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Abstract: After the transformation of counties in urban suburbs into districts, the rapid urbanization
and industrialization process in China’s developed regions had a huge impact on the spatial distribu-
tion and equity of the suburban forest ecological functions. Accurately describing this impact could
provide an important reference for the construction of suburban forest engineering and for ecological
environmental planning. Jiangning District of Nanjing City, China, was selected as the research
area, while the forest resource planning and design survey data in 2007 and 2017, together with the
demographic data of the study area, were collected as the main information sources. Following the
establishment of the forest ecological function evaluation indicators and the analysis of the spatial
change of the forest ecological functions, the Gini coefficient was calculated to analyze the changes
of the regional ecological function equality. The results showed that: (1) Compared with 2007, the
proportion of areas with low forest ecological functions (abbreviated as FEF) in the study area in
2017 showed a downward trend, and the proportion of areas with medium and high FEF showed an
increasing trend; (2) Compared with 2007, the forest landscape in the study area in 2017 was severely
fragmented, the spatial aggregation of the FEF showed a significant decline, and the FEF developed
towards a direction of spatially balanced distribution; (3) During 2007–2017, the sub-compartments
with high-value FEF in the study area (hot spots) shifted to the northwest, where the economy was
developed and the population density was higher, and the sub-compartments with low-value (cold
spots) shifted to the south, where the economy is underdeveloped and with lower population density;
(4) From 2007 to 2017, the Gini coefficient of the FEF in the study area decreased, indicating that the
regional ecological equity had initially improved. The urbanization and industrialization process of
the urban suburbs is a double-edged sword. On the one hand, the process has caused the fragmenta-
tion of forest landscape, the decline of the forest area, and the unbalanced spatial distribution of the
population. On the other hand, the huge material wealth and human capital accumulated through
industrialization have promoted regional ecological equity and improved the living environment of
the local residents.

Keywords: urban suburban forest; forest ecological function; ecological equity; Gini coefficient

1. Introduction

The forest is a terrestrial ecosystem with the largest distribution area, the most complex
organizational structure, and the richest biodiversity on the earth. The forest ecological
function refers to the ecological environment conditions and the effects formed by the
forest ecosystem and its ecological processes that are conducive to human production and
development [1,2]. As an important component of the suburban ecosystem, the urban
suburban forest is the only green infrastructure in the urban suburbs, providing local
residents with water and soil conservation, climate regulation, environmental purification,
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and other multiple service functions [3,4]. Because the urban suburban forests have efficient
and stable self-purification capabilities and continuous and complete ecological service
functions, they play an extremely important role in improving the quality of regional
human settlement environment [5,6]. Since the beginning of the 21st century, major cities
in China’s Yangtze River Delta have experienced rapid urbanization. A large number
of people have migrated from the remote and impoverished countryside to the urban
center [7,8], resulting in not only a sharp increase in the urban population, but also great
changes in the regional land use and land cover [9,10]. With the development of modern
industrialization, major changes have taken place in the structure of the local land use,
and the regional ecosystems have become increasingly fragile [11,12]. Therefore, how
to improve the stability of the urban suburban forest ecosystem to give full play to its
ecological service functions (abbreviated as FEF) has become an important concern for
regional planners.

The comprehensive evaluation of suburban FEF and the analysis of the impact of
the urbanization process on ecological equity can quantitatively describe the value of
forest ecological service functions in urban suburbs, and provide important guidance
for the optimal layout and ecological construction of urban suburban forests. Until now,
most studies on the evaluation of FEF have focused on the evaluation of a single or a
few ecological functions at the stand and landscape scales [13,14]. A small number of
comprehensive evaluations of the forest ecological service functions at the national and
regional scales are usually based on the forest resource statistics data and focus on the
economic evaluation of the forest service function [15,16]. Existing studies on the evaluation
of urban FEF lack the content of spatial analysis, and there are fewer research results on the
ecological equity related to the change of population movement.

Ecological equity can be expressed as a measure of the equity of the ecological environ-
ment for people to provide ecological well-being, which has received extensive attention in
recent years [17]. The current research on ecological equity mainly focuses on the allocation
of natural resources and pollutant discharge, and there are few studies on the equity of
forest ecological services [18–20]. Due to the unbalanced natural conditions, population
density, and economic development levels, the distribution of forests in the urban suburbs
is usually irrational, affecting the fair and reasonable enjoyment of forest ecological benefits
by residents in these areas. In terms of the evaluation of the equity of the forest distribu-
tion in urban suburbs, the per capita index method and spatial accessibility analysis are
usually used for evaluation [21,22]. The per capita index method oversimplifies the spatial
distribution pattern of suburban forests, while the selection of the influencing factors of the
accessibility analysis method is easily influenced by subjective factors, which restricts the
wide application of these methods. In recent years, the Gini coefficient has been widely
used in the evaluation of ecological equity. Due to the rationality and universality of this
indicator, the Gini coefficient can evaluate ecological equity at different scales such as the
household scale, city scale, and provincial scale [23–25]. Since the Gini coefficient can be
used to evaluate the difference in the allocation of resources or pollutant content between
regions, it has become the main indicator of ecological equity evaluation.

In China, forest resources planning and design survey Level Two Survey has the
advantages of many survey factors, high survey precision, and continuous dynamics. The
survey content includes multiple factors such as land types, topography, forest species, tree
species, soil thickness, forest structure, and stock volume. These factors are closely related
to the forest ecological functions and become accurate and reliable data sources for the
comprehensive evaluation of FEF at the regional scale [26]. On the basis of establishing
a forest survey database, we selected factors closely related to the FEF to construct an
ecological function index which could reflect the comprehensive ecological quality of each
forest stand (sub-compartment), in order to explore a scientific and applicable method for
regional FEF evaluation [27]. Therefore, with the multi-period forest resources planning
and design survey data as the main information source, under the support of geographic
information (GIS), and combined with the ecological function index, the Gini coefficient,
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it was possible to analyze the spatial changes of urban suburban FEF and their impact
on the ecological equity. The research results could provide a scientific reference for the
construction of forest cities and ecological environment planning in the Yangtze River
Delta, China.

Jiangning District is located in the middle of Nanjing City, Jiangsu Province, China.
Before 2000, it was an agricultural county dominated by the primary industry of rice and
wheat planting. After 2000, with the approval of the State Council of China, Jiangning
District was withdrawn from the county and turned into a district of Nanjing City, and
the focus of its economic development shifted to secondary and tertiary industries such as
automobile manufacturing, biopharmaceuticals, logistics and transportation, and software
research and development. Since 2017, the gross domestic product (GDP) of Jiangning Dis-
trict has been ranked the first among the eleven districts of Nanjing. At present, Jiangning
has become an important national science and education center and innovation base, an
important transportation and logistics hub of Yangtze River Delta, and an airport hub in the
eastern part of the country [28]. The rapid urban development and industrialization process,
the vigorous implementation of landscape greening engineering, and the deepening of the
“Green Nanjing” urban forest project, which aims to improve the ecological environment,
have had a huge impact on the spatial patterns of the FEF in the study area. Along with
the large influx of the immigrant population around the study area and the accelerating
movement of the population in various streets within the study area, the equity of the FEF
in the study area has also undergone major changes. The forest ecological environment
problems encountered in the urbanization process of Nanjing Jiangning District are very
common in the Yangtze River Delta. However, there are still insufficient studies on the
equity problems of urban forests.

Therefore, in this study, Nanjing Jiangning District was taken as the case study area.
The survey data of the forest resources planning and design in 2007 and 2017 were used,
and the demographic data of the research area in the same years as the forest survey were
collected as the main information source, followed by the analysis of the spatial changes
of the forest ecological functions and their impact on equity. The main objectives of this
study were as follows: (1) To reveal the spatial change patterns of the FEF in the process
of urbanization in the Yangtze River Delta, China; (2) To analyze the impact of the spatial
changes of the FEF on the forest etiological equity; (3) To propose suggestions for improving
the ecological equity in urban suburbs; (4) To provide scientific reference for the ecological
planning for urbanized suburbs in the Yangtze River Delta.

2. Materials and Methods
2.1. Study Area

Jiangning District (31◦37′~32◦07′ N, 118◦28′~119◦06′ E) is located on the south bank of
the lower reaches of the Yangtze River, in the middle of Nanjing, Jiangsu Province, China,
with a total area of 1561 km2 (Figure 1). Jiangning is part of the hilly mountainous area
of Ning-Zhen-Yang, with a complex terrain structure, known as “sixty percent of hilly
mountains, ten percent of water and thirty percent of plains”. The northeast of the district
is in the western section of the Ningzhen Mountain, the southwest is on the northern edge
of the Ningwu Faulted Basin, the central part is on the Loess Hill and the Qinhuai River
alluvial plain, and the west is on the riverside plain. The regional terrain is high in the
north and south and low in the middle, similar to a “saddle”. Generally speaking, the
terrain of Jiangning is relatively flat, the altitude is mostly below 5 m above sea level (asl),
and the highest altitude is about 352 m asl [28].

The study area belongs to the northern subtropical monsoon climate zone, with a
humid climate and four distinct seasons. The annual average temperature is 14.60 ◦C and
the annual average precipitation is 1004.60 mm. Due to the favorable natural conditions,
Jiangning has abundant forest resources. The local coniferous tree species are mainly
Masson pine, black pine, and cypress, while the broad-leaved trees are mainly Quercus
acutissima, Sweetgum, Maackia amurensis, Zelkova serrata, and Populus adenopoda. Since
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2007, with the continuous deepening of the urban forest project of “Green Nanjing”, the
construction of key greening projects such as green road passages, river and lake shelter
belts, forest parks, green and beautiful villages, and urban landscape greening in the
research area has achieved remarkable achievements, greatly improving the quality of the
human living environment.

By the end of 2022, the district had reached a GDP of 300.06 billion yuan. As an
important science and education center and innovation base of the country, an important
transportation and logistics hub, and an airport hub in the eastern region of the country,
the rapid economic development of Jiangning has attracted a large number of immigrants
from the surrounding areas, and the regional population growth rate has been accelerating
year by year. In 2022, the district had 10 streets, including 136 urban communities and
71 rural communities, with a permanent population of 2.35 million [29].
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Figure 1. Geographical location of the case study area.

2.2. Research Methods
2.2.1. Data Sources and Preprocessing

There were three major data sources used in this paper: (1) Vectorized sub-compartment
data of forest resources planning and design survey (Level Two Survey) in the research area
in 2007 and 2017. The number of sub-compartments in 2007 and 2017 was 19,606 and 55,677,
respectively, with more than 60 survey factors such as land type, topography, forest
species, tree species, soil, forest structure, and stock volume [30–32]. (2) Vector shape
files of the street administrative boundaries and the road networks, and the digital el-
evation model (DEM) of the study area purchased from the Big Map Data Company
(http://www.bigemap.com/, accessed on 10 June 2022). The road networks included
expressways, national roads, provincial roads, and local secondary roads in 2007 and 2017.
The spatial resolution of DEM was 2 m × 2 m. (3) Resident population and household reg-
istration population statistical data of each street from the statistical Yearbook of Jiangning
District’s in 2008 and 2018.

Based on the collected data mentioned above, the Surface tool in the GIS Spatial
Analysis Toolbox of ArcGIS 10.2 was used to generate the slope of the study area using the
DEM, and the Buffer Tool was used to generate a distance to road raster file.

http://www.bigemap.com/
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2.2.2. Construction of Ecological Function Index

From more than 60 sub-compartment attributes, we selected eight factors closely
related to the FEF, namely forest canopy closure, total vegetation coverage, forest natural
degree, community structure, tree species structure, litter layer thickness, stock volume,
and stand average height to construct the forest ecological function index (abbreviated
as FEFI) by weighted average according to their relative importance, to comprehensively
assess the FEF of each sub-compartment. Each ecological function factor and its weight
are shown in Table 1 and the definition and calculation method for each factor are detailed
and described in reference [33]. It should be noted that the weights of the eight evaluation
factors were directly quoted from Technical Regulations for Forest Resources Planning and
Design (DB32/T 2168-2012) promulgated by the Quality and Technical Supervision Bureau
of Jiangsu Province in 2012 [34].

Table 1. List of forest ecological function evaluation indicators and their weights.

Evaluation
Factor Stock Volume Natural

Degree
Community

Structure
Tree Species

Structure

Weights 0.20 0.15 0.15 0.15

Evaluation
Factor

Stand Average
Height

Canopy
Closure

Total Vegetation
Coverage

Litter Layer
Thickness

Weights 0.10 0.10 0.10 0.05

In order to eliminate the calculation bias caused by evaluation factors with different mea-
surement levels, each evaluation factor was standardized before the factors were integrated.

For the evaluation factors where the larger is better:

rij =

xij −min
j

{
xij

}
max

j

{
xij

}
−min

j

{
xij

} (1)

For evaluation factors where the smaller is superior:

rij =

max
j

{
xij

}
− xij

max
j

{
xij

}
−min

j

{
xij

} (2)

where rij is the standardized value of the i-th ecological function factor of the j-th sub-
compartment; xij is the investigation value of i-th ecological function factor of the j-th
sub-compartment; min

j
xij is the minimum value of the i-th ecological function factor of all

the sub-compartments; and max
j

xij is the maximum value of the i-th ecological function

factor of all the sub-compartments.

2.2.3. Spatial Analysis of Forest Ecological Functions

We used Moran I and Z, which are two indices of geo-statistics, to analyze the changes
of spatial aggregation of the FEFI. Four pattern indexes including patch density (PD), patch
size (MPS), shape index (MSI), and fractal dimension (FD) were used to analyze the spatial
pattern change of the forest landscape in the study area [35,36]. Spatial clustering was
used to extract high ecological function sub-compartments (hot spots) and low ecological
function sub-compartments (cold spots). Change analysis of the geographical distribution
center of the hot spots and cold spots was carried out to reveal the regional FEFI distribution
changes [37]. The spatial changes of the forest landscape in the study area from 2007 to
2017 were analyzed by calculating the four landscape pattern indexes.
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If Moran’s I > 0 and |Z| > 1.96, the value of the FEFI of forest sub-compartment
is similar to its neighboring, and the FEFI shows an aggregated spatial distribution; if
Moran’s I < 0 and |Z| < 1.96, the FEFI shows a discrete spatial distribution; if Moran’s
I = 0 and |Z| = 1.96, the forest ecological function index shows a random distribution.
The calculation of the landscape pattern index was performed through Patch Analyst,
a plug-in of ArcGIS 10.2. The patch density (PD) and patch size (MPS) can reflect the
fragmentation degree of patches, the shape index (MSI) and the fractional dimension
(FD) can reflect the complexity of patches. The spatial clustering analysis was realized by
using the aggregation and special case analysis tools in the ArcGIS 10.2 spatial statistics
toolbox. When the statistical value p = 0.05, through spatial clustering, the forest sub-
compartments were divided into four types according to the level of the FEFI: high-value
sub-compartments (hot spots, HH), low-value sub-compartments (cold spots, LL), high-
value special sub-compartments surrounded by low-value sub-compartments (HL), and
low-value special sub-compartments surrounded by high-value sub-compartments (LH).
The purpose of spatial geographic distribution center (Mean Center) analysis was to identify
the geographical distribution center of the FEFI by calculating the average value of the
geographic coordinates from all the sub-compartments in the study area.

2.2.4. Ecological Equity Evaluation

The Gini index is a common indicator used internationally to measure the income gap
between residents of a country or region [38]. Since the Gini index can be used to evaluate
the degree of difference in the amount of resources or pollutants between regions, it has
become the main indicator for the evaluation of the equity of forest ecological functions.
The maximum Gini coefficient is 1 and the minimum is equal to 0. The closer the Gini
coefficient is to 0, the more the distribution of the FEF tends to be equal. According to
the regulations of international organizations such as the United Nations Program, a Gini
coefficient below 0.2 is regarded as absolutely equity, 0.2–0.3 is regarded as relatively equity;
0.3–0.4 is regarded as relatively reasonable; and 0.4–0.5 is regarded as a large gap; when the
Gini coefficient reaches 0.5 or above, it means that the gap is huge.

The equity evaluation of urban FEF is mainly based on the population distribution
data. After obtaining the urban FEFI value of each administrative region, the Gini coefficient
was applied to calculate the equity index of the urban FEF. Many Chinese scholars have
explored the specific calculation method of the Gini coefficient and put forward more than
ten different calculation formulas. Referring to the research results of Boyce et al. in 2016,
the Gini coefficient of the FEFI is calculated as follows [18]:

Gini = 1 +
(

1
n

)
− [

2
Meanpop× n2 ]

n

∑
i=1

[
(n− i + 1)× populai

]
(3)

where Meanpop is the average of the ecological function index of all streets, populai is the
FEFI of street i, and n is the number of streets.

3. Results and Analysis
3.1. Dynamic Changes in FEFI

Eight FEF factors of each sub-compartment in 2007 and 2017, namely, forest canopy
closure, total vegetation coverage, natural degree, community structure, tree species struc-
ture, litter layer thickness, stock volume, and stand average height, were extracted. Based
on the standardization of the ecological function factors, the FEFI of the study area in 2007
and 2017 were generated by weighted average according to the weights of 0.20, 0.15, 0.15,
0.15, 0.15, 0.10, 0.10, and 0.05. The FEFI was graded according to the criteria of low (<0.3),
medium (0.3–0.6), and high (>0.6), and the spatial distribution maps of the FEFI in the
study area in 2007 and 2017 were produced (Figure 2), and the change table of the FEFI
from 2007 to 2017 was generated (Table 2).
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Table 2. Changes in FEFI from 2007 to 2017.

Time
Average

Value
Standard
Deviation

Proportion of Different Levels of Ecological
Index (EI) (%)

Low (<0.3) Medium
(0.3–0.6) High (>0.6)

2007 0.369 0.299 81.168 2.067 16.765
2017 0.589 0.174 15.039 49.646 35.315

Change 0.221 −0.125 −66.129 47.579 18.550

It can be seen from Figure 2 that in 2007, the sub-compartments with high FEFI were
mainly distributed in the three state-owned forest farms of Qinglong Mountain, Tang
Mountain, and Dongshan Bridge in the northeastern mountainous area and southwest
basin of the study area. In the vast middle hills and plains, except for Fang Mountain,
Niushou Mountain, Jiangjun Mountain, and other scenic spots, the FEFI values of the
forest sub-compartments were at a low level. Under the dual effects of the urbanization
process and the urban forest project of Greening Nanjing, the spatial distribution of the
FEFI in the study area in 2017 showed a completely different pattern from that in 2007:
the sub-compartments with low FEFI were mainly concentrated in Hushu Street, which
is underdeveloped and far away from the urban downtown area, then in the streets with
large population density and relatively developed economy including Jiangning Street,
Lukou Street, and Moling Street. In 2017, the sub-compartments with high and medium
FEFI were located in the remaining six streets, namely Guli, Dongshan, Chunhua, Qilin,
Tangshan, and Hengxi.

It can be seen from Table 2 that the FEFI of the study area in 2007 and 2017 were
generally at a lower–middle level, which is consistent with the natural and socio-economic
conditions of the study area. After 2000, the research area was converted from a county to a
district. With the accelerating process of urbanization and industrialization, the land devel-
opment intensity of the state-owned forest farms such as Tang Mountain, Dongshan Bridge,
and Qinglong Mountain, and forest parks such as Jiangjun Mountain, Fang Mountain, and
Niushou Mountain, continued to increase, leading to a decrease in the forest area in the
study area. Compared with 2007, the FEFI in the study area rose from 0.3686 to 0.5893 in
2017, with an increase of 0.2207. In 2007, the proportion of the forest area with low FEFI in
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the study area was as high as 81.168%, followed by the proportion of the area with high
FEFI (16.765%), and the proportion of the area with medium FEFI (2.067%). Driven by the
urban forest project of Beautiful Nanjing from 2007 to 2017, key greening projects such as
green passages, river and lake shelter belts, forest parks, beautiful and green villages, and
urban landscape greening in the plain hillock areas with low forest coverage in the study
area have achieved remarkable results. In 2017, the proportion of areas with a low FEFI
in the study area decreased from 81.168% in 2007 to 15.039%, with a drop of 66.129%. On
the contrary, the proportion of areas with a medium FEFI and a high FEFI increased from
2.067% and 16.765% in 2007 to 49.646% and 35.315% in 2017, respectively, with an increase
of 47.579% and 18.550%.

3.2. Spatial Change of Forest Ecological Function Index
3.2.1. Changes in the Pattern of Forest Ecological Function Index

First, with the Feature to Point Tool of ArcGIS 10.2(Environmental Systems Research
Institute, Inc. (Esri) was founded in 1969 and is headquartered in RedLands, California,
USA), the polygonal vector files of the sub-compartments were converted into point vector
files, and the Moran I and Z values of the FEFI of the sub-compartments in the study area
were calculated using the Spatial Autocorrelation Tool in the Spatial Statistical Analysis
Toolbox. The ArcGIS 10.2 plug-in tool of Patch Analyst was used to calculate the landscape
pattern index of the study area in 2007 and 2017. The calculation results are shown in
Table 3.

Table 3. Changes in the spatial pattern of forest sub-compartments from 2007–2017.

Time
Spatial Aggregation of FEFI Fragmentation Index Shape Index

Moran’s I Z Patch Density
(PD)

Plaque Size
(MPS)

Shape Index
(MSI)

Fractional
Dimension (FD)

2007 0.150 90.288 12.570 7.955 1.5619 1.375
2017 0.073 67.666 35.603 2.801 1.917 1.452

Changes −0.078 −22.622 23.033 −5.154 0.3551 0.077

It can be seen from Table 3 that the FEFI in the study area from 2007 to 2017 showed
a spatial aggregation distribution pattern. Compared with 2007, the spatial aggregation
of the FEFI in the study area showed a significant decline in 2017. The Moran I coefficient
decreased from 0.150 to 0.073, and the Z value decreased from 90.288 to 67.666, decreasing
by 0.078 and 22.622, respectively. It can be seen from Table 3 that from 2007 to 2017,
the fragmentation of the forest patches in the study area increased significantly, and the
shape of the forest sub-compartments tended to become more complicated. From 2007
to 2017, large-scale constructions projects of beautiful villages, traffic road greening, and
street landscape greening were carried out. The forest coverage rate and forest ecological
functions of hilly and plain areas with low ecological functions increased, resulting in the
improvement of the EI in the study area. As a result, the gap of the FEFI in different places
of the study area was reduced, and the spatial aggregation of the FEFI was also weakened.
From 2007 to 2017, due to the rapid development of urbanization and industrialization in
the study area, the forests planted in the process of the urban forest construction projects of
Green Nanjing were mainly small area plantations, resulting in the fragmentation of the
forest landscape and the more complicated shape of the sub-compartments.

3.2.2. Changes in Cold and Hot Spots of FEFI

After the spatial aggregation analysis of the FEFI of the sub-compartments in the
study area, the dynamic changes of the environmental factors such as the topography and
human disturbance in the sub-compartments with high FEFI (hot spots, HH) and low FEFI
(cold spots, LL) during 2007–2017 were analyzed. The Multi Values To Points tool in the
Spatial Analysis Toolbox of ArcGIS 10.2 was used to extract three ecological environmental
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factors (Table 4): the altitude, slope, and distance from the main road to the hot spot and
cold spot (road distance). It can be seen from Table 4 that in 2007, the sub-compartments
with a high FEFI (hot spots) in the study area were mainly distributed in the mountains
and hills with high altitudes, steep slopes, and far away from main roads, while the sub-
compartments with a low FEFI (cold spots) were mainly located in the plains with low
altitude, gentle slopes, and close to main roads. From 2007 to 2017, the environmental
differences between the sub-compartments with a high FEFI and the sub-compartments
with a low FEFI had been greatly reduced, leading to a homogeneous spatial pattern of
the ecological environment factors between the hot spots and cold spots. This change was
closely related to the large-scale greening projects between 2007 and 2017 in the plain and
hillock streets which occupy 88% of the land area of Jiangning District.

The Mean Center Tool in the spatial analysis toolbox of ArcGIS 10.2 was applied to
generate the geographical distribution centers of the cold spots and hot spots in the study
area in 2007 and 2017, respectively (Figure 3). It can be seen from Figure 3 that from 2007
to 2017, the centers of the hot spots with a high FEFI shifted to the north of Moling Town,
which has a developed economy and a large amount of immigrants, while the center of the
cold spots with a low FEFI shifted towards Lukou Street, where the traffic is less developed
and where a large amount of local residents emigrate. The change of the geographical
distribution centers of the cold and hot spots was closely related to the location, economic
level, and population migration direction of each street in the study area. Among the ten
streets in Jiangning District, Moling, Guli, and Dongshan Streets are close to the downtown
area of Nanjing, and Dongshan Street is the place of the district government. The above four
streets all have a high level of economic development and a large number of immigrants.
On the contrary, Hengxi, Lukou, and Hushu streets are far from the downtown area of
Nanjing, their economic level is relatively low, and are areas where a large number of
local people emigrate. Therefore, in terms of manpower, material resources, and financial
resources for afforestation, the northern streets in the study area close to the downtown
area of Nanjing had obvious advantages over the southern streets which are far away from
the downtown area, resulting in major changes in the geographical distribution centers of
the cold spots and hot spots from 2007 to 2017.
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Table 4. Environment changes of cold and hot spots from 2007 to 2017.

Time
Hot Spots Cold Spots

Elevation Slope Road
Distance Elevation Slope Road

Distance

2007 65.026 4.911 444.673 245.09 1.429 199.339
2017 29.446 2.123 183.080 31.788 1.932 273.019

Changes −35.58 −2.788 −261.593 −213.302 0.503 73.68

3.3. Analysis of Dynamic Changes in the Equity of FEFI

The Zonal Statistics tool in the Spatial Statistics Toolbox of ArcGIS 10.2 was used to
calculate the average FEFI of each street in 2007 and 2017. Then, the average FEFI was
multiplied by the area of each street and divided by the population of each street in 2007
and 2017. Finally, the average FEFI of each street by population was obtained (Table 5).
It should be noted that due to the large differences in the economic development level of
the various streets, and the large gaps in the direction and quantity of population flow,
the phenomenon of inconsistency between the registered population and the resident
population was serious in the study area. Moling, Dongshan, and other streets in the north
of the research area, which are close to the downtown area of Nanjing, had a high level
of economic development, a large net inflow of population, and the number of resident
populations was far greater than the registered population. On the contrary, in the southern
streets of Hushu and Chunhua, which are far away from the downtown area, the resident
population was smaller than the registered population. In order to ensure the accuracy of
the calculation results, the resident population instead of the registered population of each
street was adopted in the calculation of the Gini coefficient of the FEFI.

Table 5. Changes in EI by streets in Jiangning from 2007 to 2017.

Street Name
Area
(hm2)

FEFI in 2007 FEFI in 2007

Street
Average

FEFI by
Population

Street
Average

FEFI by
Population

Chunhua 20,068.9 0.4447 0.1891 0.4601 0.1491
Dongshan 6914.6 0.4157 0.0192 0.4933 0.0173

Guli 9177.2 0.5534 0.1006 0.4969 0.0689
Hengxi 21,413.0 0.5324 0.1868 0.4413 0.1180
Hushu 14,863.0 0.4500 0.1029 0.4183 0.0729

Jiangning 26,293.8 0.4934 0.1720 0.4929 0.1309
Lukou 16,388.5 0.4690 0.1080 0.4669 0.0820
Moling 18,028.9 0.4414 0.0248 0.4855 0.0208
Qilin 6135.8 0.4239 0.0501 0.5061 0.0456

Tangshan 17,128.4 0.5163 0.1518 0.4787 0.1073

The FEFI by population of each street in Table 4 was put into Formula (3) to calculate
the Gini coefficient of the FEFI in the study area in 2007 and 2017. The Gini coefficient
in 2007 was 0.3104, which was a relatively reasonable level. The Gini coefficient in 2017
was 0.2906, which was at a relatively equitable level. It can be seen that from 2007 to
2017, with the development of multiple ecological projects such as beautiful villages, traffic
road greening, and street landscape greening in the study area, the differences in the FEFI
between the streets had gradually narrowed. As a result, the Gini coefficient of the FEFI in
the study area had improved from a relatively reasonable level to relatively equity.

4. Discussion

Since the beginning of the 21st century, China’s economically developed Yangtze River
Delta region entered the period of rapid urbanization and industrialization. With the trans-
formation of land-use types and population migration, the spatial distribution and equity
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of the FEF in urban suburbs have undergone tremendous changes. Accurately depicting
this change could provide scientific reference for urban forest engineering construction and
ecological environment planning.

From 2007 to 2017, the EI in the study area was generally at a low–middle level.
Compared with 2007, the proportion of the areas with a low FEFI in the study area in 2017
decreased, and the proportions of areas with medium and high FEFIs increased by 47.579%
and 18.550%, respectively. From 2007 to 2017, the forest landscape in the study area was
severely fragmented, the spatial aggregation of the FEFI showed a significant decline, and
the spatial pattern of the FEFI developed towards a balanced distribution. In the study
area, the high FEFI value sub-compartments (hot spots) shifted to the northwest where
the economy was more developed and the population density was higher, while the low
FEFI value sub-compartments (cold spots) shifted to the south where the economy was
underdeveloped and the population density was lower. With the development of multiple
ecological projects such as beautiful villages, traffic road greening, and street landscape
greening, the differences in the FEFI between the streets had gradually narrowed. From
2007 to 2017, the Gini coefficient of the FEFI in the study area had dropped from 0.3104 to
0.2906, and the ecological equity had been initially improved.

From 2007 to 2017, the general forest ecological functions in the study area have
been gradually improving, which is similar to the research results of the evaluation of
urban FEF in Nanjing [39]. Though started late, studies conducted by other scholars on
the ecological service functions of urban forests (FEF) in China have shown an overall
trend of improvement in recent years, similar to the findings from this paper [40]. The
city managers in some countries in the Americas [41] and Europe [42] have also gradually
realized the importance of the ecological service functions of urban forests, and they are
making efforts to improve the functions of urban forests. However, there are still cities
where the ecological functions of forests are showing a declining trend, such as Iran [43].
Among the areas we studied, there were also some areas where the FEF has remained
unchanged or declined. For example, the high FEFI sub-compartments of state-owned
forest farms such as Qinglong Mountain and Tang Mountain in the northeast have remained
basically unchanged, while the high EI sub-compartments in Fang Mountain, Jiangjun
Mountain, and Niushou Mountain, which are located in the central part of the study area,
together with the high EI sub-compartments in Dongshan Bridge State-owned Forest Farm,
which is on the edge of the south and southwest basin, were transformed into medium
EI forest stands. Most of these forest stands with declined EI belong to provincial and
municipal ecological public welfare forests. The reduction of the EI in such areas was mostly
related to the encroachment of forest land caused by land development, and the negligence
in forest management caused by the low economic benefits of public welfare forests. In the
process of rapid urbanization and industrialization, how to protect the ecological public
welfare forests by delineating ecological red lines and improving ecological compensation
standards [44] is an urgent task facing urban forest managers.

Based on the survey data of forest resource planning and design, this paper constructed
the evaluation index of FEF, and used the Gini coefficient to evaluate the changes in equity
of the FEF under the background of urbanization. Our research results filled the gap of
the impact of spatial dynamic changes of the FEF on the ecological equity in the existing
forest ecological function evaluation research. Restricted by the investigation factors
of forest resource planning and design survey, the forest ecological function evaluation
factors did not include such forest ecological functions such as vacuuming and sterilization,
temperature regulation, and forest recreation.

5. Conclusions

The process of urbanization in the urban suburbs is a double-edged sword. While
developing the economy and improving the living standards of residents, it causes the
reduction of forest land and the fragmentation of forest landscapes. With the implementa-
tion of multiple ecological projects, the ecological functions in the study area are gradually
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improving, the degree of forest landscape fragmentation and the spatial concentration of
ecological functions are greatly reduced, and the ecological equity is gradually improving.
It can be seen that while vigorously adjusting the urban industrial structure and develop-
ing the local economy, the importance of ecological equity for the regional harmonious
development and urban ecological planning cannot be ignored. In future research, we will
combine the Level Two Survey data with the ecological environment factors (such as surface
temperature, air quality, and population density) extracted from remote sensing, and the
long-term positioning observation data of urban FEF in order to completely describe the
spatial-temporal change of the forest ecological functions in urban suburbs and its impact
on ecological equity.
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