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Abstract: Intensive silviculture demands new inventory tools for better forest management and
planning. Airborne laser scanning (ALS) was shown to be one of the best alternatives for high-
precision inventories applied to productive plantations. The aim of this study was to generate
multiple stand-scale maps of the site index (SI) using ALS data in the intensive silviculture of
Eucalyptus dunnii Maide plantations in Uruguay. Forty-three plots (314.16 m3) were established in
intensive E. dunnii plantations in the departments of Río Negro and Paysandú (Uruguay). ALS data
were obtained for an area of 1995 ha. Linear and Random Forest models were fitted to estimate the
height and site index, and OrpheoToolBox (OTB) software was used for stand segmentation. Linear
models for dominant height (DH) estimation had a better fit (R2 = 0.84, RMSE = 0.94 m, MAPE = 0.04,
Bias = 0.002) than the Random Forest (R2 = 0.85, RMSE = 1.27 m, MAPE = 7.20, Bias=−0.173) model
when including only the 99th percentile metric. The coefficient between RMSE values of the cross-
validation and RMSE of the model had a higher value for the linear model (0.93) than the Random
Forest (0.75). The SI was estimated by applying the RF model, which included the ALS metrics
corresponding to the 99th height percentile and the 80th height bicentile (R2 = 0.65; RMSE = 1.62 m).
OTB segmentation made it possible to define a minimum segment size of 2.03 ha (spatial radius = 30,
range radius = 1 and minimum region size = 64). This study provides a new tool for better forest
management and promotes the need for further progress in the application of ALS data in the
intensive silviculture of Eucalyptus spp. plantations in Uruguay.

Keywords: LiDAR; Eucaliptus spp.; site Index; random forest; OrpheoToolBox; stand segmentation;
precision silvicultural

1. Introduction

Uruguay has a surface area of 176,251 km2, of which 66% is currently grasslands
(natural, fertilized, improved, or implanted) and 4.77% is occupied by native forests and
5.91% by planted forests [1]. Commercial forest plantations in Uruguay are formed mainly
by species from the Eucalyptus spp. and Pinus spp. genii [2,3]. The predominant eucalyptus
species are Eucalyptus grandis Hill ex Maide and Eucalyptus dunnii Maide, while the pre-
dominant species of pines are Pinus taeda L. and Pinus elliottii Engelm [1]. Eucalyptus grandis
is used for cellulose pulp and for sawmilling, while E. globulus and E. dunnii are used
only for pulp. In contrast, the Pinus is intended for sawmilling purposes only. Rotation of
Eucalyptus spp. in Uruguay is between 8 and 10 years for pulp purposes and 20 years for
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sawmilling. In the case of Pinus spp., the rotation corresponds to approximately 25 years
for sawmills [1]. The potential productivity of an area is determined by forest site quality,
which refers to the volume of wood growth by a forest during the final harvesting. This
potential productivity is quantified using the mean dominant height (DH) (e.g., average
height of a fixed number of trees per stand with the largest diameters at breast height), with
the site index (SI) being an indication of the productive capacity of the site [4]. There are
site index estimation equations for different forest species such as Eucalyptus ssp., Picea ssp.
and Pinus ssp. at international level [5,6]. In Uruguay, site index estimation equations are
available for certain forest species, such as E. dunnii, E. grandis, E. globulus and Pinus spp. [7].
These equations consider the current tree age, reference age and current DH [7].

SI estimation has traditionally been conducted using field inventories based on forest
variables such as volume, total biomass, basal area, and density, which have different levels
of uncertainty and precision [8]. However, field inventories have important limitations
when it is necessary to study large areas [9,10]. Remote sensing technologies, which include
the use of spatial sensors, aerial orthophotographs and other intensive data collection meth-
ods have been generalized to complement fieldwork [11], making it possible to estimate
tree and forest variables with lower economic costs, less time invested and less estimation
error [12]. Airborne laser scanning (ALS) technology can represent the three-dimensional
structure of forests, thus improving the estimation of variables such as biomass, volume
or basal area when compared to other two-dimensional measurement sensors such as
photographic systems or radiometers [13–16]. In a study conducted in Uruguay, ALS
metrics have been used to improve inventories of forest stands of Eucalyptus spp. [17].

Stand delineation is complementary to site index and is crucial for efficient forest
planning. Forest stands are uniform in composition, size or age, and are managed as
a single unit [18]. Stand delineation has traditionally been conducted manually using
field information and high-resolution photographic images [14,19]. This method is not
efficient because it is time-consuming in regard to analysis and is limited by the degree
of subjectivity of different operators [15]. Automatic segmentation based on tree and
forest variables derived from ALS metrics is currently available and is useful for precision
forestry. Automatic segmentation can generate more homogeneous stands than those
defined manually using traditional methods, at lower cost [17,20,21].

However, there is less experience in the use of ALS data to conduct site quality analysis
at the stand scale [22]. The use of height projection equations allows the estimation of site
index for the reference age, and ALS can be used in these equations. In previous studies,
site index was estimated using dynamic SI equations generated with the dominant mean
height model based on the use of ALS metrics as independent variables [9,23,24]. The
hypothesis of this work was that the segmentation of Eucalyptus dunnii stands according
to DH would make it possible to infer the site index and mapping site quality for use
in forest management. The aim was to generate a stand-scale mapping of the SI for
commercial plantations of Eucalyptus dunnii Maide using ALS data in fitted parametric
and non-parametric models to improve and optimize forest management in Uruguay. The
specific objectives were: (i) to estimate the DH of E. dunnii plantations using ALS data; (ii) to
assess the site index based on ALS DH and stand age; and (iii) to delineate uniform stands
on the basis of SI. The methodology developed in this work provides accurate estimates
and mappings of DH and SI at the stand scale based on ALS data using an automatic
segmentation method. This is an especially useful silvicultural tool with which forest
management in terms of harvesting and future plantations can be improved.

2. Materials and Methods
2.1. Study Sites

This work was conducted in commercial Eucalyptus dunnii plantations belonging to the
Forestal Oriental S.A. company and located in the departments of Río Negro and Paysandú
(Uruguay, 32◦33′04.51′′ S–57◦14′39.61′′ W, Figure 1). The climate in the area is, according to
Koppen-Geiger’s classification, Cfa, which is characterized by hot summers and rainfall
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distributed throughout the year, with a mean annual temperature of 19.2 ◦C and an annual
accumulated precipitation of 1262.5 mm [25]. The dominant soil is phaeozem with a mollic
horizon within a secondary calcium carbonate layer, and an accumulation of organic matter
that is saturated at its bases in its first meter of depth [26]. According to the classification
provided by the Uruguayan National Commission for Agro economic Studies of the Land
(CONEAT), the predominant soils in the area are characterized by sandy loam to sandy clay
loam texture, average to low fertility, moderate depth and the fact that they are generally
well drained. This soil group has an average productivity when compared to the forest
priority soil groups [3].
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Figure 1. Study area of commercial Eucalyptus dunnii plantations in Uruguay.

2.2. Field Data

In May and June of 2017, 43 plots with a radius of 10 m (314.16 m2) were established
in the field. A systematic sampling design was conducted in accordance with traditional
inventory procedures for monospecific plantations of Eucalyptus sp. Each field plot con-
tained data corresponding to diameter at breast height (dbh at 1.3 m, cm), density (number
of trees per hectare), basal area (G, m2 ha−1), DH (m, e.g., based on the measurement of ten
of the highest trees) and volume per hectare (m3 ha−1) (Table 1). The age of trees at each
plot was determined through the exact date of planting.

Table 1. Silvicultural variables of Eucalyptus dunnii plantations in Uruguay. Number of plots (n), age
(years), dominant height (DH, m), plot-wise mean diameter at breast height (dbh, cm), basal area
(G, m2 ha−1), volume (V, m3 ha−1) and density (N, trees ha−1).

Variable Stdev Min Max Mean

Eucalyptus dunnii (n = 43)

Age 1.71 5.00 10.00 7.44
DH 2.43 16.20 25.30 20.33
dbh 2.39 12.65 22.99 17.29
G 5.44 14.11 36.84 149.19
V 37.87 80.49 235.94 149.19
N 231 445 1401 992
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2.3. ALS Data Acquisition and Processing

ALS data were obtained in April 2017 for an area of 1995 ha (Figure 1) using a Riegl
VUX-1 laser scanner (RIEGL’s Laser measurement systems, Horn, Germany) installed on an
autogyro helicopter at a flight altitude of 110 m above ground level, a pulse repetition rate of
550 kHz, a wide angular pitch of 0.0687◦, a FOV of 55◦, and a point density of 12 points m−2.
Plots were georeferenced at the WGS84 UTM 21 (EPSG: 32721) coordinate system. The
ALS point cloud was processed with the LAStools [27] software using the Windows cmd
console to generate the normalized point cloud, digital surface model (DSM) and digital
vegetation model (DVM). The pulse distribution was evaluated by employing the lasgrid
function, which allowed the generation of raster files in which the digital value of each pixel
(1 m) corresponds to the density of pulses per m2. The metadata information of the total
normalized point cloud was then obtained by implementing the “lasinfo” function, as a result
of which the average number of points per m2 was highlighted. Rasters of ALS metrics were
obtained using the lascanopy function, with a pixel size of 17.7 m, corresponding to the square
root of the surface area of the field plot (314.16 m2). The input files used were the normalized
point cloud in LAZ format and a vector file in shapefile format that corresponded to the area
occupied by the field plots. The parameters “cover_cutoff 2.0” and “height_cutoff 0” were
used to consider the points over two meters in height so as to avoid points from non-relevant
vegetation, such as scrub, and to obtain percentiles and bicentiles (e.g., 10, 20, 30, 40, 50, 60,
70, 80 and 90) of the entire range of heights.

2.4. ALS Estimation Models

First, a correlation matrix between DH and ALS metrics was calculated, and normality
of the uncorrelated variables was evaluated by means of the Shapiro–Wilk test [28]. Linear
estimation models with ALS metrics taken as the independent variable and DH and SI
as the dependent variables were then fitted. Linear models were generated using the lm
function available in R. The summary function in R was used to obtain the intercept, slope,
and coefficient of determination (R2). The RMSE function of the MLmetrics library was
utilized to calculate the RMSE of the models. The linear model equation was applied to the
selected ALS metrics to obtain a canopy height raster.

The k-NN algorithm with Random Forest distance calculation (from here on, k-NN-
Random Forest) was then applied. In this approach, a Random Forest model is trained
with a given dataset, and a proximity matrix is computed based on the frequency that two
observations are assigned to the same terminal node (leaf) across all trees in the forest. The
proximity matrix provides a representation of the distance or similarity between all pairs of
observations in the dataset. The Variance Inflation Factor (VIF) was implemented, and the
correlated variables were eliminated using the varSelection function of yaImpute [29] in the
R package with a critical threshold of VIF > 10 [28]. The database was divided into two
groups corresponding to training and validation, which contained 70% and 30% of the total
data, respectively. The model fit was calculated using the training data, and the k value for
the Random Forest imputation method was calculated. The q value was also calculated
to detect a possible overfitting of the model [30]. The k value was chosen considering the
lowest root mean square error (RMSE). Models were calculated with the lm and yaImput
functions and randomForest, caret and yaimute packages of R software [31–33].

2.5. Model Assessment and Validation

Prior to fitting the model k-NN, the most favourable value of k was tested. This was
varied in the range between 1 and 11 by using the caret library in R. The most favourable
k was subsequently employed to carry out the imputation of the k-NN model with the
distance calculated by Random Forest.

The R2 was used to determine the goodness of fit of the models k-NN and the linear
models. The predictive performance of the models generated was evaluated by studying
the root mean square error (RMSE), the mean absolute percentage error (MAPE) and the
model bias (Bias). Simple linear regression related observed and predicted values were
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evaluated using the R2 to assess the models selected [34]. After the best model was selected,
it was validated using one cross-validation technique [17,35,36]. The R2, RMSE and Bias
values were calculated for each fit model and were averaged to obtain the R2, RMSE and
Bias from the cross-validation, which were compared with the values obtained for the
model selected [34]. The model with the best fit corresponds to that with close values of
RMSE of the cross-validation and the RMSE of the evaluated model [34].

When validating the non-parametric k-NN Random Forest model, the internal (train-
ing) and external (evaluation) accuracy was studied [37] using the calibration and vali-
dations databases independently, and the estimation errors were calculated. In this case,
the quality of the validation estimates is higher when the ratio between the RMSE of the
training data and the RMSE of the evaluation data is closer to 1. The best linear and k-NN
Random Forest models were compared by employing R2 and RMSE [37].

2.6. Canopy Height and Site Index Rasters

To generate the canopy height raster, the best model was applied using the ALS metrics
at a pixel size of 17.7 cm, corresponding to the plot surface (314.16 m2). The pixel size of
the ALS raster was determined by applying the square root of the area of the field plot
to improve accordance between both data. This raster had a value of the average canopy
height (m) for each pixel.

A new attribute corresponding to the site index value was generated in the database
using the equation proposed for E. dunnii [7]. This equation considered the DH of the
plot (DH1), the age of the tree (t1 based on verified date of plantation) and the age of the
reference rotation (t2). In the case of E. dunnii, a t2 equal to 8 years was considered [7].
Linear and non-parametric models were then generated to estimate site index as a function
of the ALS metrics. The best of these models was applied to the ALS metrics raster to obtain
the site index raster (Equation (1)):

DH2 = DH1 ×

[
1− e[−0.15×t2]

]1.0915

[
1− e[−0.15×t1]

]1.0915 , (1)

where DH1 is dominant height (m) at time t1 (years) and DH2 is dominant height (m)
projected (SI) at time t2, which is the reference age of the species (years).

2.7. Segmentation Method

The algorithm used to conduct the stand segmentation was based on the non-parametric
estimator Mean Shift (MS) implemented in the OrpheoToolBox (OTB) software available
in QGIS tools [38]. This algorithm groups adjacent pixels of a raster that have similar
spectral characteristics into segments. This automatic segmentation method was applied
to the SI raster to generate homogeneous segments in terms of site index values. In this
work, the function otbcli_LargeScaleMeanShift of the OTB tool was used. The parameters
corresponded to spatial radius (SR), range radius (RR) and minimum region size (MRS).
The value of SR was used to define the neighborhood, while the value of RR refers to the
digital value threshold that the algorithm considers to be delimiting segments, and the
value of MRS defines the smallest size of the segment [39,40]. These parameters define the
homogeneity within each segment and the heterogeneity between different segments. In
this work, different combinations of parameters were evaluated, which led to the generation
of different segmentations. The set of parameters that resulted in the lowest intra-segment
variation and the highest inter-segment variation was chosen. This variation was obtained
by means of the statistical zonal tool from the QGIS software, taking as input the shapefile
resulting from the segmentation.

The segmentation method applied to the SI raster was assessed using an unsupervised
evaluation (NSE) technique. NSE generates results of a higher efficiency and a lower
subjectivity than the supervised techniques [41–43]. The best segmentation was selected by
calculating the internal homogeneity and heterogeneity between segments. The internal
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homogeneity of segments was calculated by selecting the lower variance and lower differ-
ence between variances. Heterogeneity between segments was determined using the mean
variance of site index values of each segment (i.e., segment with the highest variance value
was selected as being the best segmentation).

3. Results
3.1. Linear Model with Which to Estimate Height

Linear models to estimate the DH for Eucalyptus dunnii selected 99th, 95th and 90th
height percentiles. The models had similar R2 and a slight variation in the RMSE. The
linear model with the 99th height percentile (Model 1, Table 2) was, therefore, selected
since there was a higher ratio between the RMSE of the model and the RMSE of the
cross-validation (RMSE/RMSEcv = 0.93). Figure 2 shows the relationship between the
observed and predicted DH values for the model selected (Model 1; R2 = 0.82), considering
a significance of p-value < 0.01.

Table 2. Linear and Random Forest models to estimate dominant height for Eucalyptus dunnii. DH
(m): dominant height; R2: coefficient of determination; RMSE: root mean square error (m); MAPE:
mean absolute percentage error; Bias: model bias; RMSEcv, MAPEcv and BIAScv systematic errors
obtained in cross validation.

Models R2 RMSE MAPE Bias RMSE
cv

MAPE
cv

BIAS
cv

RMSE/
RMSEcv

Linear models

DH (m)
5.96 + 0.659 *p99 Model 1 0.84 0.94 0.04 0.002 1.00 0.83 <0.001 0.94
5.442 + 0.721 *p95 Model 2 0.85 0.90 0.04 −0.02 1.16 0.97 0.01 0.77
4.444 + 0.794 *p90 Model 3 0.85 0.99 0.41 0.001 2.04 1.22 0.01 0.49

Random Forest
DH (m) Model 4 0.85 1.27 7.20 −0.173 2.12 0.60
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3.2. k-NN Random Forest Model with Which to Estimate Height

Candidate metrics as predictor variables of DH were defined using the Pearson corre-
lation. The metrics selected were used together and individually within the model, with
the 99th percentile model having the highest R2 value (R2 = 0.85, RMSE = 1.27 m, Table 2),
using a value of k equal to five. In addition, the 99th percentile was presented a Pearson
correlation of 0.92 with DH. The value of q in this model corresponded to a value of 1.26,
which had some overfitting. The cross-validation had an RMSEcv value of 1.67, and a ratio
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between the RMSE of the model and the RMSE of the cross-validation equal to 0.76. The
value of the ratio between internal precision and external precision was 0.60 (Table 2).

Figure 3 shows the relationship between the observed and the predicted DH for
Model 4 (R2 = 0.57, p-value < 0.01).
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3.3. Site Index and Height Raster

Two rasters of stand height were obtained, one using Model 1 and the other using
Model 4, and they were applied for the estimation of SI. When using Model 1 (linear model),
the estimation of site index did not fit satisfactorily. Model 4 (k-NN Random Forest) had a
R2 = 0.65, an RMSE of 1.62 m and a Bias of −0.3 when using the 99th height percentile and
the 80th height bicentile as independent variables. This model used a value of k of 3, and
the value of q of 1.33, which had some overfitting. Figure 4 shows the relationship between
the observed and the predicted SI values for the k-NN Random Forest model. The raster
stack of the 99th percentile raster and the 80th bicentile raster was then used to produce
a single two-band raster, maintaining the digital levels of the metrics in each band. The
k-NN Random Forest model was then applied to this raster stack to obtain the SI raster.

Forests 2023, 14, x FOR PEER REVIEW  8  of  14 
 

 

3.3. Site Index and Height Raster 

Two rasters of stand height were obtained, one using Model 1 and the other using 

Model 4, and  they were applied  for  the estimation of SI. When using Model 1  (linear 

model), the estimation of site index did not fit satisfactorily. Model 4 (k-NN Random For-

est) had a R2 = 0.65, an RMSE of 1.62 m and a Bias of −0.3 when using  the 99th height 

percentile and the 80th height bicentile as independent variables. This model used a value 

of k of 3, and the value of q of 1.33, which had some overfitting. Figure 4 shows the rela-

tionship between the observed and the predicted SI values for the k-NN Random Forest 

model. The raster stack of the 99th percentile raster and the 80th bicentile raster was then 

used to produce a single two-band raster, maintaining the digital levels of the metrics in 

each band. The k-NN Random Forest model was then applied to this raster stack to obtain 

the SI raster. 

   

Figure 4. Relationship between observed and predicted values for site index (SI m) of Eucalyptus 

dunnii plantations by Random Forest. 

3.4. Segmentation OTB 

OTB segmentation for forest stand delineation based on site index varied according 

to the combination of SR, RR and MRS. Various combinations of these parameters were 

evaluated, and the ten best segmentations were selected (Table 3). The “Hete. ranking” 

obtained the greatest variance between the site index means of each segment, while the 

“Homo. ranking” obtained the greatest variance in the site index internal variance values 

of each segment. The segmentation selected corresponded to that with the lowest intra-

segment variation and  the highest  inter-segment variation. The parameters of  this seg-

mentation corresponded to a value of 30 for SR, 1 for RR and 64 for MRS (Table 3). The 

value of 1 for RR defined the interval in the spectral space when performing the segment 

delineation, showing important differences in SI among segments. Since a pixel equals 314 

m2, the MRS value of 64 was equivalent to a segment area of 2.03 ha. The segmentation 

presented 585 stands for the total surface (1995 ha) with an average area of 11.6 ha (Table 

3). 

   

Figure 4. Relationship between observed and predicted values for site index (SI m) of Eucalyptus
dunnii plantations by Random Forest.



Forests 2023, 14, 933 8 of 13

3.4. Segmentation OTB

OTB segmentation for forest stand delineation based on site index varied according to
the combination of SR, RR and MRS. Various combinations of these parameters were evalu-
ated, and the ten best segmentations were selected (Table 3). The “Hete. ranking” obtained
the greatest variance between the site index means of each segment, while the “Homo.
ranking” obtained the greatest variance in the site index internal variance values of each
segment. The segmentation selected corresponded to that with the lowest intra-segment
variation and the highest inter-segment variation. The parameters of this segmentation
corresponded to a value of 30 for SR, 1 for RR and 64 for MRS (Table 3). The value of 1 for
RR defined the interval in the spectral space when performing the segment delineation,
showing important differences in SI among segments. Since a pixel equals 314 m2, the
MRS value of 64 was equivalent to a segment area of 2.03 ha. The segmentation presented
585 stands for the total surface (1995 ha) with an average area of 11.6 ha (Table 3).

Figure 5 represents the stand delimitation map based on the OTB segmentation as a
function of the SI.
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Table 3. Combination of spatial radius, range radius and minimum region size parameters and
evaluation of segmentations: Seg.: segmentation name; SR: spatial radius; RR: range radius; MRS:
minimum region size; Nº seg.: number of segments.; Area (ha): mean area of segments in hectares.

Seg. Parameters Nº Seg. Area (ha)SR RR MRS

a 20 8 16 529 10.81
b 20 3 16 582 11.77
c 16 3 16 635 10.96
d 30 1 64 585 11.6
e 20 1 16 1558 4.39
f 35 1 64 584 11.63
g 4 3 16 413 16.63
h 20 1 64 630 10.79
i 20 1 95 499 13.55
j 35 1 95 458 14.74

4. Discussion

Technology involving ALS sensors is widely applied in forest inventories to determine
forest variables [13,44]. In this work, high spatial resolution SI and DH rasters were
generated using models based on ALS metrics. The estimation of DH is closely related to
the SI, and both are used as indicators of forest site quality [43]. Linear models and the
k-NN algorithm with Random Forest imputation were compared. Linear models were used
because of their simplicity and the fact that less processing is required when generating
maps of variables, and the non-parametric model was applied owing to its quality of being
independent of data distribution. The Mean Shift segmentation algorithm available in the
OTB software was used for stand delineation based on the SI, thus making it possible to
delimit areas of different forest productivity for E. dunnii plantations.

4.1. Height Estimation Models and Generation

Methods most employed to estimate height in forest inventories using ALS metrics
correspond to simple regression methods and non-parametric methods [45,46]. Our results
showed that both methods were suitable for estimating DH based on ALS metrics. Linear
models selected as being the best ALS predictors of DH were the 99th, 95th and 90th
percentiles. This is because these percentiles correspond to the first returns of an ALS point
cloud generated by the impact of one laser pulse on the highest part of the tree canopy. This
is reflected in a high Pearson correlation between DH and these percentiles. Several studies
have confirmed a high correlation between dominant tree height and metrics corresponding
to the highest percentiles [14,17,41,47]. Our models (Model 1, 2, 3 and 4) had a high accuracy
with low RMSE and high R2 values, and a high ratio between the RMSE of the model and
the RMSE of the cross-validation (Table 2), as observed in previous work [14,17,41,47].
Random Forest imputation has also been highlighted as being one of the best k-NN models
to estimate DH, total volume, and biomass. [17,37]. Furthermore, k-NN Random Forest
model used the 99th percentile as the only independent variable. When comparing linear
and Random Forest imputation models, a similar value of R2 and RMSE was observed, but
the k-NN Random Forest model had a slightly higher RMSE value when compared to the
linear models. It should also be noted that the lineal model including the 99th percentile
had a higher ratio between the RMSE of the model and the RMSE of the cross-validation
(0.94). Moreover, the relationship between the observed and the predicted values had a
higher determination coefficient for this model (R2 = 0.82) than for the k-NN Random Forest
model (R2 = 0.57). These results coincide with precedents regarding the comparison of
linear and non-parametric models [17,48]. However, this work highlights the inclusion of
only one ALS metric (99th percentile) in the k-NN Random Forest model when compared
to previous studies in Uruguay which included the 75th percentile and Elev.max metrics
(maximum statistic of all heights above the cut-off height of the point cloud) [17].
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Height maps generated with lineal and k-NN Random Forest models showed a high
concordance with ground values represented by the 99th percentile raster. In the case of
the height raster generated with k-NN Random Forest, the presence of areas of pixels of a
similar height (homogeneous patches) was detected in the interior of the forest. Moreover,
in this raster, a large variation of heights (heterogeneous patches) was observed at the edge
of the forest, which can be explained by the edge effect on growth. Trees at the forest edge
tend to be more exposed to climatic conditions, such as wind damage. In addition, trees
at the edge tend to use their energy for a greater production of lateral branches (greater
crown volume), resulting in a lower height.

4.2. Site Index Estimation

Site quality determines the potential for the productivity of a forest, which refers to
the timber volume yield for a stand at final rotation and is quantified by the SI [7]. ALS
technology provides a highly accurate map of the canopy heights of forest areas, and a
good SI estimation by means of models using the highest percentiles of the ALS point
cloud is expected. This is because of the high correlation between DH that is included
in the SI equation [7]. In this study, linear models for SI prediction had very low values
of R2 (R2p99 = 0.09; R2p95 = 0.08; R2p90 = 0.07). Soil properties, climate variables, and
management practices can all influence site index. In addition, there is a high correlation
between the DH and SI. In addition, DH was highly related with the highest percentiles
of the ALS point cloud, while SI is a projection of DH at harvest age. These results are
concordant with those obtained in Brazil to estimate SI using non-linear mixed estimation
models for Eucalyptus grandis [6]. In the study in question, Chapman–Richards equation
was applied, which is very similar to the SI equation used in this work [7]. The k-NN
Random Forest model had a R2 = 0.65 and a RMSE = 1.62 m, similar to those obtained in
Norway (R2 = 0.69). Our model included the 99th percentile and the 80th bicentile, and
the Norway model included the 90th, 60th bicentiles and the difference in the 90th height
percentile (∆H90) [5]. In future studies, SI estimation may be improved by incorporating
other variables such as soil properties, climate variables, and management practices [6].

4.3. Stand Segmentation

OTB segmentation has been proposed as a simple, more efficient, and more accurate
method for stand delineation when compared to other more complex methods [17]. This
automatic segmentation method is better than manual segmentation, principally owing to
the faster generation of segments (stands). In this work, OTB segmentation method was
applied based on a SI raster generated with a k-NN Random Forest model. The segmenta-
tion obtained had high homogeneity within each segment, in concordance with previous
studies [6,17,39]. However, it is important to note that the shape and size of the resulting
stands was not perfect, since there were forest areas which were not segmented, and areas
with small polygons. These limitations have also been observed in previous studies and
were manually modified [19]. Such imperfections are related to the combination of the
parameters used and the raster of SI entered as input since the unsupervised Mean Shift
(MS) classifier delineates the segments based on the digital levels of the raster. Different
combinations of SR, RR and MRS were, therefore, assessed to overcome these restrictions.
The optimal values obtained (SR = 30, RR = 1, MRS = 64, SR = 30) defined a minimum
segment size of 2.03 ha, thus solving the generation of very small segments that were not
representative of silvicultural conditions. The segmentation had 585 stands for the total
surface (1995 ha) with an average area of 11.6 ha.

4.4. Forest Management Applications

The possibility of generating models to estimate SI based on ALS metrics is an impor-
tant tool for intensive silviculture. When planning forest harvesting, it is essential to have
the total volume at stand scale, with the DH being a fundamental variable for its calculation.
ALS makes it possible to obtain this information from the whole study area using a low
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number of calibration plots and generating more accurate results than using a traditional
inventory. The availability of models to estimate height and SI using ALS metrics as an
independent variable allows their application in large areas. OTB segmentation method
improves stand delineation based on SI and is a very useful silvicultural tool to define
forest productivity of different sites. Efficient forest management requires stands to be
as homogeneous as possible within the forest in terms of SI. ALS segmentation obtained
in this study had high intra-segment homogeneity and inter-segment heterogeneity. The
average area of stands of 11.6 ha is consistent for the planning of both forests and harvests
in intensive Eucalyptus dunnii plantations in Uruguay. The MRS parameter value defined
a minimum stand of 2.03 ha, thus allowing relatively small stands to determine forest
productivity in greater detail. Knowing forest productivity of a forest area will improve not
only efficient harvesting, but also the planning of future plantations. Therefore, SI stand
maps derived from ALS and OTB segmentation for Eucalyptus dunnii intensive plantations
are an accurate option to improve forest planning.

5. Conclusions

This study shows that it is possible to generate models to estimate DH and SI using
ALS metrics as independent variables for Eucalyptus dunnii intensive plantations. The
best models for DH and SI estimation included the ALS metrics corresponding to the
highest percentiles of the point cloud. It is worth noting that linear and k-NN Random
Forest models had similar R2 values to estimate DH. However, k-NN Random Forest had
a slightly higher RMSE value. In terms of SI, it was not possible to fit linear models, but
k-NN Random Forest model was fit. This is because there may be other variables that
are significant in predicting site productivity (SI) that were not incorporated in the linear
model. Soil properties, climatic variables and management practices are factors that can
influence SI. These models allowed to obtain high spatial resolution maps of DH and SI
for the entire study area. Automatic stand delineation obtained using SI improved the
interpretation of potential productivity for each stand. This methodology provides an
easy approach to update SI maps based on a raster derived from ALS metrics. Maps of
SI are very useful for forest planning, as they can be used to define forest productivity at
different scales, thus improving the decision-making process for forestry activities. This
study, in addition to providing new tools for better forest management, promotes the need
for further progress in the application of ALS data in intensive silviculture of Eucalyptus spp.
plantations in Uruguay.
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