of forest resource management in Hunan Province in 2021, the total area of
public welfare forests at the provincial level or above (hereinafter referred to as “public
welfare forests”) in Hunan Province is 4.95 hm2, accounting for 23.36% of the provincial
land area. According to the China Vegetation Zoning and the criteria for forest community
characteristics, the public welfare forests in Hunan Province can be roughly divided into
five vegetation types, including coniferous forest, broadleaf forest, conifer–broadleaf mixed
forest, bamboo forest, and shrub (Table 1, Figure 1b).
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Figure 1. Location of the study area (a); vegetation types and sampling plot distribution (b).

Table 1. Basic description of the study area.

Vegetation Type Area of Public Welfare
Forest (Million hm2) Percentage (%) Main Plant Communities

Coniferous forest 2.14 43.16
Larix gmelinii, Pinus armandii Franch., Pinus massoniana

Lamb., Cunninghamia lanceolata, Cupressus funebris,
Cryptomeria fortunei, etc.

Broadleaf forest 0.82 16.51
Cinnamomum camphora, Quercus spp., Liquidambar

formosana, Sassafras tzumu (Hemsl.) Hemsl., Schima
superba Gardn. et Champ, etc.

Conifer–broadleaf
mixed forest 0.59 11.96 Pinus massoniana Lamb., Cunninghamia lanceolata,

Cupressus funebris, etc.
Bamboo forest 0.47 9.43 Phyllostachys edulis, etc.

Shrub 0.93 18.93 -
Total forest 4.95 100 -

2.2. Data Collection
2.2.1. In Situ Monitoring Data

This study used in situ monitoring data from 682 sampling plots of public welfare
forests in Hunan Province in 2021 (Figure 1b). The survey plots were rectangular in shape,
measuring 25 m by 40 m, with a total area of 1000 m2. The monitoring data included a
series of attributes, such as plot code, coordinates, vegetation type, dominant tree species,
diameter at breast height (DBH), and tree height. The biomass of each individual tree in
the sample plot was then calculated based on 28 biomass equations for major species in
Hunan [18], as well as for individual bamboo plants [19] and groups of broadleaf trees
categorized as fast-growing, medium-growing, and slow-growing [20]. The biomass of
each sample plot was calculated by aggregating the biomass of each tree within the plot.
According to the classification of vegetation types, the sample plots were classified into five
vegetation types, and the statistical results of the biomass of the plots are shown in Table 2.
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Table 2. Statistical results of biomass in the sampling plots.

Vegetation Type Sampling Plot
Amount

Maximum Biomass
(t·hm−2)

Minimum Biomass
(t·hm−2)

Mean Biomass
(t·hm−2)

Coniferous forest 199 324.37 0.40 107.67
Broadleaf forest 193 198.21 3.81 72.44

Conifer–broadleaf mixed forest 139 345.66 2.92 79.62
Bamboo forest 64 415.02 20.45 65.99

Shrub 87 35.47 0.01 5.56
Total forest 682 415.02 0.01 75.04

2.2.2. Remote Sensing Data

This study used the Landsat 8 landmark reflectance product (LANDSAT/LC08/C01/T1_SR)
with 30 m spatial resolution provided by the Google Earth Engine (GEE) platform. In total,
266 images with cloud cover less than 5% were selected from May to October of 2021, which
covered the whole period of the ground survey. In addition, the CFMask algorithm was used
to mask pixels covered by clouds, shadows, water, and snow. Mosaic and clip functions were
performed to fuse, splice, and clip the images that could represent the best vegetation growth
state in the study area. In ENVI 5.3, 115 remote sensing spectral variables in 5 categories were
extracted, including original band, band combinations, image transformations, vegetation indices,
and texture measures, as alternative parameters for construct the model (Table 3).

Table 3. Summary of the spectral variables (SV).

SV Definitions of SV # of SV

Original band Coastal aerosol (Band1), blue (Band2), green (Band3), red (Band4), near infrared (Band5),
shortwave infrared 1 (Band6), and shortwave infrared 2 (Band7) 7

Band combinations Albedo, B4/Albedo, B24 = Band2/Band4, B53 = Band5/Band3, B74 = Band7/Band4,
B547 = Band5(Band4/Band7), B345 = Band3(Band4/Band5), and sum visible bands (VIS234) 8

Image transformations Principal component analysis (PCA), maximum noise fraction (MNF), high-pass filter (HIP),
and low-pass filter (LOP) of seven original bands 28

Vegetation indices

Normalized difference vegetation index (NDVI), difference vegetation index (DVI), soil
adjusted vegetation index (SAVI), simple ratio index (RVI), perpendicular vegetation index
(PVI), modified soil adjusted vegetation index (MSAVI), transformation vegetation index

(TVI), transformation vegetation index 2 (TVI2), atmospherically resistant vegetation index
(ARVI), ND43 = (Band4 − Band3)/(Band4 + Band3), specific leaf area vegetation index

(SLAVI), enhanced vegetation index (EVI), green normalized difference vegetation index
(GNDVI), modified NLI (MNLI), optimized soil adjusted vegetation index (OSAVI), and

renormalized difference vegetation index (RDVI)

16

Texture measures
Grey-level co-occurrence matrix-based texture measures, including mean, angular second

moment, contrast, correlation, dissimilarity, entropy, homogeneity, and variance using
moving window sizes of 3 × 3

56

2.2.3. Driving Factor Data

This paper selected three topographic factors, namely elevation, slope, and aspect, two
socio-economic factors, POP and GDP, and two climatic factors, annual average temperature
and annual average precipitation, to investigate the impact of seven factors on the spatial
variation of biomass in public forests in Hunan Province (Table 4). The digital elevation model
(DEM) with spatial resolution of 30 m by 30 m was downloaded from the Geospatial Data
Cloud (http://www.gscloud.cn/, accessed on 10 February 2022) for the extraction of elevation,
slope, and aspect. The 2020 GDP and POP data provided by the Resources and Environment
Science and Data Center, Chinese Academy of Sciences (http://www.resdc.cn/DOI, accessed
on 12 February 2022), were used to replace the traditional administrative statistics unit with the
spatial statistical unit to realize the spatialization of GDP and POP [21,22]. In addition, climate
data were from National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/zh-hans/,

http://www.gscloud.cn/
http://www.resdc.cn/DOI
http://data.tpdc.ac.cn/zh-hans/
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accessed on 15 February 2022), including the 1 km monthly mean temperature dataset for
China (1901–2021) [23] and 1 km monthly precipitation dataset for China (1901–2021) [24].

Table 4. Selection of driving factors of forest biomass.

Indicator Indicators Name Unit Resolution Year

Topography
Elevation m 30 m × 30 m 2021

Slope degrees 30 m × 30 m 2021
Aspect - 30 m × 30 m 2021

Socio-
economic

Gross domestic product (GDP) 103 CNY/km2 1 km × 1 km 2020
Populations (POP) people/ km2 1 km × 1 km 2020

Climate
Temperature ◦C 1 km × 1 km 2021
Precipitation mm 1 km × 1 km 2021

2.3. Methods
2.3.1. Methods of Variable Selection
Boruta Algorithm

The Boruta algorithm is a feature selection algorithm based on RF. Firstly, the original
feature dataset is rearranged to create mixed copies and generate shadow features. Secondly,
the importance of the shadow feature set is sorted according to the precision discrimination
index of RF. The importance scores of variables in the original feature set are observed
through several iterations, and the importance of variables with low importance is gradually
eliminated by comparing their importance. Finally, all variable characteristics are confirmed
or removed. The Boruta algorithm was executed in PyCharm software (Community
2022.1.1; JetBrains PyCharm, Prague, Czech Republic).

Ordinary Least Square Method

The ordinary least square method (OLS) extracts comprehensive variables with strong
explanatory power to dependent variables through spatial transformation of the indepen-
dent variable, making the estimated value more precise. The model calculation formula is
as follows:

yi = β0 + ∑
k

βkxik + ε, i = 1, 2, 3 . . . , n (1)

where yi is the dependent variable, β0 is the regression intercept, xik represents each
explanatory variable, βk represents the regression coefficient of the kth explanatory variable
to the explained variable yi, and ε represents the random error term.

2.3.2. Random Forest

RF is one of the most commonly used classification and regression algorithms to
explain the complex relationship between dependent variables and multiple independent
variables [25]. It relies on random selection of samples and features to eliminate over-
fitting problems. In order to make full use of the samples to improve the reliability of
the model, the study divided the dataset with 70% data as training data and 30% data as
validation data in the PyCharm software(Community 2022.1.1; JetBrains PyCharm, Prague,
Czech Republic).

2.3.3. Geographically Weighted Regression

Geographically weighted regression (GWR) is a spatial statistical model used to
explore spatial changes and driving factors of spatial objects at a certain dimension. GWR
detects the non-stationarity of spatial relations by embedding spatial structure into the
linear regression model. Its mathematical model form is shown in Formula (2):

yi = a0(ui, vi) +
k

∑
i=1

ak(ui, vi)xik + εi (2)



Forests 2023, 14, 1061 6 of 16

where yi is the dependent variable at location i, a0(ui, vi) is the intercept coefficient, xik is
the kth explanatory variable, ak(ui, vi) is the local regression coefficient for the kth explana-
tory variable, and εi is the random error term. The GWR model was computed in ArcGIS
10.8(Esri ArcGIS, Redlands, CA, USA), and the regression coefficients and intercepts of
each grid reflect the degree of spatial variation in the influence of independent variables on
the dependent variable.

2.3.4. Evaluation Metrics

The coefficient of determination (R2) [26] and the root-mean-square error (RMSE) [26]
were used to evaluate the performance of the final models:

R2 = 1− ∑n
i=1 yi − ŷi)

2

∑n
i=1 (yi − yi)

2 (3)

RMSE =

√
∑n

i=1 (yi − ŷi) 2

n
(4)

where yi is the observed biomass value, ŷi is the predicted biomass value based on models,
yi is the arithmetic mean of all the observed biomass values, and n is the sample number. In
general, a higher R2 value and lower RMSE values indicate a better estimation performance
of the model.

3. Results
3.1. Results of Biomass Inversion of Public Welfare Forest

In this study, we used the measured biomass data of different types of public forests
as the dependent variable and 115 remote sensing factors as independent variables. The
important characteristic variables related to biomass of each vegetation category were
selected by Boruta algorithm and shown in Table 5.

Table 5. Variables selected based on Boruta algorithm.

Vegetation Type Variables Selected

Coniferous forest ARVI, B4,B4/Albedo, B53, B345, GNDVI, MNFB5, NDVI, OSAVI, RVI, SAVI, SLAVI, TVI,
PCAB2, PCAB5, HomB5, ConB5, DisB5, VarB6, ConB6, and DisB6

Broadleaf forest ARVI, B4/Albedo, B53, GNDVI, MNFB2, MNFB7, NDVI, OSAVI, RVI, SAVI, SLAVI, TVI,
TVI2, PCAB2, and PCAB6

Conifer–broadleaf mixed forest B7, B53, MNFB3, MNFB5, SLAVI, PCAB3, PCAB5, and MeaB7
Bamboo forest ARVI, ND43, SLAVI, PCAB2, HomB7, ConB7, DisB7, EntB7, ASMB7

Shrub ARVI, B24, MeaB7, RDVI1, and SLAVI

Total forest
Albedo, ARVI, B2, B3, B4, B4/Albedo, B6, B7, B53, B74, B345, B547, DVI, EVI, GNDVI,

MNFB2, MNFB3, MNFB5, MSAVI, ND43, NDVI, OSAVI, PVI, RDVI1, RVI, SAVI, SLAVI,
TVI, TVI2, VIS234, PCAB1, PCAB2, PCAB4, PCAB5, MeaB5, MeaB6, and MeaB7

According to the predicted results of the biomass inversion model (Figure 2), bam-
boo forest presented the highest accuracy (RMSE = 26.50 t·hm−2, R2 = 0.79), followed
by conifer–broadleaf mixed forest (RMSE = 15.76 t·hm −2, R2 = 0.76), coniferous forest
(RMSE = 31.76 t·hm−2, R2 = 0.74), shrub (RMSE = 2.11 t·hm−2, R2 = 0.74), and broadleaf
forest (RMSE = 21.57 t·hm−2, R2 = 0.73), with total forest (RMSE = 30.77 t·hm−2, R2 = 0.67)
being the lowest.
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model of different forest types.

3.2. Spatial Pattern of Biomass of Public Welfare Forest

Classification of forest types can improve the generalization performance and accuracy
of the model. Therefore, according to the forest type, the RF model was used to generate the
corresponding biomass spatial distribution map (Figure 3). Furthermore, the total biomass
map of public welfare forests in Hunan Province was also generated by combining the
spatial distribution maps of different types of biomass (Figure 3f). It can be observed that
the mean biomass of public welfare forests in Hunan Province was 68.15 t·hm−2, and the
total biomass was 338.15 million tons. Spatially, the biomass of public welfare forests in
Hunan Province ranged from 0.85 to 177.63 t·hm−2, showing a strip distribution pattern
that gradually increases from the central to the southwest and northeast. The areas with
high biomass (>75 t·hm−2) in the public welfare forests were mainly concentrated in the
southeastern Luoxiao Mountain range, southern Nanling Mountain range, southwestern
Wuling Mountain range, and Xuefeng Mountain range, where there were more natural
reserves, forest parks, and less human disturbance. Instead, the low-biomass (<30 t·hm−2)
areas were mainly located in the valley plain of the Xiangjiang River Basin and the central
Hunan Hill, in which shrubs were mainly distributed.

In various types of public welfare forests, the mean biomass in ascending order were
as follows: shrub (4.65 t·hm−2) < broadleaf forest (59.27 t·hm−2) < conifer–broadleaf mixed
forest (62.44 t·hm−2) < bamboo forest (71.33 t·hm−2) < coniferous forest (100.33 t·hm−2).
The total biomass in ascending order were as follows: shrub forest (4.33 million tons) <
bamboo forest (33.32 million tons) < conifer–broadleaf mixed forest (36.97 million tons) <
broadleaf forest (48.45 million tons) < coniferous forest (215.24 million tons). The biomass
of different types of public welfare forest were correlated with the forest area and the mean
biomass (Figure 4). Coniferous forest had the largest distribution area and the highest
mean biomass, and its contribution accounted for 63.64% of the total public welfare forest
biomass. The shrub forest had a large area, though its mean biomass was the smallest, and
thus it contributed the least biomass (1.28%) to the total public welfare forest (Table 6).
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Table 6. Biomass statistics of each vegetation type under random forest model.

Vegetation Type Mean Biomass (t·hm−2) Biomass (Million Tons) Percentage (%)

Coniferous forest 100.33 215.24 63.62
Broadleaf forest 59.27 48.45 14.32

Conifer–broadleaf mixed forest 62.44 36.97 10.93
Bamboo forest 71.33 33.32 9.85

Shrub 4.65 4.33 1.28
Total forest 68.31 338.31 100.00

3.3. Analysis of Results of Geographically Weighted Regression Model

The OLS was used in this study to select driving factors. According to the selection
results (Table 7), the accuracy R2 of the biomass models of coniferous forest, broadleaf
forest, conifer–broadleaf mixed forest, bamboo forest, and shrub were 0.47, 0.43, 0.52,
0.47, and 0.56, and the AICc values were 165,941.69, 59,308.81, 38,989. 15, 31,852.20,
and 33,110. 13, respectively. The t and p values of each driving factor were statistically
significant, and the VIFs were all less than 10. For this reason, it can be seen that there is
no collinearity problem between the selected driving factors, and they can be used to
construct the GWR model.

Table 7. Tests of collinearity and significance.

Vegetation Type Driving Factors VIF p Value

Coniferous forest

Elevation 1.260 0.000
Slope 1.150 0.000
POP 1.111 0.000

Aspect 1.000 0.000
GDP 1.065 0.001

Broadleaf forest
Elevation 1.024 0.000

POP 1.039 0.038
GDP 1.057 0.041

Conifer–broadleaf
mixed forest

Elevation 1.152 0.000
Aspect 1.000 0.000
GDP 1.066 0.007
POP 1.094 0.104
Slope 1.094 0.736

Bamboo forest
Elevation 1.154 0.000

GDP 1.061 0.000
POP 1.056 0.015

Shrub

Slope 1.231 0.000
GDP 1.030 0.000
POP 1.061 0.001

Aspect 1.001 0.020

The spatial distribution of the factor regression coefficient and intercept of the
GWR models of biomass of different types were compared and analyzed (Table 8). The
results showed that each factor explained 29%, 27%, 39%, 41%, and 48% of the spatial
variation of the biomass of coniferous forest, broadleaf forest, conifer–broadleaf mixed
forest, bamboo forest, and shrub, respectively. According to the absolute value of the
median regression coefficients of each driving factor in the GWR, the contribution of
each driving factor to forest biomass was ranked as follows: coniferous forest, slope
> aspect > GDP > elevation > POP; broadleaf forest, POP > elevation > GDP; conifer–
broadleaf mixed forest, slope > POP > GDP > elevation > aspect; bamboo forest, POP
> elevation > GDP; and shrub, slope > GDP > POP > aspect. The biomass of different
types have different correlations with various driving factors. In the coniferous forest,
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GDP and POP were negatively correlated with biomass, while elevation, slope, and
aspect were positively correlated with biomass distribution. For the broadleaf forest,
POP and biomass were significantly negatively correlated, while elevation, GDP, and
biomass were slightly positively correlated. For the broadleaf mixed forest, slope,
GDP, and biomass were significantly negatively correlated, while elevation, aspect, and
POP were positively correlated with biomass. For the bamboo forest, GDP and POP
were significantly negatively correlated with biomass, while elevation and biomass
were significantly positively correlated. For shrubs, GDP and POP were significantly
negatively correlated with biomass, and slope and aspect were significantly positively
correlated with biomass.

Table 8. Evaluation of geographically weighted regression model and regression coefficient statistics
of impact factors.

Regression Coefficient of Coniferous Forest Regression Coefficient of Conifer–Broadleaf Mixed
Forest

Min Lower-
Quartile Median Mean Upper-

Quartile Max Min Lower-
Quartile Median Mean Upper-

Quartile Max

Intercept 56.117 75.917 95.178 89.009 115.518 135.319 Intercept 37.619 46.982 56.345 62.188 65.708 75.070
Elevation −0.849 −0.049 −0.015 0.010 0.020 0.055 Elevation −0.029 −0.018 −0.007 −0.001 0.003 0.014

Slope −0.537 −0.156 0.225 0.303 0.606 0.988 Slope −0.236 −0.032 0.171 0.016 0.375 0.579
Aspect −0.025 0.009 0.042 0.022 0.076 0.109 Aspect −0.016 −0.005 0.006 0.008 0.018 0.029

POP −0.030 −0.014 0.002 −0.003 0.019 0.036 POP −0.038 −0.025 −0.013 −0.003 0.004 0.013
GDP −0.074 −0.045 −0.016 −0.004 0.013 0.043 GDP −0.023 −0.015 −0.008 −0.004 −0.000 0.007

R2 = 0.29 AICc = 161,796.21 R2 = 0.39 AICc = 56,279.68

Regression Coefficient of Broadleaf Forest Regression Coefficient of Bamboo Forest

Min Lower-
Quartile Median Mean Upper-

Quartile Max Min Lower-
Quartile Median Mean Upper-

Quartile Max

Intercept 14.06 31.329 48.602 56.179 65.875 83.148 Intercept 32.180 52.224 72.267 66.305 92.310 112.364
Elevation −0.048 −0.028 −0.008 0.003 0.011 0.031 Elevation −0.106 −0.063 −0.019 0.009 0.025 0.069

POP −0.060 −0.042 −0.024 −0.008 −0.006 0.0122 POP −2.170 −1.584 −0.999 −0.010 −0.413 0.173
GDP −0.116 −0.005 0.000 0.000 0.007 0.013 GDP −0.035 0.006 0.048 −0.001 0.089 0.131

R2 = 0.27 AICc = 58,586.15 R2 = 0.41 AICc = 32,622.50

Regression Coefficient of Shrub Forest Regression Coefficient of Total Forest

Min Lower-
Quartile Median Mean Upper-

Quartile Max Min Lower-
Quartile Median Mean Upper-

Quartile Max

Intercept −5.282 1.885 4.299 4.205 6.712 9.126 Intercept −7.7434 41.8186 71.9099 70.8741 99.0510 142.7129
Slope −0.078 −0.027 0.024 0.022 0.075 0.126 Elevation −0.0772 −0.0238 −0.0006 0.0001 0.0224 0.1068

Aspect −0.005 −0.002 0.000 0.001 0.002 0.005 Slope −0.9861 −00.240 0.1143 0.0808 0.5353 1.4539
POP −0.005 −0.003 −0.001 −0.001 0.002 0.004 Aspect −0.0463 −0.0072 0.0085 0.0078 0.0233 0.0588
GDP −0.010 −0.006 −0.003 −0.001 0.000 0.004 POP −0.0785 −0.0224 −0.0077 −0.0053 0.0044 0.0316

R2 = 0.48 AICc = 29,331.82 GDP −0.1260 −0.0174 0.0145 −0.0010 0.0635 0.1281

The GWR coefficients and intercepts of different types of public welfare forest biomass
in Hunan Province were integrated into the spatial distribution of the total forest (Table 9,
Figure 5). The contribution of each driving factor to the biomass of public welfare forests in
Hunan Province was ranked as follows: slope > GDP > aspect > POP > elevation. Elevation,
slope, and aspect had significant positive effects on biomass distribution, among which the
positive effect of elevation on biomass of public welfare forests (regression coefficient > 0)
was larger in area, accounting for 62.51% of the total area, which was mainly distributed in
the Huping Mountains, Wuling Mountains, and Xuefeng Mountains in the western part of
the study area. GDP and POP had significant negative effects on biomass distribution, and
the areas with negative effects were mainly the Wanyang Mountains and low-elevation
hills in central Hunan.
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Table 9. Geographically weighted regression factor regression coefficient proportion segment statistics.

Elevation GDP

<−0.033 [−0.033, 0) [0, 0.008) [0.008, 0.025) >0.025 <−0.033 [−0.033, −0.016) [−0.016, 0) [0, 0.011) >0.011
Coniferous

forest 2.33 21.91 18.61 39.71 17.43 2.98 8.27 48.38 37.41 2.96

Broadleaf
forest 0.78 47.88 8.54 32.84 9.97 - - 45.37 54.09 0.54

Conifer–
broadleaf

mixed forest
- 49.44 43.27 7.29 - - 9.16 66.73 24.11 -

Bamboo forest 0.50 27.50 34.70 17.90 19.40 - 5.70 58.60 26.70 9.00
Shrub - - - - - - 0 66.03 35.97 0

Total forest 1.26 36.23 24.44 25.69 12.38 1.55 5.54 53.51 37.07 2.33

Aspect Slope

<−0.023 [−0.023, 0) [0, 0.011) [0.011, 0.029) >0.029 <−0.070 [−0.070, 0) [0, 0.326) [0.326, 0.592) >0.592
Coniferous

forest 0.10 4.61 13.30 49.90 32.09 6.83 5.42 39.84 32.72 15.18

Conifer–
broadleaf

mixed forest
- 23.74 33.83 42.24 0.19 17.45 37.68 43.91 0.96 -

Shrub - 36.25 63.75 - - - 14.31 85.69 0 -
Total forest 5.54 0.57 30.21 29.35 34.32 9.31 13.90 50.20 19.12 7.48

POP Intercept

<−0.015 [−0.015, −0.006) [−0.006, 0) [0, 0.020) >0.020 [0, 32.25) [32.25, 72.55) [72.55, 94.71) [94.71, 130.98) >130.974
Coniferous

forest 5.99 22.28 41.96 29.27 0.50 - 15.34 48.89 35.56 0.21

Broadleaf
forest 15.04 23.48 42.32 19.16 - - 79.85 20.15 - -

Conifer–
broadleaf

mixed forest
- 3.65 28.25 35.08 33.02 - 89.25 10.75 - 0

Bamboo forest 11.99 20.50 40.48 21.66 5.36 72.02 25.00 2.98 - -
Shrub - - 92.09 7.91 - 100 - - - -

Total forest 7.48 20.08 48.58 23.24 0.63 19.75 34.88 24.15 16.26 4.97
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4. Discussion
4.1. Biomass of Different Types of Forests

We compared the field survey values of public welfare forest biomass with that from
model estimations for different vegetation types. The data are generally reliable. In particu-
lar, there is a phenomenon of high-value underestimation and low-value overestimation.
For example, the coniferous forest field survey data were 107.67 t·hm−2, and the model
estimated value was 100.33 t·hm−2. The bias could result from the uncertainty of remote
sensing data used on the study area, or the uneven distribution of sample points.

According to the biomass estimation results of different vegetation types of public
welfare forests, the mean biomass of the coniferous forest (100.33 t·hm−2) was significantly
higher than that of other types. The main reason may be that other forests were young
and middle-aged, while the coniferous forest was mature. The lowest mean biomass was
found in the shrub forest (4.65 t·hm−2), and the main reasons leading to the low biomass
may be the low crown height and small ground diameter and crown diameter of the
shrubs [27]. Another potentially influential factor was the significant difference in the
average environment of forests. With some exceptions, the shrub forest was mainly found
in plain areas with elevation, flat terrain, and high human disturbance. The coniferous
forest was found in mountainous areas with higher elevations, steeper terrain, and less
anthropogenic influence. For other types of public welfare forests, it is expected that future
biomass will continue to increase, and effective manual intervention will contribute more
in Hunan Province [28].

4.2. Explanatory Power of Driving Factors

Many studies have proved that temperature can change the forest vegetation produc-
tivity and biomass by affecting plant photosynthesis and respiration [29]. Precipitation is an
important way for plants to obtain water, which can affect the growth and development of
plants, community characteristics, and ecosystem structure, thereby affecting the allocation
of forest biomass. Sun et al. [30] concluded that there was a significant correlation between
the biomass of broadleaf forests and climatic factors, such as maximum precipitation and
maximum average temperature. Many scholars have also obtained the relationship be-
tween temperature and precipitation in their research objects based on specific tree species.
In this study, when the biomass driving factors of various vegetation types were screened,
precipitation and air temperature were not selected as two climate factors, which may be
due to the fact that the impacts of climate change are complex [31], and forest biomass
is regulated by the complex interaction among climate, topography, and socio-economic
variables [32,33].

There are many factors affecting the spatial pattern of forest biomass, and topography
is one of the most important ones [34]. The results of this study showed that topography
factors had a positive effect on forest biomass, among which slope is the most influential.
This may be because of the mountains and hills of the relatively rugged surface form in
Hunan Province. With the increase in slope, the chance and degree of the forest being
disturbed by human beings decreased and the vegetation biomass increased [35]. Moreover,
aspect mainly influences solar radiation, which can affect the site growth of trees and
can thus affect the biomass. For instance, the shrub forest was beneficial to growth on
low-elevation and sunny, dry slopes [36]. Elevation controls the gradient changes in
local temperature and precipitation through the evapotranspiration rate, and directly or
indirectly affects forest biomass [37]. In general, without considering the management of
the forest stands, the higher the elevation and the greater the slope, the less the stand was
subjected to human disturbance, thus the greater the biomass accumulation. The water and
heat conditions of aspects are different, which restrict the growth of trees and thus affect
the biomass [38]. In this case, bamboo and broadleaf vegetation may be more suitable for
the growth of light, water, temperature, and other conditions on sunny slopes.

The spatial pattern of forest biomass was affected by socio-economic factors. To be
concrete, GDP and POP had strong negative effects on the biomass of forests. In 2021, the
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study area was in the stage of stable economic growth, and the quality of public welfare
forests was greatly improved due to the policies of returning of farmland to forest, the
construction of beautiful countryside, and the ecological compensation of public welfare
forests. In the relatively developed economic period, the positive effect of economic
construction on forest biomass was dominant. According to the environmental Kuznets
curve, the relationship between forest carbon sink and per capita GDP presents a “U-
shaped” curve [39]; POP has a gradually enhanced negative effect on the change in forest
biomass, and the increase in population will inevitably lead to the increase in forest resource
demand [40], which is consistent with our study. In recent years, large-scale human
activities have had an important impact on the local environment. For example, Hunan
Province has built in the ecological “green-core” area of the Changzhutan urban cluster.
This “green-core” area has invested a large amount of funding to improve the quality
and stability of the provincial ecosystem by focusing on the systematic management and
improvement of mountains, rivers, forests, fields, lakes, and grasslands.

4.3. Biomass of Different Types of Public Welfare Forests Are Affected by Driving Factors

For the coniferous forest, the effect of topography on biomass was significantly greater
than that of other factors. This may be due to the fact that the vegetation roots of the
coniferous forest were well developed and more restricted by topography. For example,
the areas affected by elevation with a large coniferous forest coefficient were concentrated
in the mountain areas, such as the Wuling Mountains and Xuefeng Mountains in western
Hunan Province, which had a large relief amplitude and little human disturbance, resulting
in the larger biomass.

The biomass of the broadleaf forest was negatively affected by POP. The distribution
area of the broadleaf forest was mainly in the middle and low latitudes, which tended
to have higher population density and rapid economic development. Accordingly, the
demand and pressure on forest resources were also greater. The increase in population also
meant that more lands were reclaimed, felled, and used for agricultural production, which
had a negative impact on broadleaf forest biomass. The impact was not only exerted on the
broadleaf forest, but also on other forests.

The conifer–broadleaf mixed forest was distributed in open plains and mountain
areas at lower elevations. It was composed of a variety of tree species mixed with each
other and had higher species diversity and structural complexity. Slope then affected the
uncertainty of tree species to a certain extent, and its influence on richness was greater than
evenness [41].

There was an obvious negative correlation between bamboo biomass and elevation.
Moso bamboo (Phyllostachys edulis) is the main dominant species of bamboo forests whose
early and late dates of bamboo shoot growth mainly depend on the continuous temperature
in a period before that. Elevation, then, was the main factor affecting temperature and
humidity. Studies have shown that the biomass of bamboo forests presented an overall
increasing trend first, and then a decreasing trend with the increase in elevation, and both
high and low elevation were not conducive to the growth of bamboo [42]. To cultivate
high-yield and high-quality bamboo forests, the elevation should be below 800 m [43].

The fact that the shrub forest was more affected by slope, but not by elevation, was
related to its adaptation to the environment. On the one hand, shrub roots are not more
adaptable than tress. Shrubs need stronger adaptability to maintain their growth. On the
other hand, the change in slope will lead to the change in temperature, light, and oxygen
concentration, which will affect the growth and development of shrubs.

5. Conclusions

This study focused on the public forests of different vegetation types (coniferous forest,
broadleaf forest, conifer–broadleaf mixed forest, bamboo forest, and shrub) in Hunan
Province. The Boruta algorithm was used to screen the Landsat 8 OLI modeling variables,
and an RF model was constructed for the biomass of public forests of different vegetation
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types, exploring their spatial patterns. Combined with topographic, socio-economic, and
other factors, seven driving factors were screened by the OLS model to construct a different
vegetation type biomass GWR model, which identified the driving factors of biomass in
public forests with different vegetation types. The results showed that in 2021, the biomass
of public welfare forests in Hunan Province presented a strip distribution pattern that
gradually increased from the central to the southwest and northeast. The total biomass
of public welfare forests in Hunan Province was 338.13 million tons, with an average
biomass of 68.31 t·hm−2. In the different types of public welfare forests, the mean biomass
of each type was found: shrub (4.65 t·hm−2) < broadleaf forest (59.27 t·hm−2) < conifer–
broadleaf mixed forest (62.44 t·hm−2) < bamboo forest (71.33 t·hm−2) < coniferous forest
(100.33 t·hm−2). Topographic and socio-economic factors have significant impacts on the
spatial pattern of biomass in ecological public forests. Slope had the greatest effect on
coniferous forest, conifer–broadleaf mixed forest, and shrub, while POP had the greatest
effect on broadleaf forest and bamboo forest.

This study investigates the spatial patterns and driving factors of biomass in public
forests at the provincial level, filling the gap in forest biomass monitoring in public forests
in Hunan Province. In view of the differences in mean biomass size, spatial pattern, and
the main driving factors of different vegetation types of public welfare forests, we will
subsequently research corresponding management measures and strategies for different
types of public forests in Hunan Province to enhance the management quality and ecological
service functions of public forests.
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