
Citation: Hui, Z.; Cai, Z.; Xu, P.; Xia,

Y.; Cheng, P. Tree Species

Classification Using Optimized

Features Derived from Light

Detection and Ranging Point Clouds

Based on Fractal Geometry and

Quantitative Structure Model. Forests

2023, 14, 1265. https://doi.org/

10.3390/f14061265

Academic Editor: Mark Vanderwel

Received: 23 April 2023

Revised: 2 June 2023

Accepted: 16 June 2023

Published: 19 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Tree Species Classification Using Optimized Features Derived
from Light Detection and Ranging Point Clouds Based on
Fractal Geometry and Quantitative Structure Model
Zhenyang Hui 1,2, Zhaochen Cai 1,2, Peng Xu 3, Yuanping Xia 1,2,* and Penggen Cheng 1,2

1 Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake of Ministry of
Natural Resources, East China University of Technology, Nanchang 330013, China;
huizhenyang2008@ecut.edu.cn (Z.H.); 2021110139@ecut.edu.cn (Z.C.); pgcheng@ecut.edu.cn (P.C.)

2 School of Surveying and Geoinformation Engineering, East China University of Technology,
Nanchang 330013, China

3 Powerchina Guiyang Engineering Corporation Limited, Guiyang 550081, China; xup_gyy@powerchina.cn
* Correspondence: ypxia@ecut.edu.cn

Abstract: Tree species classification is a ubiquitous task in the forest inventory field. Only directly
measured feature vectors have been applied to most existing methods that use LiDAR technology for
tree species classification. As a result, it is difficult to obtain a satisfactory tree species classification
performance. To solve this challenge, the authors of this paper developed two new kinds of feature
vectors, including fractal geometry-based feature vectors and quantitative structural model (QSM)-
based feature vectors. In terms of fractal geometry, both two fractal parameters were extracted as
feature vectors for reflecting how tree architecture is distributed in three-dimensional space. In terms
of QSM, the ratio of length change and the ratio of radius change of different branches were extracted
as feature vectors. To reduce the feature vector dimensionality and explore valuable feature vectors,
feature vector dimension reduction was conducted using the classification and regression tree (CART).
Five hundred and sixty-eight individual trees with five tree species were selected for evaluating the
performance of the developed feature vectors. The experimental results indicate that the tree species
of Fagus sylvatica achieved the highest overall accuracy, which is 98.06%, while Quercus petraea
obtained the lowest overall accuracy, which is 96.65%. Four other classical supervised learning
methods were adopted for comparison. The comparison result indicates that the proposed method
outperformed the other four supervised learning methods no matter which accuracy indicator was
adopted. In comparison with the relevant method, the eight feature vectors developed in this paper
also performed much better. This indicates that the fractal geometry-based feature vectors and
QSM-based feature vectors developed in this paper can effectively improve the performance of tree
species classification.

Keywords: tree species; LiDAR point cloud; feature vectors; fractal geometry; quantitative
structure model

1. Introduction

Forests are one of the most important ecosystems on earth and are of great significance
to economic construction, climate change and human survival [1–3]. The composition of
forest tree species has a direct impact on ecological attributes, such as the greenhouse gas
absorption capacity and the resource utilization rate. The richness of forest tree species
can also reflect the level of forest productivity and forest biodiversity [4,5]. Therefore, tree
species classification has become a ubiquitous task in forest resource inventory, and also, a
popular issue in current research [4,6,7].

LiDAR is an active remote sensing technology. The laser pulses emitted by an LiDAR
system can not only obtain the three-dimensional coordinate information about a target,
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but also penetrate vegetation and accurately depict spatial structure information about the
vegetation canopy [8–10]. In recent years, with the rapid development of LiDAR technology,
its sampling rate and sampling accuracy have obviously been improved, making LiDAR
technology widely used in the forest inventory field [11].

Numerous tree species identification methods using LiDAR technology have been
proposed in recent years. Lin and Herold [12] proposed explicit tree structure (ETS) feature
parameters derived from using terrestrial laser scanning (TLS) to classify boreal tree species.
In their method, there are five types of ETS feature parameter, including the structural
characteristics of an entire tree, stem, branches, crown and leaves. And then, leave-one-
out-cross-validation was adopted in SVM to evaluate the performance of extracted ETS
feature parameters. The experimental results showed that the average and maximum
classification accuracies for 40 samples of four typical boreal tree species were up to 77.5%
and 90%, respectively. In the method proposed by Åkerblom et al. [6], they first used the
TreeQSM method proposed by Raumonen et al. [13] to construct a quantitative structure
model (QSM) of tree point clouds. Fifteen types of features were extracted from the QSM,
and then optimized based on the performance of different feature sets in their method. The
experimental results showed that using ten optimized features can achieve a maximum
classification accuracy of 96.9%, which proved that geometric features extracted from QSM
can effectively achieve tree species classification. Terryn et al. [2] proposed two new feature
parameters, including the branch angle ratio and relative volume, on the basis of the study
proposed by Åkerblom et al. [6]. Seven hundred and fifty-eight trees of five species (Acer
pseudoplatanus, Fraxinus excelsior, Crataegus monogyna, Corylus avellana and Quercus
robur) in a 1.4-hectare mixed deciduous forest site were classified. They achieved about
80% overall accuracy for the experimental sample after using principal component analysis
on the feature parameters. Xi et al. [4] extracted 32 classification features in total after the
QSM was constructed using the method proposed by Xi et al. [14]. In their experiments, the
classification performances of seven deep learning and six machine learning classifiers were
compared. Among them, the PointNet++ method achieved the best overall classification
accuracy, and compared to other deep learning methods, the training time of this method
was also the shortest. However, their experimental results also demonstrated that when
there are a few tree samples, this method is prone to overfitting, which will reduce the
classification accuracy. Liu et al. [15] constructed a deep neural network learning model
named LayerNet for the species classification of LiDAR tree point clouds in simple forest
areas. They validated the classification performance of this method using both airborne
and ground-based LiDAR datasets. The experimental results showed that their proposed
method can achieve overall classification accuracies of 88.8% and 92.5% for airborne and
ground-based datasets, respectively. Their method can also achieve more satisfactory
accuracy and Kappa coefficients in comparison to those of traditional machine learning
and deep learning methods. However, the information redundancy caused by large feature
dimensions will affect the performance of this method.

In addition to the tree species classification methods using LiDAR point clouds, some
researchers also tried to fuse LiDAR data and other data sources to obtain tree species
classification results. Dalpont et al. [16] investigated the effect of combining hyperspectral
data with LiDAR data for classification in complex forest environments with more than
19 tree species. Their study showed that combining hyperspectral data with LiDAR data
could improve the tree species identification performance in cases where the spectral
information were relatively similar, but the tree heights obviously differed between species.
Kim et al. [17] further investigated the tree species identification performance using multiple
LiDAR intensity data. They used intensity information derived from leaf-on and leaf-
off point clouds of trees in the same forest site to identify coniferous and broadleaved
species. The experimental results showed that when leaf-off point clouds were used, the
classification accuracy was higher than that when leaf-on point clouds were used, and
the highest accuracy of 90.06% was obtained when the combination of both leaf-on and
leaf-off point clouds were used. Puttonen et al. [18] combined hyperspectral data and tree
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shape features from LiDAR to form a fused dataset. And then, the fused dataset was used
to classify 24 tree samples of three tree species (Birch, Norway spruce and Scots pine) in
the SVM. The classification performances using the fused datasets and two single source
datasets (hyperspectral data and tree shape features) were compared. The experimental
results showed that the best classification performance was realized when the fused dataset
was used, which was able to achieve an accuracy above 85%. Othmani et al. [19] classified
tree species using the three-dimensional texture feature of bark. In their method, a two-
dimensional image representing the three-dimensional geometric texture feature of the bark
at around breast height was generated first. Next, the multiresolution analysis technique
was applied to the image to extract the texture feature. The extracted features can achieve
a classification accuracy up to 86.93% for experimental tree samples, but this method
had struggles to recognize Pine and Hornbeam species. Zhang et al. [20] proposed a
method that combined canopy information derived from LiDAR and spectral information
in hyperspectral imagery to classify urban tree species. In their method, the canopy height
model derived from LiDAR data was segmented via object-based image analysis to obtain
individual tree crowns. Then, significant bands of individual tree spectrums were selected
via minimum noise fraction transformation, and the classification performance of the
selected bands was measured using random forest and multi class classifiers.

Although fusing LiDAR point clouds with other remote sensing data, such as hy-
perspecrtal image, can improve the performance of tree species classification, the fusion
process is prone to error. Realizing the high-precision fusion of multi-source data is still a
challenge. Thus, the classification of different tree species using LiDAR point clouds alone
is still conducted by researchers. However, recognizing tree species from LiDAR point
clouds still suffers from the following two problems. One is how to explore more effective
features for tree species classification. The other one is how to obtain a combination of
the feature vectors to achieve a higher classification accuracy, while reducing the feature
vector dimension. To solve these challenges, this paper proposes a tree species classifi-
cation method based on the combination of developed fractal geometry-based features
and QSM-based features. In this method, three kinds of feature vectors were explored,
including directly measured feature vectors, fractal geometry-based feature vectors and
QSM-based feature vectors. In this paper, fifteen feature vectors in total were calculated.
To reduce feature vector dimension, the classification and regression tree (CART) was
adopted to analyze the importance of each feature vector. Among the fifteen feature vectors,
ten important feature vectors were extracted for further analysis. Thereafter, to further
reduce feature vector dimension, eight feature vectors with a high accuracy level and high
occurrence frequency were extracted. The support vector machine (SVM) classification
method was applied for tree species classification using the final eight extracted feature
vectors. The experimental results show that the proposed method can obtain satisfying tree
species classification results.

2. Materials and Methods
2.1. Datasets

This paper adopted the individual tree point clouds provided by Weiser et al. [21] for
evaluating the performance of tree species classification. In this dataset, twelve forest plots
of approximately 1 ha were scanned using laser scanners of different platforms, including
airborne LiDAR, unscrewed aerial vehicle (UAV)-based LiDAR and terrestrial LiDAR.
The twelve forest plots are located in mixed central European forests close to Bretten and
Karlsruhe, in the federal state of Baden-Württemberg, Germany. This dataset provided
segmented individual tree point clouds from different platforms, corresponding tree species
information and tree metrics. Since the feature vectors developed in this paper need to
construct the QSM, only the individual tree point clouds of high quality obtained via
UAV-based LiDAR and terrestrial LiDAR were selected for testing. Moreover, to balance
the number of samples of different tree species, some tree species with smaller number
of trees were ignored. Eventually, 568 individual trees of five tree species, such as Fagus
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sylvatica, Picea abies, Pinus sylvestris, Pseudotsuga menziesii and Quercus petraea, were
selected for evaluating the performance of the developed feature vectors. The detailed
information for the selected individual trees is tabulated in Table 1. Figure 1 shows several
individual trees of the five tree species. It can be found that all these individual trees own
high-quality point clouds. Thus, the QSM of each individual tree can be accurately built.
Meanwhile, several tree metrics, such as DBH, can be precisely calculated.

Table 1. Information about selected individual trees. Std represents the standard deviation. abbr
means abbreviation.

Species Number of Trees Average of
Height (m)

Std of Tree
Height (m)

Average of
DBH (m) Std of DBH (m)

Fagus sylvatica
(abbr: FagSyl) 129 28.02 4.08 0.35 0.15

Picea abies
(abbr: PicAbi) 123 20.84 5.59 0.26 0.12

Pinus sylvestris
(abbr: PinSyl) 81 29.20 3.45 0.29 0.13

Pseudotsuga
menziesii

(abbr: PseMen)
124 36.30 4.76 0.28 0.12

Quercus petraea
(abbr: QuePet) 111 21.18 7.46 0.19 0.08

Forests 2023, 14, x FOR PEER REVIEW 4 of 19 
 

 

UAV-based LiDAR and terrestrial LiDAR were selected for testing. Moreover, to balance 
the number of samples of different tree species, some tree species with smaller number of 
trees were ignored. Eventually, 568 individual trees of five tree species, such as Fagus 
sylvatica, Picea abies, Pinus sylvestris, Pseudotsuga menziesii and Quercus petraea, were 
selected for evaluating the performance of the developed feature vectors. The detailed in-
formation for the selected individual trees is tabulated in Table 1. Figure 1 shows several 
individual trees of the five tree species. It can be found that all these individual trees own 
high-quality point clouds. Thus, the QSM of each individual tree can be accurately built. 
Meanwhile, several tree metrics, such as DBH, can be precisely calculated. 

Table 1. Information about selected individual trees. Std represents the standard deviation. abbr 
means abbreviation. 

Species Number of Trees Average of Height (m) Std of Tree 
Height (m) 

Average of 
DBH (m) 

Std of DBH (m) 

Fagus sylvatica 
(abbr: FagSyl) 

129 28.02 4.08 0.35 0.15 

Picea abies 
(abbr: PicAbi) 123 20.84 5.59 0.26 0.12 

Pinus sylvestris 
(abbr: PinSyl) 81 29.20 3.45 0.29 0.13 

Pseudotsuga menziesii 
(abbr: PseMen) 

124 36.30 4.76 0.28 0.12 

Quercus petraea 
(abbr: QuePet) 111 21.18 7.46 0.19 0.08 

 
 

FagSyl 

   

 (a) (b) (c) 

PicAbi 

 
  

 (d) (e) (f) 

Figure 1. Cont.



Forests 2023, 14, 1265 5 of 16Forests 2023, 14, x FOR PEER REVIEW 5 of 19 
 

 

PinSyl 

 

  

 (g) (h) (i) 

PseMen 

 

 
 

 (j) (k) (l) 

QuePet 

 

  

 (m) (n) (o) 

Figure 1. Samples of individual trees of different tree species. (a)–(c) are samples of tree species of 
FagSyl; (d)–(f) are samples of tree species of PicAbi; (g)–(i) are samples of tree species of PinSyl; (j)–
(l) are samples of tree species of PseMen and (m)–(o) are samples of tree species of QuePet. 

Figure 2a,b shows the distribution of tree heights and DBHs of all the individual trees 
tabulated in Table 1. It can be found that the height of trees varies greatly from species to 
species. Combined with Table 1, the average of height of different tree species changes 
from 20.84 m to 36.30 m. In terms of DBH, the average values of DBH of these five species 
do not change greatly. From Table 1, it can also be found that the smallest average value 
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Figure 1. Samples of individual trees of different tree species. (a–c) are samples of tree species of
FagSyl; (d–f) are samples of tree species of PicAbi; (g–i) are samples of tree species of PinSyl; (j–l) are
samples of tree species of PseMen and (m–o) are samples of tree species of QuePet.

Figure 2a,b shows the distribution of tree heights and DBHs of all the individual trees
tabulated in Table 1. It can be found that the height of trees varies greatly from species to
species. Combined with Table 1, the average of height of different tree species changes
from 20.84 m to 36.30 m. In terms of DBH, the average values of DBH of these five species
do not change greatly. From Table 1, it can also be found that the smallest average value of
DBH is 0.19 m, while the largest one is 0.35 m.

2.2. Method

The flowchart of the proposed method is shown in Figure 3. In the proposed method,
multi-dimensional feature vectors were first extracted from each individual tree points.
And then, the dimensionality reduction of feature vectors was applied for reducing the
computation burden. Subsequently, the final eight feature vectors were obtained based
on the importance and occurrence frequency of each feature vector. Lastly, support vector
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machines (SVM) were adopted to obtain the final tree species classification results. Three
main steps are involved in this paper, namely: (i) multi-dimensional feature vectors extrac-
tion, (ii) the dimensionality reduction of feature vectors, and (iii) the selection of feature
vectors combination.
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2.2.1. Multi-Dimensional Feature Vectors Extraction

In this method, three kinds of feature vectors were developed, including directly
measured feature vectors, fractal geometry-based feature vectors and QSM-based feature
vectors. These three kinds of feature vectors are shown in Figure 4.
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Figure 4. Multi-dimensional feature vectors extraction.

(i) Directly measured feature vectors
The first kind of feature vectors can be directly measured from the individual tree

point cloud, including the tree height (H), diameter at breast height (DBH), ratio of DBH
and H (κ), major axis of canopy ellipse (l1), minor axis of canopy ellipse (l2), eccentricity of
canopy ellipse (δ), canopy convex hull area (S1), tree point cloud projection area (S2) and
entropy (E). H is calculated as the elevation difference between the highest and lowest
points within one individual tree. DBH is the tree diameter at 1.3 m from the tree’s root. In
this paper, DBH was calculated using the method proposed by Di Wang et al. [22]. l1 and l2
are calculated as the major and minor axes of the fitted ellipse for canopy points. δ is the
corresponding eccentricity of the fitted ellipse. S1 is calculated as the convex hull area of
canopy point. S2 is the horizontal projection area of all tree points, which can be calculated
by gridding all the points with x and y coordinates. E can be calculated via voxelizing the
tree points. The ratio of the number of points within each voxel to the number of all tree
points can be calculated as pi. E is defined as Equation (1):

E = −
n

∑
i=1

pi × log(pi) (1)

where n is the number of voxels.
(ii) Fractal geometry-based feature vectors
Fractal geometry considers that many objects have the hierarchy of self-similarity,

which can be observed at different scales. When the geometry is appropriately scaled up or
down, the whole structural feature does not change. Guzman Q et al. [23] have proven that
there is a noticeable correlation between the fractal geometry parameters and tree metrics,
such as tree height, DBH and crown area. Since these tree metrics can be used for tree
species identification, the authors of this paper tried to apply geometry parameters for
classifying different tree species.

The fractal geometry parameters can be calculated based on the box counting method.
This method considers that the individual tree points can be covered by a series of boxes, as
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shown in Figure 5a. When the voxel size changes from large to small, the number of voxels
for covering the tree points will be distinctly increased. A log–log linear regression model
can be built using the voxel size and the number of voxels, as defined in Equation (2):

log N = dMB × log
1
V

+ InterceptMB (2)
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As shown in Figure 5b, dMB is the slope of the linear regression equation, which is
defined as the fractal dimension. InterceptMB is the intercept of the linear model, which is
defined as the fractal intercept. Both these two fractal parameters were used for tree species
classification in this paper.

(iii) QSM-based feature vectors
The QSM can reflect the structure features and spatial topology of an individual

tree. Thus, the authors of this paper tried to extract feature vectors based on the QSM
for tree species classification. In this paper, the QSM was constructed using the TreeQSM
method proposed by Raumonen et al. [13]. In TreeQSM, the model of an individual tree is
constructed using a series of fitted cylinders. Moreover, the topology of each tree branch
can also be built via TreeQSM. That is, TreeQSM can separate branches into different levels.
In general, different tree species have different ratios of length and diameter of branches at
different levels, such as level 1, level 2, level 3, etc., as shown in Figure 6. Thus, this paper
developed four feature vectors for tree species classification, as defined in Equations (3)–(6):

R12 =
K

∑
i=1

(
Ri

2

Ri
1

)
/K (3)

R23 =
M

∑
j=1

(
Rj

3

Rj
2

)
/M (4)

L12 =
K

∑
i=1

(
Li

2
L1

)
/K (5)
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L23 =
M

∑
j=1

(
Lj

3

Lj
2

)
/M (6)

where R12 and R23; L12 and L23 represent the ratio of radius and the ratio of length of
branches at different levels, respectively.
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2.2.2. Dimensionality Reduction of Feature Vectors

As mentioned above, these three kinds of feature vectors contain fifteen feature vectors
in total. Although fifteen feature vectors were developed in this paper, not all the feature
vectors have noticeable contributions to tree species identification. To reduce feature
vector dimensionality, this paper further analyzes the relative importance of each feature
vector using the classification and regression tree (CART). The CART can be used to
judge the importance of each feature vector in terms of classification and further eliminate
the relatively low level of importance of classification features to achieve dimensionality
reduction (Zhouxin Xi et al. [4]). In the CART method, the Gini index was adopted
for selecting partition attribute when the decision tree was built, which is defined as
Equation (7).

Gini(D) = 1 −
N

∑
k=1

p2
k (7)

where pk is the proportion of class k. Gini (D) reflects the probability that two samples are
randomly selected from the dataset, D, and their categories are inconsistent. Obviously, the
smaller Gini(D) is, the more purity the dataset D is. When building the CART decision
tree, the leaf node corresponds to the decision result, while the branch nodes correspond
to an attribute being split. In this paper, the branch nodes represent attributes of these
feature vectors for splitting. Ideally, when a decision tree is built, the samples contained
by the branch nodes should belong to the same category as far as possible. This means
that the purity of the nodes increases. On the contrary, at each node, the risk of splitting is
estimated to be the node impurity. The authors of this paper calculated the importance of
each feature vector by summing changes in the risk due to splits on each node.

The relative importance of each vector calculated using the CART is shown in Figure 7. It
can be found that although there are nine feature vectors involved in the directly measured
feature vectors, three of them show a relatively low level of importance for tree species
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identification. These three feature vectors are DBH, the ratio (κ) of DBH and H and
the eccentricity (δ) of canopy ellipse. In terms of fractal geometry-based feature vectors,
InterceptMB is more important than dMB is. From Figure 7, it is easy to see that all the
four QSM-based feature vectors are functional in classifying tree species. Comparatively
speaking, the relative importance of L12 is lower than that of the other three QSM-based
feature vectors. To reduce the feature vector dimension, five feature vectors with a low
level of relative importance in these three kinds of feature vectors were ignored in the
following SVM classification. These five feature vectors are κ,δ and DBH in the directly
measured feature vectors, dMB in the fractal geometry-based feature vectors and L12 in the
QSM-based feature vectors.
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2.2.3. Selection of Feature Vectors Combination

After dimensionality reduction, ten feature vectors were retained for further process-
ing. To select the final combination of feature vectors, 4-fold cross validation was conducted
via applying different combination of feature vectors with different dimensions. The 4-fold
cross validation method is shown in Figure 8. The datasets were classified into four sets.
Three sets were selected for training, while the remaining one was used for testing. The
mean accuracy for the four results is given as the classification accuracies.
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The results of using different combination of feature vectors are tabulated in Table 2. It
can be found that the dimensionality of the feature vectors changes from 1 to 10. Different
dimensionality of the feature vectors contains a different number of combination of feature
vectors. For instance, when the dimensionality is 1, there are 10 different combinations,
such as {H}, {l1} and {L23}, etc. Although the dimensionality is same, different combinations
of feature vectors have different classification accuracies. From Table 2, it is easy to find
that when the dimensionality is 3, the lowest overall accuracy of the combination of feature
vectors is 0.421, while the highest overall accuracy is 0.845. In total, there are 1023 different
combinations of feature vectors. In general, if one feature vector is noticeably effective
at tree species classifying, the occurrence frequency of this feature vector should be high
among the combinations with a high classifying accuracy. Thus, to further analysis the
relative importance of each feature vector, the occurrence frequency of each feature vector
among the different combinations of feature vectors whose classifying accuracy is higher
than 0.85 was statistically counted.

Table 2. Overall accuracy of different combination of feature vectors.

Dimensionality
Lowest
Overall

Accuracy

Highest
Overall

Accuracy
Combination of Feature Vectors Number of

Combinations

1 0.354 0.583 {H},{l1} . . . {L23} 10
2 0.426 0.734 {H,l1},{H,l2} . . . {R23,L23} 45
3 0.421 0.845 {H,l1,l2},{H,l1,S1} . . . {R12,R23,L23} 120

4 0.440 0.896 {H,l1,l2,S1},{H,l1,l2,S2} . . .
{InterceptMB,R12,R23,L23} 210

5 0.521 0.938 {H,l1,l2,S1,S2},{H,l1,l2,S1,E} . . .
{E,InterceptMB,R12,R23,L23} 252

6 0.610 0.928
{H,l1,l2,S1,S2,E},

{H,l1,l2,S1,S2,InterceptMB} . . .
{S2,E,InterceptMB,R12,R23,L23}

210

7 0.688 0.931
{H,l1,l2,S1,S2,E,InterceptMB},

{H,l1,l2,S1,S2,E,R12} . . .
{S1,S2,E,InterceptMB,R12,R23,L23}

120

8 0.783 0.947
{H,l1,l2,S1,S2,E,InterceptMB,R12},

{H,l1,l2,S1,S2,E,InterceptMB,R23} . . .
{l2,S1,S2,E,InterceptMB,R12,R23,L23}

45

9 0.880 0.938
{H,l1,l2,S1,S2,E,InterceptMB,R12,R23},
{H,l1,l2,S1,S2,E,InterceptMB,R12,L23}...
{l1,l2,S1,S2,E,InterceptMB,R12,R23,L23}

10

10 0.923 0.923 {H,l1,l2,S1,S2,E,InterceptMB,R12,R23,L23} 1
In total / / / 1023

3. Experimental Result and Analysis
3.1. Feature Vector Dimensional Reduction

As mentioned above, to further analyze the relative importance of each feature vector,
the occurrence frequency of each feature vector was statistically counted. The statistical
result is shown in Figure 9. It can be found that the occurrence frequency of tree height (H)
feature vector is the highest. Comparatively speaking, the minor axis of the canopy ellipse
(l2) and canopy convex hull area (S1) have the lowest frequency. These two feature vectors
were ignored in the final SVM classification. Thus, eight feature vectors were actually
selected for tree species classification. The reason for this can be explained as follows.

As can be seen in Table 2, when the feature vector dimension is less than eight, its
lowest or highest overall accuracies are all smaller than those of the feature sets whose
dimension is eight. In addition, when the feature vector dimension is larger than eight,
its highest overall accuracy is still smaller than that of the feature sets whose dimension
is eight. Moreover, a smaller feature vector dimension means that fewer calculations are
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involved. Thus, the final eight feature vectors, including H, R23, L23, InterceptMB, R12, E,
S2 and l1 were adopted for tree species classification in this paper.
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3.2. Experimental Results

Five accuracy indexes were adopted for evaluating the performance of the proposed
method, including the overall accuracy (OA), precision (Pre), recall (Rec), F1 score (F1)
and kappa coefficient (Ka). These five accuracy indexes are defined as Equations (8)–(13),
respectively:

OA =
TP + TN

TP + TN + FP + FN
(8)

Pre =
TP

TP + FP
(9)

Rec =
TP

TP + FN
(10)

F1= 2 × Pre × Rec
Pre + Rec

(11)

Ka =
OA − Pe

1 − Pe
(12)

Pe =
(TP + FN)× (TP + FP) + (FP + TN)× (FN + TN)

N2 (13)

where TP is the number of trees correctly classified as the specific species, TN is the number
of trees correctly classified as other species, FN is the number of trees misclassified as other
species and FP is number of trees misclassified as the specific species by other species. The
confusion matrix of the classification results in this paper is shown in Figure 10.
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According to the classification results shown in Figure 10, the five accuracy indexes
were calculated, as tabulated in Table 3. In terms of OA, all the tree species have a higher
classification overall accuracy, whose OA are all high than 95%. In terms of Pre, the pre-
cision values of all the tree species are all larger than 90%. This means that the proposed
method can obtain satisfactory classification results for all the five tree species. In Figure 10,
it can be seen that there are 134 trees whose tree species are fagus sylvatica. In the classifica-
tion results, 126 trees of fagus sylvatica were correctly classified. In terms of other accuracy
indexes, such as F1 and Ka, the proposed method can all obtain satisfactory classification
results. Thus, it can be concluded that the developed feature vectors have a remarkable
effect on tree species classification.

Table 3. Accuracy metrics calculation results for the five different tree species.

FagSyl PicAbi PinSyl PseMen QuePet

OA (%) 98.06 96.83 97.71 97.36 96.65
Pre (%) 94.03 92.00 92.50 95.04 92.59
Rec (%) 97.67 93.50 91.36 92.74 90.09
F1 (%) 95.82 92.74 91.93 93.88 91.32
Ka (%) 94.56 90.72 90.59 92.19 89.25

In addition to SVM, there are many other classical supervised learning methods, such
as Adaptive Boosting (AdaBoost), K-Nearest Neighbors (KNN), Naive Bayes (NB) and
random forest (RF). The authors of this paper further compared the accuracy metrics of
tree species classification via SVM with the ones of other supervised learning methods.
The comparison results are shown in Table 4. In Table 4, it can be seen that the proposed
method can obtain the best tree species classification results, no matter which accuracy
index is adopted. In terms of OA, the proposed method achieved 93.31% overall accuracy,
while the overall accuracies of the other four methods are all smaller than 90%. In terms
of F1 and Ka, the proposed method still performed the best. Thus, it can be concluded
that SVM adopted in this paper outperformed the other four classical supervised learning
methods in terms of tree species classification.

Table 4. Accuracy metrics of different supervised learning methods.

AdaBoost KNN NB RF
The

Proposed
Method

OA (%) 88.03 89.61 81.34 89.79 93.31
Pre (%) 87.69 89.63 81.11 89.66 93.23
Rec (%) 87.34 89.21 81.37 88.95 93.07
F1 (%) 87.49 89.37 80.95 89.22 93.14
Ka (%) 85.36 87.26 77.60 87.44 91.72

4. Discussion

In this paper, the dimensionality of feature vectors was reduced from fifteen to eight.
In achieving this, the computation burden can be relieved. The final feature vectors
combination contains H, R23, L23, InterceptMB, R12, E, S2 and l1, according to the occurrence
frequency of each feature vector. As mentioned above, this paper provides a strategy for
feature dimension reduction. To further discuss the performance of the reduced feature
vectors, the authors of this paper tested all the tree species classification results using all
the feature vector combinations when the feature dimension was eight. The results are
shown in Table 5. In Table 5, it can be seen that there are forty-five different feature vector
combinations in total. In terms of OA, there are only four combinations whose OA is a little
larger than the feature vector combination adopted in this paper was. Four combinations
are colored in blue, as shown in Table 5. It is easy to see that their OAs are less than one
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percentage points higher than that of the proposed eight feature vectors. Meanwhile, the
performances of the proposed eight feature vectors are better than the ones of all the other
forty-feature vector combinations, no matter which accuracy indicator was adopted. Thus,
it can be concluded that using the occurrence frequency of each feature vector will provide
an effective dimension reduction method for tree species classification, while maintaining a
promising tree species classification performance.

Table 5. Accuracy metrics comparison of different combination of feature vectors. (The background
color of the combination of feature vectors adopted in this paper was red, while the background color
of four feature vector combinations, whose performances are a little better than the proposed feature
vector combinations was blue.)

Combination OA (%) Pre (%) Rec (%) F1 (%) Ka (%)

{H,l1,l2,S1,S2,E,InterceptMB,R12} 85.74 84.99 85.19 85.05 82.08
{H,l1,l2,S1,S2„InterceptMB,R23} 88.73 87.83 88.01 87.9 85.85

{H,l1,l2,S1,S2,E,InterceptMB,L23} 82.04 80.79 81.18 80.82 77.44
{H,l1,l2,S1,S2,E,R12,R23} 85.74 84.71 84.63 84.66 82.06
{H,l1,l2,S1,S2,E,R12,L23} 84.86 84.22 84.64 84.39 80.98
{H,l1,l2,S1,S2,E,R23,L23} 89.61 89.45 89.29 89.34 86.93

{H,l1,l2,S1,S2,InterceptMB,R12,R23} 88.38 87.62 87.65 87.62 85.39
{,l1,l2,S1,S2,InterceptMB,R12,L23} 88.38 87.98 88.26 88.09 85.4

{H,l1,l2,S1,S2,InterceptMB,R23,L23} 91.02 90.85 90.67 90.75 88.71
{H,l1,l2,S1,S2,R12,R23,L23} 90.32 90.16 89.91 90.00 87.82

{H,l1,l2,S1,E,InterceptMB,R12,R23} 87.85 86.86 86.85 86.84 84.73
{H,l1,l2,S1,E,InterceptMB,R12,L23} 87.68 87.39 87.25 87.26 84.5
{H,l1,l2,S1,E,InterceptMB,R23,L23} 92.78 92.93 92.33 92.58 90.91

{H,l1,l2,S1,E,R12,R23,L23} 93.13 92.85 92.86 92.85 91.37
{H,l1„S1,InterceptMB,R12,R23,L23} 91.9 91.61 91.68 91.64 89.82
{H,l1,l2,S2,E,InterceptMB,R12,R23} 89.44 88.65 88.61 88.61 86.72
{H,l1,l2,S2,E,InterceptMB,R12,L23} 87.85 87.65 87.37 87.46 84.72
{H,l1,l2,S2,E,InterceptMB,R23,L23} 93.13 93.44 92.82 93.08 91.36

{H,l1,l2,S2,E,R12,R23,L23} 91.02 90.54 90.8 90.65 88.72
{H,l1,l2,S2,InterceptMB,R12,R23,L23} 92.43 92.24 92.28 92.23 90.48
{H,l1,l2,E,InterceptMB,R12,R23,L23} 92.25 92.08 92.1 92.07 90.26
{H,l1,S1,S2,E,InterceptMB,R12,R23} 88.56 87.98 87.86 87.89 85.61
{H,l1,S1,S2,E,InterceptMB,R12,L23} 89.79 89.37 89.58 89.46 87.17
{H,l1,S1,S2,E,InterceptMB,R23,L23} 94.01 94.23 93.89 93.96 92.47

{H,l1,S1,S2,E,R12,R23,L23} 91.37 91.03 91.14 91.05 89.16
{H,l1,S1,S2,InterceptMB,R12,R23,L23} 90.67 90.48 90.32 90.38 88.26
{H,l1,S1,E,InterceptMB,R12,R23,L23} 94.19 94.12 93.94 94.02 92.69

{H,l1,S2,E,InterceptMB,R12,R23,L23} 93.31 93.23 93.07 93.14 91.72
{H,l2,S1,S2,E,InterceptMB,R12,R23} 89.61 88.95 89.13 89.03 86.95
{H,l2,S1,S2,E,InterceptMB,R12,L23} 90.14 90.11 89.72 89.86 87.6
{H,l2,S1,S2,E,InterceptMB,R23,L23} 91.9 91.93 91.61 91.74 89.81

{H,l2,S1,S2,E,R12,R23,L23} 90.67 90.39 90.49 90.39 88.27
{H,l2,S1,S2,InterceptMB,R12,R23,L23} 91.9 91.7 91.78 91.65 89.83
{H,l2,S1,E,InterceptMB,R12,R23,L23} 93.84 93.81 93.75 93.78 92.25

{H,l2,S2,E,InterceptMB,R12,R23,L23} 93.66 93.39 93.33 93.35 92.03
{H,S1,S2,E,InterceptMB,R12,R23,L23} 91.37 91.07 91.27 91.14 89.16
{l1,l2,S1,S2,E,InterceptMB,R12,R23} 81.51 81.09 81.05 81.04 76.76
{l1,l2,S1,S2,E,InterceptMB,R12,L23} 82.92 82.77 82.53 82.62 78.52
{l1,l2,S1,S2,E,InterceptMB,R23,L23} 85.21 85.88 85.66 85.71 81.4

{l1,l2,S1,S2,E,R12,R23,L23} 80.46 80.99 80.69 80.8 75.42
{l1,l2,S1,S2,InterceptMB,R12,R23,L23} 85.21 86.1 85.91 85.99 81.4
{l1,l2,S1,E,InterceptMB,R12,R23,L23} 88.03 88.37 88.16 88.23 84.94
{l1,l2,S2,E,InterceptMB,R12,R23,L23} 86.27 86.92 86.7 86.75 82.73
{l1,S1,S2,E,InterceptMB,R12,R23,L23} 86.27 86.72 86.74 86.67 82.74
{l2,S1,S2,E,InterceptMB,R12,R23,L23} 86.27 86.73 86.64 86.62 82.73
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Akerblom et al. [6] developed feature vectors using the QSM for recognizing tree
species. In their method, three different types of feature vectors, namely the stem branch,
crown and tree, were presented. There were fifteen feature vectors in total, including the
stem branch angle, stem branch cluster size, three stem branches’ radius, stem branch
length, stem branch distance, crown start height, crown height, crown evenness, crown
diameter/height, DBH/height ratio, DBH/tree volume, DBH/minimum tree radius, vol-
ume below 55% of the total height, cylinder length/tree volume and shedding ratio. Three
different classification methods, namely KNN, multinomial regression (MNR) and SVM
(including three different kernel functions, such as linear, polynomial and radial basis func-
tions, which are SVMlin, SVMpol and SVMrbf, respectively) were applied for tree species
classification. The authors of this paper compared their performance with that of the
proposed method. The comparison is shown in Table 6. In Table 6, it can be seen that
compared with the fifteen feature vectors developed by Akerblom et al. [6], although only
eight feature vectors were adopted in this paper, the proposed method obtained much
better tree species classification results. Thus, it can be concluded that the eight feature
vectors developed in this paper are more effective at tree species classification.

Table 6. Accuracy metrics comparison with the method proposed by Åkerblom et al. [6].

Åkerblom et al. [6] The
Proposed
MethodKNN MNR SVMlin SVMpol SVMrbf

OA (%) 79.75 81.87 81.69 75.88 82.04 93.31
Pre (%) 80.00 80.94 80.87 78.79 81.82 93.23
Rec (%) 78.18 80.93 80.96 73.54 80.75 93.07
F1 (%) 78.44 80.90 80.91 74.01 81.09 93.14
Ka (%) 74.46 77.21 76.99 69.47 77.37 91.72

5. Conclusions

Tree species have a direct impact on forests’ productivity and diversity. To accurately
and efficiently identify tree species, this paper proposed a tree species classification method
based on the combination of fractal geometric feature vectors and QSM feature vectors. In
this paper, three different types of feature vectors were first extracted. Specially, fractal
geometry-based feature vectors, including fractal dimension and intercept, were developed.
Meanwhile, four different QSM feature vectors were also introduced to obtain better
tree species classification results. Successively, the feature vector dimensionality was
reduced by analyzing the relative importance for tree species identification using the CART
method. To further conduct feature dimension reduction, the occurrence frequency of each
feature vector was statistically calculated using different combinations of feature vectors.
Eventually, SVM was applied to obtain tree species classification results using the reduced
eight feature vectors. Five hundred and sixty-eight individual tree point clouds with five
tree species were used for testing. The experimental results show that the developed feature
vectors are effective at identifying different tree species. The overall accuracies for the
five tree species are all greater than 95%. In the comparison with the other four classical
supervised learning methods, the proposed method still performs the best. Compared
with the relevant method, the eight feature vectors developed in this paper also performed
much better. This indicates that the fractal geometry-based feature vectors and QSM-based
feature vectors developed in this paper can effectively improve the performance of tree
species classification.
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