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Abstract: Compared with ground-based light detection and ranging (LiDAR) data, the differential
distribution of the quantity and quality of point cloud data from airborne LiDAR poses difficulties
for tree species classification. To verify the feasibility of using the PointNet++ algorithm for point
cloud tree species classification with airborne LiDAR data, we selected 11 tree species from the
Minjiang River Estuary Wetland Park in Fuzhou City and Sanjiangkou Ecological Park. Training and
testing sets were constructed through pre-processing and segmentation, and direct and enhanced
down-sampling methods were used for tree species classification. Experiments were conducted
to adjust the hyperparameters of the proposed algorithm. The optimal hyperparameter settings
used the multi-scale sampling and grouping (MSG) method, down-sampling of the point cloud
to 2048 points after enhancement, and a batch size of 16, which resulted in 91.82% classification
accuracy. PointNet++ could be used for tree species classification using airborne LiDAR data with
an insignificant impact on point cloud quality. Considering the differential distribution of the point
cloud quantity, enhanced down-sampling yields improved the classification results compared to
direct down-sampling. The MSG classification method outperformed the simplified sampling and
grouping classification method, and the number of epochs and batch size did not impact the results.

Keywords: Pointnet++; airborne lidar; tree species classification; hyperparameters

1. Introduction

As the largest terrestrial ecosystem and gene bank, forests not only have important
economic value but also play a huge role in maintaining ecological balance and carbon
neutrality [1,2]. With rapid global climate change and the overexploitation of natural
resources by humans, the loss of diversity of forest tree species has become an impor-
tant environmental issue [3]. Therefore, rapid and accurate identification of forest tree
species at the individual tree level has important implications and far-reaching significance
for the protection of forest tree species diversity and macro-monitoring of forest ecosys-
tems [4]. Additionally, the identification results can provide data for research on alien
species invasion [5], rare tree species monitoring [6], forest resource surveys [7], and pest
monitoring [8].

Traditional methods for tree species identification rely mainly on field exploration and
plot investigation, and identification is based on the visual interpretation of the external
morphology or structural characteristics of tree species [9]. With the advancement of
remote sensing technology, researchers initially developed and utilized medium-resolution
satellite remote sensing data for regional-scale forest classification. However, due to
the constraints of spatial resolution, it was impossible to accurately delineate individual
trees. This approach was only suitable for identifying the species composition of forest
communities [10–12]. To achieve tree species identification at the individual tree level, high-
resolution images capable of distinguishing individual tree crowns are required [13,14].
Yet, the high cost of collecting high-resolution satellite remote sensing image data and
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the complexity of data processing hinder its widespread application [15]. Optical remote
sensing images struggle to overcome dependence on sunlight (due to object anisotropic
reflection) and the impact of constantly changing and differing lighting conditions on
radiation measurements [16,17]. With the development of active remote sensing technology,
specifically Light Detection and Ranging (LiDAR) technology [18], the three-dimensional
shape and structure of trees can be described and modeled in detail, including factors
such as tree height, crown width, tree crown shape, and branch structure. Moreover,
LiDAR can obtain vertical structural information of vegetation, including information on
the understory and ground layer [19,20]. As an active remote sensing technology, LiDAR
emits its own light source and receives reflected signals. The quality of its data is not
affected by weather and lighting conditions, and it has a high spatial resolution. Due to
these features, LiDAR technology has significant advantages in tree species identification
at the individual tree level [21–23]. Currently, the main LiDAR techniques are Airborne
Laser Scanning (ALS) [24,25], Terrestrial Laser Scanning (TLS) [26,27], and Backpacked
Laser Scanning (BLS) [28]. The difference between these lies primarily in the relative
spatial position between the sensor and the data to be acquired, which can cause significant
differences in efficiency, point cloud density, and completeness. Generally, BLS and TLS
obtain high-quality point clouds, whereas ALS has an advantage in terms of point cloud
acquisition efficiency [29].

Currently, commonly used point cloud tree species classification methods include
those based on point cloud feature extraction [30], such as individual tree features or point
cloud features. The disadvantage of this is the dependency on the point cloud quality, such
that the selected features directly affect the final classification result. Classification methods
are based on point cloud data projection transformation [31], such as projecting point clouds
onto different 2D planes for image recognition classification, with a disadvantage in the
loss of geometric structural information. Moreover, point cloud classification is based on
deep learning, such as PointNet [32] and its improved version, PointNet++ [33]. Currently,
these methods are rarely used for tree species classification and exhibit many problems
but could fully exploit the three-dimensional structural information of point cloud data,
thereby improving classification accuracy. At the same time, PointNet++ eliminates the
need for preprocessing and feature engineering, simplifying the data processing workflow.
Moreover, PointNet++ can automatically learn high-level features and patterns, enhancing
the model’s generalization ability.

PointNet++ is a deep learning network structure based on point cloud data [34] and
uses a hierarchical method to divide the point cloud data from the global point cloud set
into smaller local regions, layer-by-layer, until the number of points in each region reaches
a fixed threshold. Feature extraction and coding are then performed on the points of each
local region, and the features of different levels are finally merged and aggregated to obtain
a feature representation of the entire point cloud. This method has been applied to point
cloud classification. For example, Xin [35] used X-ray computed tomography to obtain 3D
volume data of metal powder particles, classified them into six categories using PointNet++,
and achieved an accuracy of 93.8%. Further, Yang [36] collected 300 clinical CT data points
on femurs and used the improved PointNet++ network to divide femurs into three parts:
femoral head, neck, and shaft, and acquired a result accuracy of >95%. Jing [37] integrated
the Squeeze-and-Excitation (SE) attention mechanism into PointNet++ for multispectral
LiDAR point cloud classification tasks and used the PointNet++ model to classify roads,
buildings, grasslands, trees, soils, and power lines, achieving an overall accuracy of 91.16%.
In tree species classification, Liu et al. [38] used BLS as the data source to study several
tree species, and the results showed that the Farthest Point Sampling (FPS) down-sampling
method had the most significant effect, with a tree species classification accuracy of over
95%. BLS has a lower survey efficiency than ALS, but better data quality and consistency.

Accordingly, this study used the PointNet++ algorithm to classify airborne point cloud
data of tree species to improve the efficiency and accuracy of tree species identification.
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2. Overview of Study Area and Data Prediction Processing
2.1. Study Area and Experimental Instruments

As depicted in Figure 1, the point cloud data used in this study consist of two parts.
The first set of data was obtained from the Minjiang Estuary National Wetland Park in
Fuzhou (119◦5′36” E–119◦41′5” E, 25◦50′43” N–26◦9′42” N). The forest here is a natural
forest with an approximate canopy closure of 0.5. The main tree species are Formosa
acacia (Acacia confusa), Birch (Betula fujianensis), and Camphor (Cinnamomum camphora),
with a distribution of species such as Mango (Mangifera indica), Bodhi (Ficus religiosa), and
Simon poplar (Populus simonii). The second set of data is from the Sanjiangkou Ecological
Park in Fuzhou (119◦22′42” E–119◦23′35” E, 26◦1′10” N–26◦0′34” N). The forest here is
man-made with an approximate canopy closure of 0.6. The primary tree species are Winged
Soapberry, Council trees (Ficus altissima), Cotton trees (Bombax ceiba), and Terminalia
neotaliala (Terminalia neotaliala), with a distribution of species such as wingleaf soapberry
(Sapindus saponaria) and Scholar trees (Alstonia scholaris). The ALS data of the two study
areas were acquired using a SAL-1500 3D scanning system on 15 March 2022, and 11
October 2022. Table 1 presents the key parameters of the SAL-1500 system.
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Figure 1. Spatial distribution of the study area.

Table 1. SAL-1500 instrument parameters.

Model SAL-1500

Measurement Rate 2,000,000 points/s
Scanning Speed 400 lines/s
Flight Altitude 200 m

System Relative Accuracy 20 mm
Field of View 360◦
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A deep learning framework, PyTorch (1.8 + CUDA 11.4), was used for the experiments.
The experiments were conducted on Ubuntu 20.04, with a computer configuration that
included an Intel Xeon W-2255 CPU @ 3.70 GHz, 64 GB of RAM, and an NVIDIA GeForce
RTX 3080Ti (12 GB) graphics card.

2.2. Data Preprocessing

To obtain single tree point clouds that satisfy the input requirements of the PointNet++
model, the raw point cloud data collected using airborne LiDAR sensors was preprocessed.
The implementation of the data preprocessing was completed in GreenValley International’s
LiDAR 360 processing software (V6.0.1.0) [39]. Following are the preprocessing steps:
(1) removal of interfering noise; (2) identification of ground points and segmentation of
ground data; (3) single-tree segmentation using the watershed algorithm; and (4) field
survey and manual adjustment.

2.2.1. Noise Removal

To improve the accuracy of point cloud processing, it is first necessary to eliminate
noise caused by the sensor itself, drone movement, and surrounding environmental inter-
ference, including high-altitude gross errors, low-altitude gross errors, and isolated points.
In this study, we utilized morphological filtering methods [40], eroding isolated data points
or small clusters of points that were incongruous with the overall data structure. This
strategy effectively eliminates noise while preserving the overall structure of the point
cloud. It’s important to note that the noise reduction effectiveness of this method depends
on the size of the chosen structuring element and the erosion threshold. Therefore, manual
inspection is necessary to assess the outcome after the noise reduction process.

2.2.2. Ground Point Classification

After denoising, the obtained point cloud data contains both tree point clouds and
ground points that are irrelevant to the research. Therefore, it is necessary to separate the
ground data by segmentation to obtain complete tree point clouds. In this study, we employ
the Progressive TIN Densification (PTD) method [41]. This method creates a triangulation
network from initial ground points and successively adds the remaining points to this
network. Upon adding each point, TIN checks whether certain slope conditions are satisfied.
If they are, the point is added to the network; otherwise, it’s skipped. In this way, the PTD
algorithm gradually increases the density of ground points, separating the ground point
cloud from the tree point cloud.

2.2.3. Single-Tree Segmentation

To acquire single-tree point clouds for classification learning, this study used the wa-
tershed algorithm [42] for single-tree segmentation. We obtained the Canopy Height Model
(CHM) by subtracting the Digital Elevation Model (DEM) from the Digital Surface Model
(DSM). Then, we extracted the CHM markers and applied the watershed algorithm, form-
ing enclosed, coherent crown contour polygons around tree apexes, thus accomplishing
single-tree segmentation.

2.2.4. Field Investigation and Manual Adjustment

Relying solely on the results of automated computer processing and analysis may
introduce some errors and biases. Therefore, a subsequent field survey was conducted
upon completion of single-tree segmentation. Factors such as sample noise, remaining
ground points, and canopy integrity are considered, and the accuracy of the segmented
point cloud data was compared with actual trees in the field. Manual adjustments were
made to over-segmented and unsegmented sample data, ensuring the acquisition of the
final single-tree point cloud data.
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2.3. Down-Sampling of Point Clouds

It’s worth noting that due to the limitations of canopy blockage and the characteristics
of ALS, there’s a significant disparity in the quality of point cloud data obtained from
different regions. In areas with high canopy closure, the lack of comprehensive under-
canopy point cloud data may result in lower point cloud density and smaller coverage.
In contrast, in areas with low canopy closure, where under-canopy point cloud data are
relatively complete, higher density and more comprehensive point cloud data can be
obtained. Consequently, when compared with single tree point cloud data points extracted
by TLS and BLS, there’s a significant difference in the total number and quality of single
tree point cloud data points obtained by ALS. The quality of the point clouds varied, as
shown in Figure 2, with an obvious difference in the quality of the point clouds of different
scholar trees (Alstonia scholaris). In some cases, missing points were evidently observed in
the point clouds, which led to unsatisfactory classification results in both feature-based and
projection-based point cloud classification.
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Figure 2. Point cloud samples of 11 tree species used in this experiment.

The segmented single-tree point clouds were unevenly distributed (Table 2), with the
number of point clouds in some single-tree segmentation results reaching over 20,000, but
less than 400 point clouds for other tree species.

Table 2. Point cloud data of the tree species used in this experiment.

Tree Species Scientific Names
Number of Points

Average Maximum Minimum

Birch Betula fujianensis 4232 13,642 933
Bodhi tree Ficus religiosa 4838 11,345 1539

Scholar tree Alstonia scholaris 1687 5278 398
Formosa acacia Acacia confusa 3763 8975 1113

Terminalia neotaliala Terminalia neotaliala 6017 15,509 1350
Simon poplar Populus simonii 4534 10,499 664
Camphor tree Cinnamomum camphora 1965 5426 607
Council tree Ficus altissima 2253 6558 701
Mango tree Mangifera indica 4079 10,020 1509

Wingleaf soapberry Sapindus saponaria 3367 8030 1120
Cotton tree Bombax ceiba 511 1454 134

Others 5951 38,124 152

Given that the PointNet++ model employs a hierarchical structure, where each level
corresponds to a different sampling layer, point cloud data are sampled into a fixed number
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of points at each level. This consistency ensures reliable information transfer and compari-
son between different levels, but also necessitates that the number of points inputted for
each tree in the model remains constant. When setting the number of sampling points, if
the sampling quantity is too large, the dimension of the input tensor will increase, thereby
increasing computational and memory demands and leading to difficulties in effectively
processing point cloud data. If the sampling quantity is too small, vital information from
the original point cloud may be lost. This could result in the model failing to adequately
comprehend the geometric structure and features of the point cloud, significantly impacting
final classification accuracy [43]. This study employed the following two methods to ensure
final classification accuracy: (1) the down-sampling parameter is set to 512 to meet the
minimum point number requirement for down-sampling. (2) Point cloud augmentation
methods are used to supplement the point cloud count of tree species with fewer total
point clouds to pre-down-sampling totals of 1024, 2048, 4096, or more. This ensures that
the majority of the data have sufficient point cloud numbers to extract meaningful features.

Considering that an insufficient number of point clouds may not provide effective
feature information, in this experiment, individual tree data with a total point cloud count
of less than 512 were excluded. Each individual tree point cloud was manually numbered,
and its corresponding tree species information was determined by combining the Real-time
kinematic (RTK) field survey method to obtain coordinates. For the acquired individual
tree point clouds, 80% were chosen as the training set to classify the 11 tree species, while
20% were selected as the test set for accuracy evaluation. All samples involved in training
and testing were mutually independent. The final sample types, training set, and test set
constructed for model training are shown in Table 3.

Table 3. Sample data of the tree species used in this experiment.

Tree Species Scientific Names
Number of

Samples Average Number of Points

Train Test Train Test

Birch Betula fujianensis 40 10 4453 2947
Bodhi tree Ficus religiosa 40 10 4573 5602

Scholar tree Alstonia scholaris 40 10 1731 1232
Formosa acacia Acacia confusa 40 10 3451 5012

Terminalia neotaliala Terminalia neotaliala 40 10 5982 6159
Simon poplar Populus simonii 38 10 4399 5048
Camphor tree Cinnamomum camphora 40 10 1496 1858
Council tree Ficus altissima 40 10 2236 1924
Mango tree Mangifera indica 40 10 4335 4063

Wingleaf soapberry Sapindus saponaria 38 10 3633 2356
Cotton tree Bombax ceiba 40 10 525 391

Total 438 110 / /

3. Model Training

PointNet++ first extracted local features by capturing local information and then
merged these local features to obtain global features (Figure 3). Finally, the combination of
global and local features was used for classification tasks. This approach could effectively
process point cloud data and achieve good results in multiple point cloud-related tasks. In
order to select a set of the most representative points from the single-tree point cloud for
further analysis and processing, we used the Farthest Point Sampling (FPS) method. The
basic idea of this algorithm is to, first, randomly select an initial point as the first point in
the sample point set, and then find the point with the farthest distance from the selected
point set among the remaining points, adding it to the sample point set. Subsequently,
with the newly added point as the starting point, the aforementioned steps are repeated
until the number of sample points reaches the preset value. This method can effectively
preserve the shape features and structural information of the point cloud, as well as control
the number and distribution density of the sampling points [44]. The hyperparameters and
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optimization configurations selected for this study are listed in Table 4. Batch size refers
to the number of samples used in each iteration of training. This size dictates the number
of samples employed in each training iteration. Larger batch sizes can accelerate training
speed but may lead to increased memory consumption. Smaller batch sizes can enhance
the model’s generalization capabilities but may render the training process more unstable.
The “number of points” refers to the number of points selected from each point cloud.
Selecting an appropriate quantity of points allows the preservation of vital features while
controlling computational and memory requirements. An epoch is a complete traverse
through the entire training dataset during training. Selecting an appropriate number of
epochs usually requires a balance between the convergence speed of the model and the
training time. The optimizer is the algorithm that determines how parameters are updated.
The selection of an appropriate optimizer depends on the specific task and data, as well
as the nature of the model. For example, the Adam optimizer often performs well when
training deep learning models [45,46]. The learning rate is a crucial hyperparameter in the
optimization algorithm that dictates the step size of parameter updates in each iteration.
An excessively high learning rate could destabilize the optimization process, whereas an
overly low learning rate could result in excessively slow convergence. The decay rate is
used to gradually reduce the learning rate during training to further optimize training
effectiveness. Decaying the learning rate can render the model more stable and accurate
in the later stages of training. Referencing other research in the domain of point cloud
deep learning, such as [47–50], we selected the Adam optimizer and set the learning rate
and decay rate at 0.001 and 0.0001, respectively. We explored batch sizes of 4, 8, 12, 16,
and 20; numbers of points at 512, 1024, 2048, 4096, and 8192; and epochs at 50, 100, 200,
300, and 500. By conducting cross-validation under different parameter combinations,
we can compare the model’s performance on the validation set and select the parameter
combination with the highest classification accuracy as our final choice. In this way, we can
identify the hyperparameter combination most suited for the point cloud deep learning
task under the given conditions.
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Table 4. Configuration of the model hyperparameters.

Hyperparameter Value Declaration

Training Model SSG/MSG Simplified sampling and grouping
Multi-scale sampling and grouping

Batch size 4\8\12\16\20 Number of batches in each epoch
Number of points 512\1024\2048\4096\8192 Number of points per individual tree sample

Epoch 50\100\200\300\500 Number of times to traverse the entire training dataset during training

Optimizer Adam An algorithm to update and calculate the internal parameters of the
model to reduce the training error

Learning rate 0.001 The step size to update in each iteration
Decay rate 0.0001 Used to reduce the learning rate to help the model converge better

The simplified sampling and grouping (SSG) method was used in PointNet++. In
the SSG, a set of points is randomly selected from the original point cloud as seed points,
and a local region is selected from the original point cloud within a certain range around
these seed points. Finally, these local regions are used as batch input to the network. The
advantage of SSG is its fast calculation speed; however, for point clouds with uneven point
distributions, information loss may occur [32].

Additionally, PointNet++ also used the multi-scale sampling and grouping (MSG)
method. Unlike the SSG, the MSG selects a set of seed points and multiple sets of seed points
to sample point clouds at different scales, which are then combined into a batch input to the
network. The advantage of the MSG is that it can effectively capture information at different
scales in point clouds and is suitable for point clouds with uneven point distributions [33].

4. Results
4.1. Results Acquired after Down-Sampling

We selected the SSG and MSG classification methods and classified the training set
data after down-sampling to 512. The number of epochs and the batch size were set to 200
and 16, respectively. A confusion matrix for the classification results is shown in Figure 4
and Table 5.
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Figure 4. Confusion matrix for SSG and MSG methods with 512 sampled point clouds.
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Table 5. Evaluation results of down-sampling point clouds directly to 512.

Recall Precision Accuracy

SSG_512 73.64 73.64 75.19
MSG_512 79.09 79.09 80.89

The results showed that the sampling performance of the MSG was superior to that of
the SSG; however, the accuracy of both methods was unsatisfactory.

4.2. Down-Sampling Results of Point Clouds after Enhancement

As mentioned earlier, there are noticeable inconsistencies in point cloud quantity and
density acquired from ALS data. Considering PointNet++’s requirements for training
data, the classification performance after down-sampling to 512 points is not satisfactory.
Therefore, this study opted to enhance point clouds with fewer points for certain tree
species. In order to maintain the geometric structure and semantic information of the
point cloud, we employ point cloud jittering to augment the point cloud data to meet the
down-sampling requirements [51]. Specifically, we randomly selected some points from
the point cloud data and added random numbers sampled from a normal distribution
with a mean of 0 and a standard deviation of 0.01 to the three-dimensional coordinates
of these points. The transformed point cloud was then merged with the original point
cloud to generate new point cloud data. This process was repeated until the number of
points in the point cloud met the preset value. In point cloud deep learning models, the
input of different sample points has varying impacts on the model’s accuracy. In order
to investigate the influence of sample points on classification accuracy, we utilized both
SSG and MSG classification methods for the augmented point cloud data, and classified
after down-sampling to 1024, 2048, 4096, and 8192 points, respectively. The number of
epochs was set to 200, and the batch size was set to 16. The confusion matrix results of the
classification outcomes are shown in the following Figure 5.

A comparison of the recall and precision results at a sampling rate of 512 is shown
in Figure 6.

As can be seen from Table 6 and Figure 6, when the sampling number is below 4096, the
MSG method has higher recall and precision than SSG, but when the number of sampling
points is set to 8192, the Recall and Precision of the MSG method decrease, but improve for
the SSG method. Moreover, the results of magnifying before downsampling are noticeably
superior to direct sampling at 512 points. There exists a certain relationship between the
increase in sample points and the accuracy of the classification results. In the MSG method,
when the number of sampling points is set to 2048, the recall and precision rates peak,
and when the number of sampling points further increases to 4096 and 8192, the recall
rate starts to decline. This could be because an excessive number of sampling points may
introduce noise and redundant information, leading to overfitting, causing the recall and
precision to decrease. From the confusion matrix and the recall and precision of individual
tree species, it can be observed that, regardless of the original point cloud quantity, the
classification recognition accuracy after augmentation demonstrates good performance,
indicating that the quality of tree species point clouds does not have a significant impact
on the classification results.
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Table 6. Evaluation results of point clouds with different sampling quantities after enhancement.

Recall Precision Accuracy

SSG_1024 80.91 80.91 81.39
MSG_1024 82.73 82.73 83.56
SSG_2048 86.36 88.17 88.17
MSG_2048 91.82 93.45 93.45
SSG_4096 81.82 81.82 85.48
MSG_4096 87.27 87.27 90.99
SSG_8192 80.91 80.91 82.84
MSG_8192 85.45 85.45 86.02

4.3. Comparison of the Results with Other Hyperparameters

To verify the influence of batch size and epoch count on model accuracy and training
time, we selected the MSG classification method, set the downsampling count to 2048, and
tested different batch sizes and iteration counts. We calculated their classification accuracy
and recorded their training durations. The results are shown in the following Figure 7.
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As can be seen from Figure 7a, when the number of epochs increases from 50 to 200, the
precision significantly improves, from 79% to 91%. This could be because a lower number
of epochs might be insufficient to adequately train the model, and as the number of epochs
increases, the model receives more opportunities to learn the features and patterns of the
data, thus improving precision. However, as the number of epochs continues to increase
to 300 and 500, the precision declines slightly. This might be because the model begins to
overfit the training data, resulting in worse performance on unseen testing data. As the
number of epochs increases, the duration also increases accordingly. This is reasonable,
as each iteration requires forward and backward propagation in the model and updated
parameters. A larger number of epochs requires more computational resources and time
for completion, thus increasing the duration. After weighing the relationship between
precision and duration, we found that the highest precision rate of 91% is achieved when
the number of epochs is 200, with a duration of 29 min. Further increasing the number
of epochs does not significantly improve precision but increases the duration. Therefore,
200 epochs might be a good choice to achieve high precision within a reasonable timeframe.

As can be seen from Figure 7b, the accuracy remains around 90% when the batch size
is between 4 and 8. As the batch size increases from 8 to 12, the precision slightly drops,
to 89%. Then, as the batch size further increases to 16, the precision rises back to 91%.
However, when the batch size increases to 20, the precision falls to 87%. This indicates that
the influence of batch size on precision is not linear, and different batch sizes might have
different impacts on model training. As the batch size increases, the duration generally
decreases. This is because a larger batch size can process more samples in parallel, thus
improving computational efficiency. When the batch size is 4, the duration is longest, at
66 min. Afterward, as the batch size increases, the duration gradually decreases, finally
reaching the shortest duration of 27 min when the batch size is 20. Balancing the relationship
between precision and duration, a batch size of 16 should be chosen to achieve higher
precision within a reasonable time.

5. Discussion

The method of using eigenvalues for classification is a common approach in tree
species classification within point cloud data, which achieves classification by extracting
and analyzing the eigenvalues of point cloud data. The current eigenvalue classifiers can
all achieve a classification accuracy of more than 80% [22,52,53]. However, they require
the extraction and input of a large number of structural feature parameters of the trees,
which increases the time and complexity of data preprocessing. Furthermore, the feature
extraction process may be influenced by parameter selection, and inappropriate parameters
could lead to poor feature extraction results. In addition, eigenvalue classification methods
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have limited capabilities in recognizing complex structures and may perform poorly when
dealing with point cloud data with intricate structures, thereby affecting the accuracy of
tree species classification. Point cloud classification based on projection images is a method
that transforms LiDAR point cloud data into two-dimensional grid data for classification.
The transformation process can involve projecting the point cloud data onto the ground,
making horizontal or vertical slices. Thereafter, image classification or deep learning
algorithms, such as Convolutional Neural Networks (CNN) and Deep Residual Networks
(ResNets), are employed to classify the transformed data [31,54,55]. Although the method
of transforming point cloud projections might remove a spatial dimension from the initial
point cloud data, potentially causing feature loss for the classification task, it does enable
additional image augmentation. This can greatly increase the sample size of the training
data and is suitable for existing image classification and deep learning methods, providing
good scalability. However, in complex canopy structures, the image transformation process
could lead to information loss. The two aforementioned methods do not maximize the 3D
structural information of point clouds and have limitations in point cloud classification
and understanding. Therefore, a deep learning framework directly based on 3D data holds
significant research value [56]. Increasingly, researchers are beginning to use point-based
deep learning models for tree species classification on individual tree point clouds and
have validated the research value of using deep learning for direct tree species classification
from point cloud data.

In this study, we chose the challenging, widely applicable, and efficient Airborne
Laser Scanning (ALS) as our data source. Using PointNet++, we performed classification
tasks on 11 common tree species in southern China, achieving an accuracy rate of 91.82%.
Chen et al. [57] proposed the point cloud tree species classification network PCTSCN that
used data from TLS and ALS to classify white birch and larch. The classification accuracy
of single tree samples obtained from TLS and ALS reached 96% and 92%, respectively.
Maohua et al. [58] proposed a point-based deep neural network, LayerNet, to identify
birch and pine trees. The overall classification accuracies for the TLS and ALS LiDAR
datasets were 92.5% and 88.8%, respectively. Although the two aforementioned studies
achieved satisfactory accuracy, their experimental samples only contained two categories.
In contrast, we expanded the experimental samples to 11 classes in our research, which
served to validate the model’s generalization capability. Furthermore, these studies showed
that the accuracy of tree species classification using ALS data was lower than that using
TLS data because of the lack of information below the canopy. Liu et al. [38] collected point
cloud data for eight tree species from three regions using the BLS system. Their results
indicated that the deep learning network offered the most accurate tree species classification
when the count of individual tree point clouds was between 2048 and 5120, achieving a
classification accuracy of 98.26%. Despite the fact that Liu’s data source was BLS, their
conclusion regarding the optimal point cloud quantity for classification training coincided
with our ALS-based findings, where the best classification accuracy was achieved when the
point cloud count was 2048. Xi et al. [59] investigated thirteen machine learning classifiers,
nine deep learning classifiers, and fifteen classifiers for filtering timber points from TLS plot
scans. The PointNet++ classification model achieved the highest classification accuracy at
95.8%, satisfying the high stability and moderate time–cost requirements. Seidel et al. [31]
used a CNN-based image classification method to classify tree species from TLS-acquired
point cloud data, projecting 3D point clouds into 2D images and using convolutional
neural networks to classify seven tree species, achieving an accuracy of 86%. Although
this method achieved high efficiency, its accuracy was slightly lower than that of other
studies, including our present study. In the studies mentioned above, the vast majority
employed BLS or TLS data. Such data collection methods can acquire more comprehensive
point cloud information, especially under the forest canopy. The ALS data used in our
research has limitations in collecting point cloud information under the canopy and in
capturing the complete structural features of individual trees. However, we still achieved
high classification accuracy for the 11 tree species. Nevertheless, it is important to note that
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the efficiency and approach of ALS data acquisition are unparalleled by other methods.
Moreover, for some hard-to-reach forest stands, ALS is the only way to obtain point cloud
data, so our study still holds research significance.

Due to the aerial nature of Airborne Laser Scanning (ALS), it cannot penetrate the tree
canopy when the canopy closure is high and therefore cannot acquire point cloud data
underneath the canopy. This implies that in the same region, areas with lower canopy
closure will possess more point cloud data, whereas areas with high canopy closure may
lack complete point cloud data. Consequently, there could be significant discrepancies in
the quality of point cloud data obtained by ALS within the same region. This difference was
reflected in the distribution of point cloud quantities for different trees (Figure 2 and Table 2).
Because the number of points for each tree in the PointNet++ input model must remain
consistent, this study first downsampled all samples to a point cloud quantity approaching
the minimum value of 512, with the experiment showing the highest classification accuracy
of 80.89%. Subsequently, we applied jitter augmentation to samples with less point cloud
data prior to classification. Recall and precision rates of unenhanced point clouds with 512
points were significantly lower than those of the augmented point cloud data (Figure 6),
suggesting that jitter augmentation can effectively improve ALS data classification accuracy.
In recent studies, numerous valuable point cloud augmentation methods have emerged.
For instance, Chen et al. [60] introduced PointMixup, which optimizes allocation to find the
shortest path between two point clouds, with interpolation being allocation-invariant and
linear. Li et al. [61] proposed a novel automatic augmentation framework, PointAugment,
which is a learnable point augmentation function with shape transformation and point-
wise displacement, and they meticulously designed a loss function in accordance with
the classifier’s learning progress to adopt enhanced samples. PolarMix, proposed by Xiao
et al. [62], employs two cross-scanning augmentation strategies to cut, edit, and mix point
clouds along the scanning direction, enriching point cloud distribution while maintaining
point cloud fidelity. In future research, we plan to introduce other augmentation methods
and evaluate their effectiveness in improving classification accuracy.

Our results indicate that blindly increasing the number of sample points does not
significantly improve the model’s classification accuracy and may even reduce it. As
the number of sample points increases, so does the training time for the deep learning
network. When the number of points in a single tree sample exceeds 2048, the classification
accuracy for all corresponding down-sampling methods fluctuates and even exhibits a clear
overfitting trend. This may be because when there are too many sample points, the deep
learning model might rely too heavily on the training set, leading to the inclusion of noise
and outliers in the training data. This, in turn, can lower the model’s ability to generalize
to new data, resulting in overfitting [63]. Therefore, we recommend keeping the number of
sampling points for single tree classification based on ALS point cloud at around 2048. This
ensures a high classification accuracy and allows training within a reasonable timeframe.
By limiting the number of sampling points, point cloud data can be effectively handled and
the risk of overfitting reduced.

This study, however, falls short of sufficiently exploring augmentation methods and
requires manual assistance for segmentation. Going forward, we aim to directly use
PointNet++ for single tree point cloud segmentation and to investigate the influence
of different augmentation methods on classification accuracy. The point cloud data in
this study were obtained from forests with medium canopy closure (approximately 0.5),
hence to a certain degree overcoming the limitation of lacking under-canopy information
when using ALS data. In future research, we hope to incorporate point cloud data from
forests with higher canopy closure, validating the classification accuracy under conditions
where point cloud data is incomplete. In summary, this study verifies the feasibility of
using PointNet++ for tree species classification with ALS point cloud data, addresses the
issues of point cloud quantity and quality through point cloud augmentation, and conducts
relevant research on hyperparameter settings during the classification process. Our research
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results hold certain value and can provide a reference for point cloud-based tree species
classification studies.

6. Conclusions

The PointNet++ method was feasible for the tree species classification of point cloud
data acquired by airborne LiDAR, and the highest accuracy rate among the 11 selected tree
species was 91.82%.

Although the point cloud data extracted from individual trees in ALS differed signif-
icantly from those in TLS and BLS in terms of the total number and quality of the point
clouds, the quality of the point clouds did not significantly affect the PointNet++ algo-
rithm. The problem of inconsistent point cloud numbers could be addressed by means of
point cloud enhancement, and the classification results of the enhanced point clouds were
significantly better than those of the raw point clouds.

In terms of the down-sampling parameters, the most suitable sampling rate was 2048.
Oversampling could lead to overfitting and decreased classification accuracy.

Increasing the sampling time and changing the batch size had no significant effect on
the results. Therefore, selecting more efficient hyperparameter settings is advantageous.

On comparing the two classification methods, we found that the classification results
of the MSG were superior to those of the SSG, which may be due to the non-uniformity of
the tree species point clouds collected by ALS.

However, this study has several limitations, including inadequate research on enhance-
ment methods and the need for manual assistance with segmentation. Further research
could be conducted on the impact of other enhancement and segmentation methods on clas-
sification results, and the integration of unsupervised methods to recognize non-sampled
tree species.

In future research, we will: (1) consider utilizing various classification methods (in-
cluding eigenvector-based classification [64] and projection-image classification [31]) to
identify and classify tree species within the same region, followed by a comparison of the
accuracies of these methods; (2) select a bigger the study area than the one tested in this
study and investigate the similarities between the same tree species in different regions;
(3) consider the feasibility of enhancing incomplete point clouds in high-density forest
areas for classification; and (4) explore relevant methods for identifying and classifying
a number of companion, invasive, and precious tree species with severely insufficient
sample sizes.
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