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Abstract: Given the increasingly fragmented forest landscapes, it is necessary to map forest cover
with fine spatial resolution in a large area. The European Space Agency (ESA) released the 10 m
global land cover map in 2020 based on Sentinel-1 and Sentinel-2 images, and Dynamic World
provides near real-time possibilities of many land cover classes based on Sentinel-2 images, but they
are not designed particularly for forest cover. In this research, we aimed to develop a method to
automatically estimate an accurate 10 m forest cover map in 2020 by fusing the ESA forest cover map
and Dynamic World near real-time forest cover possibilities. The proposed method includes three
main steps: (1) generating stable forest samples, (2) determining the threshold T and (3) producing
the fused forest cover map. China’s Han River Basin, dominated by complex subtropical forests, was
used as the study site to validate the performance of the proposed method. The results show that the
proposed method could produce a forest cover map with the best overall accuracy of 98.02% ± 1.20%
and more accurate spatial details compared to using only one of the two data sources. The proposed
method is thus superior in mapping forest cover in complex forest landscapes.

Keywords: forest cover; Sentinel-2; Sentinel-1; Dynamic World; Han River Basin

1. Introduction

Forests are the dominant component of terrestrial ecosystems in terms of the ability to
store carbon, regulate climate change and maintain ecosystem functions [1,2], and mapping
the spatial distribution dynamics of forest cover with remote sensing is an essential task in
environmental science [3–6]. Over the past several decades, various satellite sensor images
with spatial resolutions ranging from kilometer to meter scales, such as AVHRR, MODIS,
Landsat, Sentinel-2, PALSAR, IKONOS, Quickbird and PlanetScope, have been applied
to map forest cover [6–11]. However, given the increasingly fragmented landscapes and
inter-annual phenological changes in many forests [12,13], it is necessary to accurately map
forest cover with a fine spatial resolution over a large area [14,15].

Satellite sensor images with kilometer- to hundred-meter spatial resolutions, such
as AVHRR and MODIS, have an almost daily temporal resolution and are superior in
mapping forest cover by tracking the inter-annual phenological changes in different types
of forests [8,16,17]. Song et al. [17] quantified the global forest cover changes from 1982
to 2016 based on the generated annual 8 km AVHRR vegetation continuous field (VCF)
products. Hansen et al. [8] developed an annual global 250 m VCF product in 2000 based on
time-series MODIS images. Both the global AVHRR and MODIS VCF products have been
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widely used to estimate forest cover changes at regional and global scales [17–20]. However,
due to the coarse spatial resolution, many spatial details of the increasingly fragmented
forest cover cannot be accurately observed in AVHRR and MODIS VCF products, and the
mixed-pixel issue for forest cover is severe [21]. By contrast, to monitor small-scale forest
covers (e.g., individual tree crowns in cities), very fine spatial resolution (VFR) satellite
sensor images, such as IKONOS, Quickbird and Worldview, are currently the most critical
data sources [22–24]. However, due to the high cost and narrow view width, VFR remote
sensing images are rarely used to monitor forest cover and cover changes in a large region.
Although 3 m daily PlanetScope four-band images may be a potentially good data source
for small-scale forest cover mapping [9], the data access license and massive preprocessing
of raw data limit their application in large-area forest cover mapping at present. In general,
the cost of VFR satellite sensor images reduces the possibility of carrying out studies at a
fine resolution, even more so if using them to address areas of wide spatial extension.

Compared to coarse and very fine spatial resolution remote sensing data, medium
spatial resolution satellite sensor images, such as Landsat and Sentinel-2, are currently the
most suitable data sources for large-area forest cover mapping [2,25–28] due to the free data
access policy, wide view, frequent revisits and ten-meter spatial resolution. It is noteworthy
that for the estimation of forest canopy cover, Sentinel-2 performed slightly better than
Landsat 8 [26,29]. Moreover, Sentinel-2 images have a finer spatial resolution (e.g., 10 m)
and temporal resolution (e.g., 5 days for Sentinel-2A/B since 2018) than those of Landsat
images (e.g., 30 m and 16 days revisit frequency), and Sentinel-2 images are superior in
large-area forest cover mapping. Besides Sentinel-2 multispectral images, the time-series
10 m Sentinel-1 SAR images also have a comprehensive ability to track canopy changes in
forest cover [25,30]. In this regard, the Sentinel-1/2 satellite sensors within the Copernicus
program have been a remarkable stride forward by providing high-quality images free of
charge with a very acceptable resolution.

Based on both Sentinel-2 and Sentinel-1 data in 2020, the European Space Agency
(ESA) initiated the project “WorldCover” to produce a new global baseline land cover map
with a 10 m spatial resolution so as to provide valuable land cover information for the
environment, earth and climate sciences [31]. The ESA land cover map has a global overall
accuracy of 74.4%, while the forest cover has a high accuracy, with a producer’s accuracy of
89.9% and a user’s accuracy of 80.8%, and it thus provides a high-quality 10 m global forest
cover map. However, the ESA forest cover map cannot consider the typical features of inter-
annual changes in forests, particularly for subtropical mixed forests, and its accuracy is,
therefore, limited [32,33]. Fortunately, Dynamic World was developed to provide near real-
time possibility maps of nine land cover classes and the highest-probability land cover map
by using deep learning and Sentinel-2 images [34]. The time-series forest cover possibilities
in Dynamic World data capture the inter-annual phenological changes in various forests,
but they are based only on Sentinel-2 images, and the accuracy will be limited by daily
frequent clouds and different climatic conditions.

The issue of neglecting inter-annual forest phenological changes in the ESA land cover
product can cause confusion between non-evergreen forests and non-forested areas, while
the issue of relying solely on Sentinel-2 images as a single data source in the Dynamic World
land cover possibility product hampers its ability to provide spatially continuous forest
cover. Given that the ESA land cover product and Dynamic World land cover possibility
product are not designed particularly for forest cover, an accurate 10 m forest cover map
in a large area can hardly be achieved by directly using them. In this research, we aimed
to develop a method to automatically estimate an accurate 10 m forest cover map in 2020
by fusing the ESA forest cover map and Dynamic World Sentinel-2 near real-time forest
cover possibilities. Firstly, the yearly mean forest cover possibility map was extracted from
the near real-time land cover possibilities in Dynamic World. Secondly, the threshold T
was determined for the mean forest cover possibility map based on the collected stable
forest samples. Thirdly, the proposed 10 m forest cover map was produced by fusing the
ESA forest cover map and mean forest cover possibility map with the help of the threshold
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T. China’s Han River Basin, dominated by complex landscapes of subtropical forests [35],
was used as a typical study site to validate the performance of the proposed method. The
proposed method is expected to have a superior ability to map forest cover in complex
forest landscapes.

2. Materials and Methods
2.1. Study Area

The Han River Basin, situated in Central China (see Figure 1a), originates from the
Qinling Mountains and flows through Shaanxi and Hubei Provinces before joining the
Yangtze River in Wuhan City. The total area of China’s Han River Basin is ∼159,000 km2.
The Han River Basin falls within the North Subtropical Monsoon Climatic Zone, charac-
terized by an annual mean precipitation of approximately 804 mm and an annual mean
temperature ranging from 12 ◦C to 16 ◦C. As shown in Figure 1b, forests (e.g., tree cover)
are the dominant land cover in the Han River Basin, especially in the western and central
mountain areas, in which there are many types of forests: evergreen broadleaf forests,
deciduous broadleaf forests, evergreen conifer forests, deciduous conifer forests and mixed
forests [35]. In addition, as one of the experimental areas for China’s Six Key Forestry
and Ecological Programs, the Han River Basin has undergone one of the most significant
forest restorations in China and even in the world due to successful forest management
and protection policies [17]. As such, accurately mapping forest cover with a fine spatial
resolution in the Han River Basin has become a critical task, as it provides up-to-date
information on the spatial distribution of forest cover in the region.
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Figure 1. Study site and dataset. (a) Geolocation of the Han River Basin in China; (b) ESA WorldCover
land cover map in 2020; (c) available Sentinel-2 cloud-free image frequency in the Dynamic World
data of 2020 and 600 validation samples.

2.2. Data

Two datasets, ESA WorldCover and Dynamic World, are the input data of the proposed
method. The ESA WorldCover product is a global land cover map for 2020 with a resolution
of 10 m, which was generated using Sentinel-1 and Sentinel-2 data [31]. The original ESA
WorldCover product includes 11 land cover classes, but as shown in Figure 1b, there are
only 8 land cover classes in the Han River Basin, China, and we focused only on forest
cover in this research, in which a forest is defined as tree canopy cover of more than 10%. It
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is noteworthy that the products of ESA WorldCover and Dynamic World are ready-to-use
datasets, and there is no need to further process the original Sentinel-1 and Sentinel-2
images. Dynamic World is a near real-time global land cover dataset with a 10 m resolution
and was generated by utilizing deep learning techniques and Sentinel-2 images that have a
cloud percentage of less than 35% [34]. As shown in Figure 1c, the frequency (number) of
Sentinel-2 cloud-free images in Dynamic World ranges from place to place in the Han River
Basin. Dynamic World also provides class probabilities for nine different land cover classes,
and near real-time forest cover possibilities were used in this research. Furthermore, to
obtain the samples of stable forest points, annual PALSAR forest/non-forest cover maps for
2017–2020 [10], the annual Global Forest Change map for 2001–2021 [2], the Landsat tree
canopy height map for 2020 [36] and the Landsat tree canopy cover map for 2015 [37] were
also used as auxiliary datasets. All of the above datasets are freely available on the Google
Earth Engine (GEE) platform. Moreover, we collected eight Google Earth images from circa
2020 to provide a photointerpretation for comparing the spatial details of different forest
cover maps in Section 3.

2.3. Methods
2.3.1. Fused Forest Cover Map Production

Besides the ESA forest cover map and Dynamic World Sentinel-2 near real-time forest
cover possibilities in 2020, the proposed method also needs some samples of stable forest
points to determine the forest cover segmentation threshold T for forest cover possibilities in
Dynamic World. As shown in Figure 2, the flowchart of the proposed method is composed
of the following three sections: (1) generating stable forest samples, (2) determining the
threshold T and (3) producing the fused forest cover map.
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Stable forest samples refer to forest cover pixels that experienced no significant changes
(e.g., loss) during a period, and they are used to determine the forest cover segmentation
threshold T for forest cover possibilities in Dynamic World. Four auxiliary datasets, namely,
the annual PALSAR forest cover maps for 2017–2020 [10], the annual Global Forest Change
map for 2001–2021 [2], the Landsat tree canopy height map for 2020 [36] and the Landsat
tree canopy cover map for 2015 [37], were used here to collect the stable forest samples.
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Stable forests were initially identified by comparing consistent forests across the 2017, 2018,
2019 and 2020 PALSAR forest cover maps. Meanwhile, any forest-loss pixels in the Global
Forest Change map were excluded from the stable forests, and forest height less than 5 m
and canopy cover less than 10% were also excluded by using the tree canopy height map
and canopy cover map, respectively. Finally, 1007 samples of stable forests were randomly
selected. With the stable forest samples and a forest cover possibility map, the mean and
standard deviation values of forest cover possibilities for 1007 samples can be calculated,
and then the forest cover segmentation threshold can be predicted from the difference
between the mean and standard deviation values; more information about this can be
found in Equation (1) below.

Near real-time forest cover possibility maps in the Dynamic World data record inter-
annual changes in various forests, but they were extracted from Sentinel-2 images, and the
spatial consistency was seriously impacted by frequent clouds and shadows. We, therefore,
used the yearly mean forest cover possibility map based on all available forest cover
possibility maps in 2020. Assuming that the mean yearly mean forest cover possibility map
is FP, the threshold T used to segment FP into a forest cover map by using the stable forest
samples can be expressed as [38,39]:

T= FPmean(stable) − 1.96 × FPstd(stable), (1)

in which T represents the threshold value in year y. FPmean(stable) and FPstd(stable)
represent the mean and standard deviation, respectively, of the yearly mean forest cover
possibility map values for stable forest samples in that year. With the threshold T, a forest
cover map can be generated from the yearly mean forest cover possibility map.

With the ESA forest cover binary map and Dynamic World yearly mean forest cover
possibility map, we aimed to produce a fused forest cover map by using the above threshold
T. Assuming that the ESA forest cover binary map is FCESA and the fused forest cover
binary map is FCfuse, the fusing process can be expressed as:

FCfuse(i) =


FCESA(i), if 0.5T < FPmean(i) < 1.5T

1, if FPmean(i) ≥ 1.5T
0, if FPmean(i) ≤ 0.5T

(2)

Equation (2) means that for a pixel i in the fused forest cover binary map, if the forest
cover possibility value of FPmean(i) is larger than 1.5T or less than 0.5T, it will be regarded
as a forest pixel or non-forest pixel, respectively. Otherwise, it will be equal to the ESA
forest cover map, the binary value of FCESA(i).

2.3.2. Accuracy Assessment

To perform a comprehensive validation of the performance of the fused forest cover
map in 2020, we used the above forest cover map generated by using the threshold T, along
with the ESA forest cover map [31] and the PALSAR forest cover map [10] for comparisons.
For accuracy validation, the overall accuracy, producer’s accuracy and user’s accuracy
were calculated for different forest cover maps. To obtain an unbiased statistical estimation
of the accuracy of the three forest cover maps when the strata are different from the map
classes, we employed the method described by Stehma et al. [40,41] to estimate the overall
accuracy, producer’s accuracy and user’s accuracy and the corresponding 1.96 standard
errors with a 95% confidence interval.

As shown in Figure 1c, 600 reference sample points were collected using stratified
random sampling, with the forest and non-forest classes each having 300 sample points.
Specifically, the 600 validation sample points for forest and non-forest classes were first
extracted from the 10 m forest cover map produced by the proposed method, and then very
fine spatial resolution Google Earth images were used to determine the forest cover class of
each sample point by visual interpretation. It is noteworthy that there is no relationship
between the 600 reference sample points and the above 1007 stable forest samples. Because
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the PALSAR forest cover map has a spatial resolution of 25 m, it was down-sampled to
10 m with a nearest-neighbor interpolation method so as to have the same spatial resolution
as the ESA forest cover map and fused forest cover map.

3. Results
3.1. Fused Forest Cover Map Production and Comparison

Due to the significant impact of frequent cloud cover in the study site, the available
Sentinel-2 cloud-free images in the Dynamic World data for 2020 were limited to a range
of 11–20 for most regions, with the exception of some overlapping regions, as illustrated
in Figure 1c. In particular, Figure 3 illustrates the near real-time inter-annual dynamics
of forest cover possibilities for four typical stable forest pixels with different available
numbers of Sentinel-2 images in the Dynamic World data. Although the four forest pixels
have different numbers of observation data, most of their valid observation data are lacking
from June to October, which may be related to the fact that the rainy season of the Han
River Basin is in these months. All four typical forest pixels present similar phenological
dynamics and curve fitting, which have low possibility values in the cold months and high
values in the warm months from April to September.
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available Sentinel-2 image frequencies in the Dynamic World dataset.

To provide a clear illustration of the spatiotemporal dynamics of forest cover possibili-
ties in the Dynamic World data, Figure 4 shows the monthly mean forest cover possibility
maps in the Han River Basin based on all near real-time Sentinel-2 data. Besides May and
October 2020, the remaining ten months had missing data to some extent, particularly for
January, July and December. For the change in forest cover possibilities, relatively low
values were observed from January to March and from November to December, while the
values from April to October (spring and summer) remained higher; this matches well
with the inter-annual phenological changes in vegetation. For the cropland area (Figure 1b)
in the eastern part of the Han River Basin, the forest cover possibility values were rela-
tively high in cold months, particularly in February, but they were close to zero in many
months (e.g., May); this may be caused by the growth of winter wheat. Nevertheless,
certain forest-covered areas, such as those in the southeastern Han River Basin, still exhibit
slightly higher probability values compared to others, even during colder months, such as
January to March and November to December. This may be because there are many types
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of forests, including evergreen broadleaf forests, deciduous broadleaf forests, evergreen
conifer forests, deciduous conifer forests and mixed forests, in the Han River Basin, China.
Thus, it is difficult to rely on a forest cover probability map during a particular month or
short period to distinguish forest cover in the Han River Basin.
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Sentinel-2 near real-time Dynamic World data in 2020.

By averaging all near real-time forest cover possibility maps, we obtained the yearly
mean forest cover possibility map shown in Figure 4, which shows that there are no
missing data in the above monthly possibility maps. Compared with the land cover map in
Figure 1b, the spatial distribution of yearly mean forest cover possibilities matches well
with the ESA tree cover in 2020. Besides the forest cover map produced by the proposed
method, the forest cover map generated from the yearly mean forest cover possibility map
by using the threshold T, the ESA forest cover map and the PALSAR forest cover map
were also used for a comparison, as shown in Figure 5. Given the yearly mean forest
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cover possibility map, the threshold T was calculated as 0.34 with Equation (1), which was
used to convert the possibility map into the 10 m forest cover map shown in Figure 5c.
Meanwhile, with inputs of the ESA forest cover map (Figure 5b), the Dynamic World forest
cover possibility map (Figure 4) and the threshold T (0.34), we produced the fused 10 m
forest cover map shown in Figure 5d by using Equation (2). For the PALSAR forest cover
map shown in Figure 5a, the original two classes of dense forest and non-dense forest were
both regarded as forest cover.
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Figure 5. Forest cover maps in 2020 for different products and methods. (a) The 25 m forest cover map
based on the ALOS-2 PALSAR-2 forest/non-forest product; (b) the 10 m forest cover map extracted
from the ESA land cover map; (c) the 10 m forest cover map generated from the Dynamic World
yearly mean forest cover possibility map; (d) the 10 m forest cover map generated by fusing ESA
forest cover and Dynamic World yearly mean forest cover possibility maps, in which cyan A–D and
orange A–D indicate the locations of zoomed areas in Figures 6 and 7, respectively.

Upon comparing the four forest cover maps shown in Figure 5a–d, a similar trend
can be observed in the spatial distribution of forest cover among them, especially in dense
forest areas, but they have different spatial details. The 10 m forest cover map shown in
Figure 5c, generated from the Dynamic World yearly mean forest cover possibility map,
has comparatively less forest cover in the eastern part of the Han River Basin. This could
be attributed to the elimination of many small-scale forests that had probability values
below the threshold T. For the zoomed areas near Danjiangkou Reservoir in Figure 5, it can
also be found that the ESA forest cover map (Figure 5b) and the fused forest cover map
(Figure 5d) have more forests than the Dynamic World forest cover map (Figure 5c) and
PALSAR forest cover map (Figure 5a) in non-dense forest areas.

For a more detailed comparison of spatial details, we present zoomed-in areas of the
four forest cover maps in Figures 6 and 7, with Figure 6 highlighting commission errors
and Figure 7 emphasizing omission errors. Due to the lower spatial resolution of 25 m,
the PALSAR forest cover map tends to miss small-scale forests (e.g., zoomed areas A and
B in Figure 6), but it can also overestimate forest cover in some instances (e.g., zoomed
areas C and D in Figure 6). The four zoomed areas of the ESA forest cover map exhibit
some overestimation of forest cover in built-up areas. The Dynamic World forest cover
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map exhibits over-smoothed forest cover boundaries, which can be attributed to the deep
learning method used to produce land cover probabilities having a strong denoising ability.
Although this approach has a low commission error, it tends to miss small-scale forests.
Our proposed results not only capture many spatial details missed by the Dynamic World
forest cover map but also eliminate overestimated forests in the ESA forest cover map.
Furthermore, the proposed results exhibit the highest similarity to the forests in VFR
satellite images.

A similar trend to that observed in Figure 6 can also be seen in Figure 7, particularly
for the PALSAR and Dynamic World forest cover maps. The four zoomed areas of the ESA
forest cover map exhibit some underestimation of forest cover, especially for zoomed areas
C and D. By contrast, the proposed method can not only detect many missed forests in
the Dynamic World forest cover map but also eliminate some commission errors in the
Dynamic World results. Meanwhile, many missed forests in the ESA forest cover map were
also well-maintained by the results of the proposed method. This is because our proposed
method combines the advantages of both the ESA forest cover map and the Dynamic World
forest cover possibility map while reducing their uncertainties to some extent.
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3.2. Accuracy Assessment

The accuracy assessment presented in Table 1 also indicates that the PALSAR forest
cover map has the worst accuracy, with the smallest overall accuracy of 89.29% ± 2.55%
and producer’s and user’s accuracy values of 90.63% ± 3.29% and 92.34% ± 2.31% for
forest cover, respectively. The accuracies of ESA and Dynamic World forest cover maps
both have notable improvements over the PALSAR forest cover map. Although the ESA
forest cover map has a higher producer’s accuracy than the Dynamic World forest cover
map, its user’s accuracy is slightly smaller. The proposed forest cover map outperforms
the other maps in terms of both the best overall accuracy of 98.02% ± 1.20% and the best
producer’s and user’s accuracies of 99.25% ± 0.72% and 97.67% ± 1.71%, respectively,
indicating its superiority in mapping forest cover in the complex forest landscapes of the
Han River Basin, China.
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Table 1. Accuracy assessment of different forest cover maps.

Forest Cover Maps Overall Accuracy *
Producer’s Accuracy * User’s Accuracy *

Forest Non-Forest Forest Non-Forest

PALSAR 89.29% ± 2.55% 90.63% ± 3.29% 86.96% ± 3.99% 92.34% ± 2.31% 84.25% ± 4.76%
ESA 96.74% ± 1.43% 98.91% ± 0.98% 92.97% ± 3.38% 96.07% ± 1.97% 98.01% ± 1.79%

Dynamic World 95.33% ± 1.76% 96.24% ± 2.13% 93.76% ± 3.05% 96.4% ± 1.79% 93.49% ± 3.47%
Proposed 98.02% ± 1.20% 99.25% ± 0.72% 95.89% ± 2.89% 97.67% ± 1.71% 98.67% ± 1.30%

* “±” means 1.96 standard error with a 95% confidence interval.

4. Discussion

Based on the visual comparison and statistical accuracy assessment conducted above,
it is evident that the proposed method outperforms the PALSAR, ESA and Dynamic World
forest cover maps in terms of producing a 10 m forest cover map with reduced commission
and omission errors. This is particularly notable for the large expansive area of the Han
River Basin in China. Although the fused forest cover map was generated by combining
the ESA forest cover map and the Dynamic World yearly mean forest cover possibility map,
the proposed result offers superior spatial details compared to relying solely on either of
the two data sources. Moreover, it is noteworthy that the products of ESA World Cover and
Dynamic World are ready-to-use datasets, and there is no need for the proposed method to
further process the original Sentinel-1 and Sentinel-2 images. While both the ESA forest
cover map and the Dynamic World yearly mean forest cover possibility map have their
own strengths and weaknesses in representing multi-scale forest patches, the fused forest
cover map successfully inherits the advantages and mitigates the disadvantages of both,
aligning with the original intention behind the proposed method.

The ESA forest cover map was produced based on Sentinel-1 and Sentinel-2 images in
2020, and it can, thus, take advantage of Sentinel-1 SAR and Sentinel-2 multispectral data
in the mapping process [31,42]. For example, the C-band SAR of Sentinel-1 images has the
ability to penetrate clouds and obtain the tree canopy structure information, which will
provide complementary information for Sentinel-2 images in forest cover mapping so as to
finally improve the accuracy [43,44]. The above results prove this key point, as the ESA
forest cover map could have better performance in presenting many spatial details of forests
than the PALSAR and Dynamic World forest cover maps. In contrast, the use of Sentinel-1
SAR images in the ESA forest cover map may introduce some uncertainties, including
the omission of numerous forests, but they can be readily identified using multispectral
images from Sentinel-2, as evident in the zoomed areas in Figure 7. More importantly,
it should be noted that the ESA forest cover map is unable to account for inter-annual
phenological variations in many forest types, such as the dominant deciduous broadleaf
forest, deciduous conifer forest and mixed forest in the Han River Basin, China [35]. This is
significant because these forest types demonstrate distinct forest cover possibility values in
different seasons, which will also lead to many commission and omission errors in the ESA
forest cover map, as shown in Figures 6 and 7.

The near real-time forest cover possibilities from the Dynamic World data can capture
the time-series phenological changes in various forest types, as evident in Figures 3 and 4.
Given the inter-annual phenological changes in various forests and the frequent occurrence
of clouds in the Han River Basin, mapping forest cover using Dynamic World possibility
data within a short period can be challenging. The yearly mean possibility based on the
near real-time Dynamic World data is a solution to provide spatially consistent information
for forest cover mapping. As shown in the above results, although the forest cover map
extracted from the yearly mean possibility in Dynamic World data effectively represented
most of the forests, the boundaries of many forests were over-smoothed, and the omission
error was high. It is, therefore, necessary to fuse the ESA forest cover map and the Dynamic
World forest cover possibility map so as to produce a more accurate 10 m forest cover map
of the Han River Basin, China.
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In the mean forest cover possibility map shown in Figure 4, some forests may still have
small mean possibility values, such as less than 0.5 T; this may be caused by the extremely
few available cloud-free Dynamic World Sentinel-2 images. In this way, the real forest cover
may be regarded as non-forest cover, and this is one source of uncertainty for the proposed
method. In fact, the dynamics of near real-time forest cover possibilities shown in Figure 3
are similar to the phenological changes observed by using the NDVI index [4,45]. In future
work, it would be of great interest to explore the use of spatiotemporal filtering techniques,
such as the Savitzky–Golay filter [46], to reconstruct high-quality time-series forest cover
possibility data. Moreover, using spatiotemporal fusion techniques, such as the spatial and
temporal adaptive reflectance fusion model (STARFM) [47], enhanced STARFM [48] and
enhanced Flexible Spatiotemporal DAta Fusion (SFSDAF) [49], can also help to reconstruct
high-quality 10 m forest cover possibility data. This would help to reduce the uncertainty
caused by frequent missing cloud-free Sentinel-2 data due to frequent cloud cover in the
Han River Basin.

5. Conclusions

Given the increasingly fragmented landscapes of various forest types, including ever-
green broadleaf forests, deciduous broadleaf forests, evergreen conifer forests, deciduous
conifer forests and mixed forests, in China’s Han River Basin, it is a challenging but essen-
tial task to produce an accurate fine spatial resolution forest cover map. The ESA forest
cover map based on Sentinel-1 and Sentinel-2 images does make use of the advantages of
both Sentinel-1 SAR and Sentinel-2 multispectral data. However, it is still plagued by many
commission and omission errors, as it is unable to account for inter-annual phenological
variations in many forest types. Fortunately, Dynamic World was developed to provide
near real-time possibility maps of forest cover using deep learning and Sentinel-2 images.
However, the generated forest cover map often suffers from over-smoothed boundaries
and may miss many small-scale forests.

In this research, we proposed a method to combine the advantages of both the ESA
forest cover map and the Dynamic World forest cover possibility map while reducing
their uncertainties to some extent. The results showed that our proposed method not only
captured many spatial details missed by the Dynamic World forest cover map but also
eliminated many overestimated forests in the ESA forest cover map, and it produced a
forest cover map with the best overall accuracy of 98.02% ± 1.20% when compared with
the ESA, Dynamic World and the PALSAR forest cover maps. The fused forest cover
map successfully inherits the advantages and mitigates the disadvantages of the ESA
and Dynamic World forest cover maps, aligning with the original intention behind the
proposed method. The proposed method is, therefore, superior in mapping forest cover in
the complex forest landscapes of the Han River Basin, China. However, frequent clouds
seriously impact the near real-time forest cover possibilities in the Dynamic World data,
which will cause outliers in the final fused forest cover map. In future work, it would be of
high interest to apply spatiotemporal filtering techniques, such as the Savitzky–Golay filter,
to reconstruct high-quality time-series Dynamic World forest cover possibility maps so as
to increase the accuracy of the fused forest cover map.
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