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Abstract: The support vector machine (SVM) model was applied to predict the color change of
heat-modified wood after artificial weathering. In order to improve the prediction performance, the
improved particle swarm optimization (IPSO) algorithm was used to optimize the parameters of the
SVM model, and an improved particle swarm optimized support vector machine (IPSO-SVM) model
was established on the basis of the nonlinear descending weight strategy to improve the particle
swarm optimization. To verify the performance of the established model, the MAE, RMSE, and R2 of
the test set and training set were compared with the PSO-SVM model and the SVM model. Analysis
of the results showed that compared to the PSO-SVM model and the SVM model, the IPSO-SVM
model reduced the RMSE of the training set data by 49% and 72%, the MAE by 52% and 78%, the STD
by 14% and 68%, the test set data by 6% and 24%, the MAE by 2% and 25%, and the STD by 22% and
29%, respectively. The results show that modeling studies using the IPSO-SVM model provide results
showing that color changes in heat-modified wood after artificial weathering can be successfully
predicted without expensive and time-consuming experimental studies.

Keywords: prediction model; particle swarm optimization; support vector machine; heat treatment
of wood

1. Introduction

Wood has a wide variety of uses. Since ancient times, wood has been widely used in
various industries such as architectural decoration, wood furniture manufacturing, and
cultural and educational office supplies, and the demand for wood is growing [1]. However,
it is well known that in the natural environment, due to such environmental factors as
sunlight, oxygen, water, and temperature [2], the surface of the wood will change color,
especially under the weathering, and the color change will be apparent to the eye [3].
Due to the photodegradation of lignin and wood extracts, the color of wood changes [4].
Moreover, after heat treatment of wood, its color will change greatly, and the demand for
wood after heat treatment is increasing in various fields. The color of the wood after heat
treatment is generally brown, which is similar to the color of some precious wood, and
the color of the heat-treated material is uniform inside and outside, making it aesthetically
pleasing [5]. In addition, compared to wood without heat treatment, heat-treated wood
exposed to ultraviolet light has better color stability, which may be related to the phenol
content in the wood [6]. Tomak et al. [7] believed that heat treatment could improve the
color stability and surface quality of weathering samples. Studies have shown that heat-
treated wood of different colors can be obtained by adjusting the temperature and time
of heat treatment [8,9], and the gloss value of the wood after heat treatment is low. Due
to the heat treatment, the uniformity of the color and gloss of the exposed surface of the
wood improves [10], so as to realize the diversification of product varieties. Most studies
have shown that the color change in heat-treated wood is highly dependent on the wood
species [11]. Sikora et al. [12] studied the effect of thermal modification temperature on
the color change of spruce and oak and found that the surface brightness of the wood (L*)
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decreased with the increase in the treatment temperature and maximum color difference
(∆E*), and the total color difference reached its maximum value at 210 ◦C. The change
in wood color is due mainly to the change in chemical composition. The decrease in
hemicellulose content will lead to a decrease in the brightness of the wood and a change in
the total color difference [13]. The reduction in the wood’s brightness is also influenced by
the lignin content [14].

In general, to obtain data on wood color change under different heat treatment pro-
cesses it is necessary to conduct a large number of difficult and time-consuming com-
prehensive experiments. To obtain data more quickly and efficiently, it is necessary to
explore appropriate modeling methods for the study of color change in wood after heat
treatment. The principle of SVM is to minimize structural risks, so SVM is particularly
effective in small-sample and nonlinear problems. Liping Sun et al. [15] proposed the
least squares support vector machine (LSSVM) method to establish an online model of a
wood drying system. Based on data for the deceleration drying stage obtained through
a drying experiment as samples, the online prediction model of the wood drying system
was established and forecasted according to the requirement of actual predictive control.
Jicheng Li et al. [16] proposed a modeling method using an improved ant colony algo-
rithm (MACA) to optimize the least squares support vector machine (LSSVM). Accurately
and reliably assessing changes in wood moisture content is the key to improving wood
drying quality.

In this paper, a support vector machine model is established to predict change in
wood color under different artificial weathering times. The prediction model can effectively
reduce the experimental cost. In this study, the prediction model is used to learn and
predict the data to verify the accuracy of the model. The measurement is not carried out
through real experiments, which is a limitation of this study. Therefore, the proposed
model is compared with the original model and other models to verify its advantages
and practicability.

2. Experimental Part
2.1. Change in Wood Color

Table 1 shows the experimental data published by Nguyen et al. [17], which can be
queried on the European Journal of Wood and Wood Products website, specifically at [17]
https://doi.org/10.1007/s00107-019-01449-0 (accessed 29 October 2022).

Table 1. Experimental measurements of color changes in heat-treated wood during artificial weathering.

Heat-Treated Wood Artificial Weathering Time (h)

Average of the Sample.

Heat Treated Larch Heat Treated Polar

∆L ∆a ∆b ∆E ∆L ∆a ∆b ∆E

180 ◦C 240 −1.01 0.55 −0.03 1.15 8.15 −2.97 −0.94 8.72
480 −0.86 0.25 −0.28 0.94 6.52 −2.13 −0.53 6.88
720 −0.56 −0.19 −0.54 0.79 8.02 −2.23 −0.27 8.33
960 −3.22 0.70 −0.41 3.32 6.19 −0.92 2.33 6.68

1200 −3.88 1.08 −0.4 4.05 5.92 −0.52 2.05 6.29
1440 −3.19 1.20 −0.53 3.44 4.15 0.19 2.89 5.06
1680 −3.58 1.22 −0.38 4.06 4.34 −0.07 2.88 5.20
1920 −5.09 1.88 0.41 5.44 5.48 −0.6 2.86 6.21
2160 −5.19 2.51 −0.25 5.77 5.57 −0.74 2.46 6.13
2400 −5.00 2.47 −0.45 5.59 5.90 −1.14 0.98 6.09
2700 −4.68 1.73 −0.57 5.02 5.47 −2.55 −0.48 6.05
3000 −3.76 1.45 −1.28 4.23 5.24 −2.75 −0.78 5.97

190 ◦C 240 −2.73 1.02 0.71 3.00 7.73 −2.21 0.15 8.04
480 −2.12 0.73 0.80 2.38 14.30 −1.69 2.10 6.58
720 −2.03 0.38 0.80 2.22 14.63 −1.37 3.05 7.89
960 −3.33 1.04 0.83 3.58 5.00 0.01 6.06 7.85

https://doi.org/10.1007/s00107-019-01449-0
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Table 1. Cont.

Heat-Treated Wood Artificial Weathering Time (h)

Average of the Sample.

Heat Treated Larch Heat Treated Polar

∆L ∆a ∆b ∆E ∆L ∆a ∆b ∆E

1200 −3.81 1.21 0.71 4.05 4.70 0.57 6.34 7.91
1440 −3.24 1.26 0.85 3.57 5.72 0.57 6.93 9.01
1680 −3.63 1.74 0.87 4.12 5.77 0.58 7.67 9.62
1920 −4.28 1.78 1.27 4.81 5.81 0.64 9.17 10.88
2160 −4.44 2.03 1.43 5.09 6.05 1.61 9.39 11.28
2400 −3.94 1.90 1.37 4.58 6.57 1.27 8.60 10.90
2700 −3.66 1.77 1.05 4.20 6.86 0.61 8.09 10.62
3000 −3.09 1.35 0.82 3.47 6.33 0.17 6.96 9.41

200 ◦C 240 0.54 1.12 0.17 1.26 13.40 −3.67 0.10 8.36
480 1.00 1.05 0.35 1.49 5.09 −0.07 4.10 8.53
720 1.95 0.38 0.31 2.01 7.52 −1.07 3.69 8.44
960 0.30 1.09 0.79 1.38 8.60 −0.92 5.06 10.02
1200 0.50 1.46 1.53 2.17 6.45 0.27 5.57 8.52
1440 0.14 1.29 1.02 1.65 7.50 0.31 5.81 9.49
1680 0.07 2.02 1.87 2.75 8.44 −0.02 6.24 10.50
1920 −0.04 2.17 2.96 3.67 9.79 −0.35 6.78 11.91
2160 0.11 2.22 3.63 4.26 9.90 −0.42 6.82 12.03
2400 0.27 2.20 3.31 3.98 10.12 −0.65 6.03 11.80
2700 0.29 1.75 2.62 3.17 10.35 −0.86 5.34 11.68
3000 0.85 1.28 1.52 2.16 9.91 −0.97 4.68 11.00

210 ◦C 240 0.72 2.04 6.07 6.44 7.74 −0.62 2.19 8.07
480 4.04 2.04 7.89 9.10 3.85 1.33 3.17 5.16
720 2.98 2.69 8.66 9.54 5.44 0.95 3.79 6.70
960 −1.09 3.16 7.04 7.80 3.48 2.19 6.00 7.28
1200 −0.05 3.23 6.74 7.48 2.92 2.83 6.52 7.68
1440 0.55 3.16 7.20 7.88 4.77 2.88 7.17 9.08
1680 0.27 3.47 7.20 8.00 4.08 2.92 7.65 9.15
1920 −0.59 3.73 7.62 8.51 3.96 3.39 8.64 10.09
2160 −0.57 3.77 7.90 8.77 3.18 3.48 9.09 12.23
2400 −0.35 3.66 7.77 8.60 3.69 3.01 8.41 9.66
2700 −0.25 3.56 7.65 8.44 4.00 2.86 8.22 9.58
3000 0.27 3.23 7.07 7.78 3.36 2.83 7.97 9.10

220 ◦C 240 −3.42 2.19 4.31 5.92 6.13 −0.39 3.33 6.99
480 −2.52 3.64 5.38 6.50 −0.22 2.04 3.87 4.38
720 −1.43 2.93 5.85 6.69 2.65 1.82 4.92 5.88
960 −3.45 2.73 5.00 6.66 −0.13 2.71 5.82 6.42
1200 −2.37 2.59 4.55 5.75 1.19 2.74 5.54 6.29
1440 −2.26 2.64 4.32 5.55 2.47 2.86 5.77 6.90
1680 −2.17 2.90 4.70 5.94 2.43 2.92 5.84 6.96
1920 −2.02 3.39 5.30 6.60 1.99 3.38 7.87 8.79
2160 −1.71 3.53 5.64 6.87 1.71 3.66 11.38 12.08
2400 −1.64 3.41 5.41 6.60 1.93 3.54 10.94 11.66
2700 −1.47 3.23 5.30 6.38 3.07 3.38 10.50 11.45
3000 −0.93 3.00 4.96 5.87 2.71 3.22 9.98 10.83

In this experiment, two different types of wood, cork and hardwood, were selected
for heat treatment processing; the specific species were heat-treated larches (Larix gmelini)
and heat-treated poplar (Populus alba), and they were provided by the College of Materials
Science and Engineering of Northeast Forestry University. The heat treatment time for both
wood types was four hours, and the heat treatment temperature was 180, 190, 200, 210, and
220 ◦C, respectively. One-hundred-five pieces of each of the two types of wood were ran-
domly divided into ten groups of 21 samples each. The sample size was 80 × 30 × 3 mm3

(l × t × r). The sample was placed at a room temperature of 20 ± 2 ◦C and a relative
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humidity of 65 ± 5% until the moisture content of the sample was about 12%. The samples
were subjected to an accelerated weathering test in a weathering tester to simulate the
damage to the wood that would normally take months or years. The weathering time
was 0, 240, 480, 720, 960, 1200, 1440, 1680, 1920, 2160, 2400, 2700, and 3000 h, respectively.
Color variations on the sample area were evaluated. The color change was measured using
the CIE 1976 L*a*b* color measurement system [18], and the total color change (∆E) was
calculated as follows:

∆L∗ = L2
∗ − L1

∗ (1)

∆a∗ = a2
∗ − a1

∗ (2)

∆b∗ = b2
∗ − b1

∗ (3)

∆E =

√
∆L∗2 + ∆a∗2 + ∆b∗2 (4)

where ∆L*, ∆a*, and ∆b* represent color coordinate changes; L1
∗, a1

∗, b1
∗ indicates the

brightness, red and green coordinates, and yellow and blue coordinates of the untreated
sample; and L2

∗, a2
∗, b2

∗ represents the brightness, red and green coordinates, and yellow
and blue coordinates of the treated sample.

As Figure 1a shows, the untreated larch ∆E increased before 1680 h and decreased
from 1680 h to 3000 h. According to Figure 1b, the ∆E of the untreated poplars showed
an upward trend before 1200 h, and then a downward trend, which was consistent with
the results of Xing et al. [19]. The ∆E of the two untreated woods was greater than that of
the heat-treated woods, suggesting that the heat-treated artificially weathered woods had
better color stability.
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2.2. Prediction Model
2.2.1. Support Vector Machine Model

The Support Vector Machine (SVM) was initially devised by Vapnik, a former Soviet
professor [20]. The SVM regression model has good adaptability in solving linear and
nonlinear prediction and can better solve the complicated problems of influencing factors
in the prediction of wood color change in the process of wood heat treatment. Support
vector machines have performed well for small-sample, nonlinear, and large dimensional
problems and are widely used to treat classification and regression problems. Finally,
support vector machines can be transformed into a dual optimization form [21]. This is
given in Formulas (5) and (6):
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Objective function:

min
1
2

1

∑
ij=1

(α∗i − αi)
(

α∗j − αj

)
K
(

xi, xj
)
+ ε

1

∑
i=1

(α∗i − αi)−
1

∑
i=1

yi(α
∗
i − αi) (5)

Conditions: 
1
∑

i=1
yi
(
αi − α∗i

)
= 0

αi, α∗i ≥ 0, i = 1, 2, . . . l
(6)

In Equations (5) and (6), αi and α∗i are Lagrange multipliers, and K
(

xi, xj
)

is the
kernel function. Commonly used kernel functions include the linear kernel function
(LinearKernel, LK), the polynomial kernel function (PolynomialKernel, PK), and the radial
basis kernel function (RBF), as shown in Table 2. For nonlinear problems, the kernel
function is introduced, the input space is transformed into a high-dimensional space
through nonlinear mapping, and the nonlinear problem becomes a linear problem. Because
RBF has strong nonlinear mapping ability, it can map the original features to infinite
dimensions, which has been widely used at present. RBF is adopted as the kernel function
in this paper. RBF can be expressed by Formula (7):

K
(
xi, xj

)
= exp

(
−δ ·

∣∣xi − xj
∣∣2) (7)

where δ is the kernel function parameter representing the space range that a specific training
sample can reach.

Table 2. Model parameters.

Algorithm Parameter

SVM c = 4.0; g = 0.8

PSO-SVM c1 = 1.5; c2 = 1.7; maxgen = 50; sizepop = 5; popcmax = 100; popcmin = 0.1
popgmax = 100; popgmin = 0.1

IPSO-SVM c1 = 1.5; c2 = 1.7; maxgen = 50; sizepop = 5; popcmax = 100; popcmin = 0.1
popgmax = 100; popgmin = 0.1; w_star = 2; w_end = 0.4

After the kernel function is determined, in order to optimize the predictive perfor-
mance of the SVM model, two optimal parameters, namely penalty factor c and kernel
parameter g, should be found. In order to determine the c and g of the SVM reasonably
quickly, this paper introduces an improved PSO to optimize the c and g of SVM and presents
an improved particle swarm optimization support vector machine (IPSO-SVM) algorithm.

2.2.2. Improved Particle Swarm Optimization

Based on simulated social behaviors such as bird feeding and human cognition, J.
Kennedy et al. [22] proposed a global optimization algorithm–particle swarm optimization
(PSO), which is an evolutionary computing technology based on swarm intelligence. The
particle swarm optimization algorithm has the advantages of simplicity, easy implementa-
tion, few parameters to be adjusted, and no gradient information. However, since all the
particles fly toward the optimal region, the diversity will be lost and the particles will tend
to be homogeneous, which causes the convergence speed to be obviously slow in the late
stage of convergence. At the same time, when the algorithm converges to a certain degree,
it cannot continue to optimize, and it is easy to fall into local optimal, so the convergence
accuracy is not high. Therefore, many scholars are committed to improving the convergence
accuracy of the PSO algorithm. In view of the above limitations, Shi Y et al. [23] in 1998 pro-
posed linear decreasing weight strategy (LDIW), an improved particle swarm optimization
algorithm with inertial weights. At the same time, aiming at the problems of premature
convergence and non-convergence in the particle swarm optimization algorithm, this paper
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proposes an improved particle swarm optimization algorithm with nonlinear decreasing
inertia weight. In the algorithm iteration process, the particle boundary velocity is limited
by the maximum velocity nonlinear decreasing change strategy. Nonlinear decreasing
variation in inertia weight is used to balance the global research capacity at the early stage
and the local optimization at the late stage. It can be expressed by Formula (8):

w = ws − (ws − we)

∣∣∣∣ f1

√
t

Tmax

∣∣∣∣ (8)

where ws is the initial inertia weight; we is the end value of the maximum number of
iterations allowed; Tmax is the maximum number of evolutions; t is the number of current
iterations; and f1 is the regulating factor, in order to control the rate of change of w. The
root sign in the formula is to generate the square to form the nonlinear effect, and the
absolute value is added to prevent the negative sign of the open square root. As the
iteration progresses, the inertia weight decreases nonlinearly. The inertia weight w takes
a larger value in the algorithm of early iteration so as to avoid the algorithm falling into
the local extreme value and to maintain a strong global search ability. At the same time, a
small inertia weight is selected in the late iteration to enhance the local search ability and
accelerate the convergence speed.

2.2.3. IPSO-SVM Model

This paper presents an improved particle swarm optimization (IPSO) algorithm to
optimize the support vector machine model. As a machine learning algorithm, SVM
has unique advantages in dealing with nonlinear relation. Through nonlinear mapping,
complex nonlinear problems can be transformed into linear regression problems in high
dimensional space, and the complex relationship between multiple factors can be quickly
learned and analyzed. The essence of the support vector machine (SVM) regression predic-
tion model is to find the optimal relationship between each input and output sample on the
basis of the limited sample data and give a reasonable output for the input samples in the
test set. In order to optimize the predictive performance of the SVM model, IPSO is used
to optimize and improve the SVM model. The process is as follows: First, determine the
input and output of the model, divide the sample data into two categories—training and
testing—and normalize all the sample data. Then the improved particle swarm optimiza-
tion algorithm is used to optimize the population parameters and set the population size,
nonlinear decreasing weight factor, iteration times, and other parameters. Next, the particle
fitness value is calculated and the particle velocity, position, and other parameters are
updated to determine the end conditions of the optimal parameters. Finally, the IPSO-SVM
regression prediction performance is tested through the test set data. If the predicted value
meets the set requirements, the predicted value is output. Otherwise, continue optimizing
the parameters until the end condition is met. This process is shown in Figure 2:
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3. Results and Discussion
3.1. Model Parameter Settings

In order to verify the predictive performance of the proposed model, the improved
particle swarm optimization support vector machine model (IPSO-SVM) was compared
with the particle swarm optimization support vector machine model (PSO-SVM) and the
support vector machine model (SVM). The parameters of each model are shown in Table 2.
In the SVM model, c is the penalty factor and g is the radial basis function parameter. In
the IPSO-SVM model, c1 represents the local search capability of the PSO parameters, c2
represents the global search capability of the PSO parameters, maxgen is the maximum
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number of evolution, sizepop is the maximum number of population, popcmax is the
maximum change value of SVM parameter c, popcmin is the minimum change value of
SVM parameter c, popgmax is the maximum change value of SVM parameter g, popgmin is
the minimum change value of SVM parameter g, and w_star and w_end are the initial and
end values of the nonlinear decreasing weight factors. In the PSO-SVM model, parameter
representation is the same as that in the IPSO-SVM model.

3.2. Model Evaluation Criteria

Common regression evaluation indexes include mean absolute error (MAE), mean
square error (MSE), root mean square error (RMSE), goodness of fit (R2), and standard
deviation (STD), where RMSE is the square root of the MSE and the order of magnitude is
the same as the true value. MSE and RMSE are essentially the same, but RMSE is used for
better data description. Therefore, RMSE only is used as the evaluation index in this paper.
In order to illustrate the degree of dispersion of the samples, the smaller the RMSE, the
better. R2 reflects the accuracy of the model fitting data. Generally, R2 varies in the range of
0 to 1. The closer the value is to 1, the stronger the fitting ability is and the better the fitting
effect is; otherwise, the worse the fitting effect is. Formulas (9)–(12) are shown as follows:

RMSE =

√
∑N

i=1(Ai − Fi)
2

N
(9)

MAE =
1
N

N

∑
i=1
|Ai − Fi| (10)

R2 = 1− ∑(Fi − Ai)
2

∑(Fi − Ai)
2 (11)

STD =

√
∑N

i=1(xi − x)2

N − 1
(12)

where Ai and Fi denote the actual and predicted values, respectively, xi denotes the error
between the predicted and actual values, and x denotes the average of all the errors.

3.3. Comparative Analysis of Model Performance

This paper compares the IPSO-SVM model with the PSO-SVM model and the SVM
model. The evaluation results of each model are listed in Table 3.

Table 3. Model evaluation results.

Model IPSO-SVM PSO-SVM SVM

RMSE
Training 0.37363 0.73098 1.3534
Testing 0.9166 0.97504 1.2056

MAE
Training 0.21446 0.44525 0.95681
Testing 0.73084 0.7491 0.9691

R2 Training 0.98288 0.9369 0.77346
Testing 0.90127 0.87627 0.83279

STD
Training 0.43294 0.64479 1.35062
Testing 0.8536 1.09641 1.20145

It can be seen from Table 3 that the RMSE of the training set and the test set of the
IPSO-SVM model are 0.37363 and 0.9166, the MAE values are 0.21446 and 0.73084, and
the STD values are 0.43294 and 0.8536, respectively. In addition, the R2 of the training
set and of the test set is 0.98288 and 0.90127, respectively. It is proved that the measured
results have a good fit with the model prediction. Compared to the PSO-SVM model and
the SVM model, the IPSO-SVM model reduced the RMSE of the training set data by 49%
and 72%, the MAE by 52% and 78%, the STD by 14% and 68%, the test set data by 6% and
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24%, the MAE by 2% and 25%, and the STD by 22% and 29%, respectively. This indicates
that the optimization effect of the IPSO-SVM model is obvious, and the prediction effect of
IPSO-SVM model is better than that of the other two models.

Figure 3 shows the fitness convergence curves of the IPSO-SVM model and the PSO-
SVM model. It can be seen from Figure 3 that the IPSO-SVM model reaches the optimum in
the 27th generation while the PSO-SVM model reaches the optimum in the 34th generation.
Moreover, the fitness value of the IPSO-SVM model is always smaller than that of the
PSO-SVM model. It can be proved that the IPSO-SVM model is superior to the PSO-SVM
model in terms of convergence speed and convergence accuracy.
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The predicted effect of the model can also be observed in the line graph. Figure 4
shows the predicted results of the three prediction models. Compared with the other three
models, the RMSE and MAE of the IPSO-SVM model are significantly lower than those
of the other three models, and the R2 of the IPSO-SVM model is closer to 1 than that of
the other three models, indicating the highest goodness of fit. From Figure 4 combined
with Table 3, it can be clearly seen that the predicted effect of the IPSO-SVM model is
significantly better than that of the other two prediction models, and the predicted effect
from good to bad is represented by the sequence of IPSO-SVM model, PSO-SVM model,
and SVM model.

Concerning the thermal modification of artificial weathering wood color change to R2

of the values listed in Table 3, we confirmed the IPSO-SVM model between the prediction
results and the real value as having a very good fitting effect. The results show that the
IPSO-SVM model for predicting thermal modification after artificial weathering wood color
change is very accurate. a and b in Figure 4 show the comparison between the actual value
and the predicted value of the color change under heat treatment by the IPSO-SVM model.
Obviously, compared with other models, the actual value matches the predicted value
better. Therefore, after the IPSO-SVM model is trained by the training set, the prediction
effect of this model is satisfactory, and the prediction result is also within the acceptable
range and can be used to predict the change in wood color after artificial weathering.
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4. Conclusions

In order to solve the problems of wood color prediction, an SVM prediction model
based on improved particle swarm optimization was proposed. In this study, the color
change of heat-modified wood after artificial weathering was predicted in larch (Larix gmelini)
and poplar (Populus alba). The heat treatment temperature, artificial weathering time, and
wood type were used as the input variables, and the total color difference (∆E) was used
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as the output variable to predict the color change. In order to verify the performance of
the IPSO-SVM model in predicting wood color change, the mean absolute error (MAE),
root mean square error (RMSE), goodness of fit (R2), and standard deviation (STD) of the
SVM model and of the PSO-SVM model were respectively compared. It was found that the
IPSO-SVM model had the highest correlation coefficient and the lowest root mean square
error, mean absolute error, and standard deviation. This shows that the IPSO-SVM model
has the best predictive effect. Modeling studies using the IPSO-SVM model have provided
results showing that the color changes of heat-modified wood after artificial weathering
can be successfully predicted.
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5. Borůvka, V.; Šedivka, P.; Novák, D.; Holeček, T.; Turek, J. Haptic and Aesthetic Properties of Heat-Treated Modified Birch Wood.

Forests 2021, 12, 1081. [CrossRef]
6. Ayadi, N.; Lejeune, F.; Charrier, F.; Charrier, B. Color stability of heat-treated wood during artificial weathering. Holz Als Roh-Und

Werkst. 2003, 61, 221–226. [CrossRef]
7. Tomak, E.D.; Ustaomer, D.; Yildiz, S.; Pesman, E. Changes in surface and mechanical properties of heat treated wood during

natural weathering. Measurement 2014, 53, 30–39. [CrossRef]
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