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Abstract: Infestations or parasitism by forestry pests can lead to adverse consequences for tree
growth, development, and overall tree quality, ultimately resulting in ecological degradation. The
identification and localization of forestry pests are of utmost importance for effective pest control
within forest ecosystems. To tackle the challenges posed by variations in pest poses and similarities
between different classes, this study introduced a novel end-to-end pest detection algorithm that
leverages deep convolutional neural networks (CNNs) and a transfer learning technique. The basic
architecture of the method is YOLOv5s, and the C2f module is adopted to replace part of the C3
module to obtain richer gradient information. In addition, the DyHead module is applied to improve
the size, task, and spatial awareness of the model. To optimize network parameters and enhance
pest detection ability, the model is initially trained using an agricultural pest dataset and subse-
quently fine-tuned with the forestry pest dataset. A comparative analysis was performed between
the proposed method and other mainstream target detection approaches, including YOLOv4-Tiny,
YOLOv6, YOLOv7, YOLOv8, and Faster RCNN. The experimental results demonstrated impressive
performance in detecting 31 types of forestry pests, achieving a detection precision of 98.1%, recall
of 97.5%, and mAP@.5:.95 of 88.1%. Significantly, our method outperforms all the compared target
detection methods, showcasing a minimum improvement of 2.1% in mAP@.5:.95. The model has
shown robustness and effectiveness in accurately detecting various pests.

Keywords: forestry pest; detection; transfer learning; deep learning

1. Introduction

The maintenance of ecological balance is contingent upon the support of forestry, as
economic development and forestry are closely intertwined. However, forestry develop-
ment faces significant challenges due to pests and diseases, leading to substantial financial
losses [1]. Therefore, the exploration of effective methods for identifying and detecting
forestry pests holds great significance for the advancement of the forestry industry. Conven-
tional pest identification approaches primarily rely on insect researchers to visually analyze
insect characteristics, resulting in a slow and impractical process for large-scale imple-
mentation [2]. With advancements in machine vision and pattern recognition technology,
there has been a growing interest in leveraging these technologies for pest identification
and detection.

The majority of pest identification tasks rely on the utilization of machine learning
frameworks. Ebrahimi et al. [3] conducted a study on employing the support vector
machines (SVM) method with region index and reinforcement as the color index to detect
pests. The machine vision technique was introduced, which aims to detect insects in
pictures using multivariate analysis [4]. Li et al. [5] utilized multiple fractal analysis to
segment small-sized insect pests based on local singularities and global image features.
Wang et al. [6] combined artificial neural networks (ANN) with morphological features and
SVM to develop an insect species classification system. However, it is important to note
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that detection and classification tasks based on conventional machine learning methods
are susceptible to variations in lighting conditions and environmental factors, resulting in
limited algorithm portability.

With the continuous advancements in deep learning models and the remarkable
progress of graphics processing units, CNNs have revolutionized image recognition and
target detection. Consequently, the field of pest detection has also witnessed significant
advancements in sophistication. For instance, Liu et al. [7] proposed an innovative approach
that combines saliency maps and deep CNNs for the classification and localization of
agricultural pests. Zhu et al. [8] presented a leaf black rot detection method based on super-
resolution image enhancement and a convolutional neural network, which achieved a
detection accuracy of 95.79%, effectively solving the small target detection task. Xia et al. [9]
produced a dataset based on greenhouse pests, and a segmentation procedure was designed
to identify some common greenhouse pests. Regarding target detection algorithms, two-
stage methods like the R-CNN series utilize region proposals in the initial stage and
subsequently classify each proposed region in the subsequent stage [10,11]. On the other
hand, single-stage target detection algorithms such as the SSD [12] and YOLO [13–17] series
offer real-time monitoring and rapid detection capabilities. However, it is worth noting that
the current research on forestry pests often lacks a consideration of real-world environments
and encounters limitations due to the scarcity of real environmental samples [18–20].
Specifically, there is a dense distribution, similarity between pests in categories, and an
obscuration of pests in pest aggregation areas, leading to difficulties in distinguishing
individual pests and the exact location of locating frames. In addition, there are variations in
the size of the same pests in different pictures, leading to difficulties in feature identification.
Finally, lighting conditions and complex backgrounds can also have an impact on detection.
Therefore, pest detection still involves great challenges [20].

To solve the above problems, a forestry pest detection method based on improved
YOLOv5 and transfer learning was proposed in this paper. The objectives of this work
were to (1) introduce C2f and DyHead modules and build a high-accuracy pest monitoring
model (YOLOv5_C2fD) to address the shortcomings of existing models for forestry pest
detection; and (2) transfer the detection model trained by agricultural pests to forestry pest
detection and improve the recognition performance of the model.

2. Materials and Methods
2.1. Introduction of Pest Datasets

Liu et al. [21] provided a comprehensive dataset containing 31 classes of forestry pests.
This dataset offers pest images that fulfill the detection needs of natural environments.
During the label transformation process, a partial error in label conversion occurred,
resulting in a training set consisting of 5860 images with 13,530 target tags, and a test set
comprising 651 images with 1512 target tags. Detailed information on each category is
shown in Table 1.

The dataset was obtained through manual filtering and LabelImg annotation after
conducting a comprehensive search on an image search engine. In order to address the
discrepancy in the number of available images across different pest categories, various
techniques such as brightness transformation, noise addition, and rotation were employed
to ensure a balanced representation of images within each category. A visual representation
of the diverse pest specimens encompassed in the dataset is provided in Figure 1. As
shown in Figure 1, the pests exhibit both common characteristics across different classes
and substantial variations within classes across different stages of their life cycles, posing a
significant challenge in accurately classifying them.
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Table 1. Details of forestry pest dataset.

Class Index Name Train Target
Tags

Test Target
Tags

0 Drosicha_contrahens_female 541 53
1 Drosicha_contrahens_male 183 17
2 Chalcophora_japonica 116 11
3 Anoplophora_chinensis 369 36
4 Psacothea_hilaris (Pascoe) 198 16
5 Apriona_germari (Hope) 246 38
6 Monochamus_alternatus 147 18
7 Plagiodera_versicolora (Laicharting) 390 49
8 Latoia_consocia_Walker 245 25
9 Hyphantria_cunea 392 37

10 Cnidocampa_flavescens (Walker) 253 26
11 Cnidocampa_flavescens (Walker_pupa) 229 43
12 Erthesina_fullo 276 23
13 Erthesina_fullo_nymph-2 2143 385
14 Erthesina_fullo_nymph 185 25
15 Spilarctia_subcarnea (Walker) 171 16
16 Psilogramma_menephron 189 15
17 Sericinus_montela 342 45
18 Sericinus_montela_larvae 268 60
19 Clostera_anachoreta 251 26
20 Micromelalopha_troglodyta (Graeser) 161 21
21 Latoia_consocia_Walker_larvae 555 38

22 Plagiodera_versicolora
(Laicharting)_larvae 826 47

23 Plagiodera_versicolora
(Laicharting)_ovum 2716 227

24 Spilarctia_subcarnea (Walker)_larvae 161 19
25 Cerambycidae_larvae 392 20

26 Micromelalopha_troglodyta
(Graeser)_larvae 142 14

27 Cerambycidae_larvae 370 27

29 Micromelalopha_troglodyta
(Graeser)_larvae 342 48

29 Hyphantria_cunea_larvae 395 42
30 Hyphantria_cunea_pupa 336 45
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Despite efforts to collect substantial images in [21], the sample quantity is still insuffi-
cient. IP102 [22] is an agricultural pest dataset that covers 102 different species of pests and
their multiple developmental stages. In terms of target detection tasks, the IP102 dataset
comprises a total of 18,974 images with 22,253 annotated target tags. Further information
about the IP102 dataset can be found in [21]. It is worth noting that the identification
of forestry pests is challenging with complex environments and backgrounds, such as
different lighting conditions and insects hidden underneath the background. In addition to
this, there is a wide variety of images, including insects of varying age groups, colors, sizes,
and shapes. Given these considerations, using the IP102 dataset in place of ImageNet or
COCO as a pre-training dataset proved to be a valuable option [23].

During the pretest phase of this study, it was observed that specific categories exhibited
low detection accuracy. Upon a closer examination of the labeling process for the original
dataset, it was discovered that some instances were incorrectly labeled, making it almost
impossible to solve the detection accuracy problem through model optimization. In light of
this, samples from the IP102 dataset were selected as the agricultural dataset for pre-training
by the results of the pre-experimental detection of each category. Finally, 7737 samples
were selected for pre-training.

2.2. Composition of YOLOv5 Model

The YOLO family is a single-stage target detection algorithm that solves detection
as a regression task with the output category and localization [24]. YOLOv5 is one of
the effective deep learning algorithms for target detection based on YOlOv1-YOLOv4,
with variations in network width and depth [25]. The network architecture of YOLOv5
consists of four main components, as illustrated in Figure 2. (1) Input: The input image is
typical with a size of 640 × 640 × 3 and undergoes preprocessing steps such as Mosaic data
augmentation, adaptive image scaling, and adaptive anchor frame calculation. (2) Back-
bone: This component extracts feature maps of various sizes from the input image through
multiple convolutional and pooling layers. The critical aspect of the backbone network is
the feature extraction module, which includes the Conv module, C3 module, SPPF module,
and others. (3) Neck: YOLOv5 adopts the PANet structure as its neck component. The shal-
low layers of the network contain detailed information but lack semantic understanding,
while the deep layers provide rich semantic information but lack fine-grained details. The
PANet structure effectively fuses feature maps from different levels to enhance detection
performance. This is achieved through a feature pyramid structure that combines feature
maps of varying resolutions, generating a new feature representation. (4) Head: The head
component of YOLOv5 is responsible for predicting image features, constructing bounding
boxes, and outputting feature maps for object detection. It completes the final stage of the
detection process.
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2.3. Improvements to the YOLOv5 Model

This section presents a comprehensive analysis of the prevailing target detection
frameworks utilized for identification and localization tasks. The primary objective of this
research is to propose a highly accurate and efficient detection method tailored explicitly
for forestry pest identification and localization. Given the challenges posed by complex
environmental backgrounds and limited training samples, we introduce the following
vital modifications in this study: (1) adding the DyHead detection module to achieve size
awareness, task awareness, and space awareness; (2) replacing the partial C3 modules with
C2f modules to improve the detection capability for small targets. The network structure
shown in Figure 3 illustrates the proposed improvements in the model’s architecture.
Our enhanced model, named YOLOv5_C2fD, integrates these modifications to achieve a
superior performance.
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2.3.1. DyHead Module

The forestry pest dataset utilized in this study presents a complex background com-
prising numerous pest species at varying developmental stages and scales. Consequently, it
is crucial for the detection algorithm to possess full-scale perception capabilities. Moreover,
the targets in the feature element maps extracted from the model neck feature pyramid
exhibit diverse spatial locations and shapes, necessitating the detection algorithm to capture
spatial information effectively. To address these challenges, the DyHead detection mod-
ule was introduced, which offers simultaneous size, task, and spatial awareness, making
it well-suited for pest detection tasks [26]. By incorporating DyHead into the detection
head component, the detection capabilities were enhanced while striving to optimize
computational efficiency. The structure diagram of DyHead is shown in Figure 4.
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Figure 4. DyHead. (a) The input feature tensor of DyHead. (b) An illustration of the DyHead
approach. (c) Details of a DyHead block. (d) Specific application of DyHead.

As shown in Figure 4a, the feature map is transformed into a three-dimensional
tensor, where L represents the number of layers, C denotes the number of channels, and
S represents the height and width of the feature map. Three attention mechanisms are
sequentially employed to enhance the detection performance, as depicted in Figure 4b,
with their respective structures detailed in Figure 4c. The specific application of DyHead is
demonstrated in Figure 4d, showcasing its role within the detection framework.

DyHead achieves the integration of the target detection head by effectively combin-
ing multiple self-attentive mechanisms across feature layers for scale perception, spatial
locations for spatial perception, and output channels for task perception. Size perception
focuses on the scale size of the target pest, enabling the learning of the relative importance
between feature layers, and enhancing features on the appropriate layer. Spatial perception
aims to understand the spatial differences among different pests within the pest image
features. Task perception processes the feature data of pests across channels, guiding
different feature channels to identify various pests separately.

2.3.2. C2f Module

Although the YOLO series algorithm has evolved up to YOLOv8, its development
is still in an immature stage. Therefore, we adopt YOLOv5 in this study while drawing
inspiration from the advanced modules introduced in YOLOv8. Specifically, the C2f module
is designed by referencing the C3 module and incorporating the concept of ELAN. This
design allows the model to capture rich gradient flow information, thereby enhancing the
detection capability for small targets. Figure 5 illustrates C3 and C2f modules.
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As shown in Figure 5, the C3 module is composed of three convolutional modules,
which leverage the concept of early streaming from CSPNet and integrate the residual
structure idea. The C2f module enhances the gradient flow by parallelizing multiple
branches of gradient streams, thus incorporating richer gradient information for improved
performance.

2.4. Transfer Learning

Transfer learning, which focuses on transferring knowledge, is a promising research
method [27,28]. Sharing learned knowledge from a specific domain to other domains
with similar characteristics can improve the generalization capability of the model [29].
Deep learning networks typically require a large number of training samples. However, in
realistic scenarios, the availability of training data is often limited, making it challenging to
enhance the model’s robustness. In such cases, applying transfer learning to deep learning
enables the efficient and rapid parameter optimization of prediction networks, leading
to the development of highly robust models. In this study, we initially trained the model
using an agricultural dataset and subsequently applied it to the forestry pest dataset. The
network training process based on transfer learning is shown in Figure 6.
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The specific process involves training the model on the agricultural pest dataset,
where the initial network weights are replaced with random initialization. Subsequently,
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transfer learning is performed on the forestry pest dataset using the pre-trained model. The
resulting model is then used for the target detection task on the test set.

2.5. Introduction of Correlation Models
2.5.1. Faster RCNN

The Faster R-CNN algorithm [30] is a well-known two-stage target detection algorithm.
In the first stage, a convolutional layer is employed to extract features and determine the
bounding box of the target object. In the second stage, a fully connected layer and bounding
box regression are utilized to localize and classify the detected target precisely.

2.5.2. YOLOv4-Tiny

YOLOv4-Tiny [31] is a compact iteration of YOLOv4 [32], renowned for its accelerated
training and detection performance. YOLOv4-Tiny features fewer detection heads and
employs distinct activation functions and training convolution layers compared to YOLOv4.
It incorporates multi-task functionality, end-to-end training, attention mechanisms, and
multi-scale features, enabling it to handle diverse detection tasks effectively.

2.5.3. YOLOv6

YOLOv6 [33] is a single-stage object detector that combines efficient design princi-
ples with high-performance capabilities. It introduces a redesigned backbone network
called EfficientRep and a new neck architecture named Rep-PAN. These changes in the
backbone and neck design aim to further enhance the efficiency and effectiveness of the
YOLOv6 model.

2.5.4. YOLOv7

YOLOv7 [34] is a highly advanced target detection algorithm that has gained sig-
nificant attention. Its architecture consists of two main components: the backbone and
head networks. The backbone network is responsible for feature extraction and is fed with
preprocessed input images. On the other hand, the head network utilizes the extracted
features to refine them further and fuse them for accurate detection. An integral feature of
the YOLOv7 architecture is the implementation of the ELAN structure within the backbone
network. This innovative structure efficiently controls the gradient paths, ensuring effective
learning and convergence throughout the deep network. This results in improved efficiency
and enhanced performance during training.

2.5.5. YOLOv8

The most recent and advanced target detection algorithm in the YOLO series is
YOLOv8. It offers several variations, including YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l,
and YOLOv8x, each optimized for object detection tasks. The variations in the YOLO
family models are determined by factors such as the depth and width multiplier.

2.6. Model Evaluation Metrics

In this study, the evaluation metrics chosen for assessing the performance of the
target detection model are precision, recall, and average precision. The average precision
(AP) is calculated as the average precision values across different recall levels. The mean
average precision (mAP) is then derived by calculating the average of the AP values. mAP
is considered a crucial metric for assessing the overall precision of the target detection
model, making it a reliable indicator of its performance [35]. These metrics are calculated
as follows:

Precision =
TP

TP + FP
× 100% (1)

Recall =
TP

TP + FN
× 100% (2)
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AP =
∫ 1

0
P(R)dR (3)

mAP =
1
M

M

∑
k=1

AP(k) (4)

where TP is the true positive, FP is the false positive, TN is the true negative, and FN is the
false negative. M is the number of pest species.

The model was quantitatively evaluated using the mAP at the threshold ranging from
0.5 to 0.95 with an interval of 0.05, denoted as mAP@.5:.95. This metric calculates the
average precision at different thresholds and provides a comprehensive assessment of the
model’s performance in object detection.

3. Results and Discussion
3.1. Experimental Environment and Setting

The experiments presented in this paper were performed on an Ubuntu system,
leveraging GPU acceleration to enhance computational speed. The specific parameters
utilized for the experiments are detailed in Table 2.

Table 2. Experimental environment parameters and setting.

Name Parameter

Hardware

CPU Intel (R) Xeon (R) Silver 4215 CPU @ 2.50 GHz
Memory 252 G

GPU GeForce RTX 3090 × 2
Graphics card 24 G × 2

Operation system Ubuntu 20.04

Software

Deep Learning
framework Pytorch 1.13.0

Programming languages Python 3.8
CUDA 11.6

Algorithms

Iterations 300
Batch size 128

Picture size 640 × 640
Learning rate 0.01
Momentum 0.937

Weight decay 0.0005

3.2. Ablation Experiment

The constructed model for forestry pest detection comprised the YOLOv5s baseline
module, DyHead module, and C2f module. Ablation experiments were performed to
analyze the contribution of each component, and the results are reported in Table 3. In
this study, the DyHead module was first added alone to the baseline model, resulting in a
0.9% increase in mAP@.5:.95. This is likely because the DyHead detection module provides
synchronized size, task, and spatial awareness, making the model more suitable for the
pest detection task. Subsequently, adding the C2f module alone showed a better effect than
DyHead, leading to a 2% increase in mAP@.5:.95. This may be related to the fact that the
C2f module incorporates the concept of ELAN for the design so that the model captures
rich gradient flow information and thus enhances the detection of small targets. Lastly, the
results of multi-scale training were analyzed. As shown in Table 3, it can be observed that
multi-scale training achieved the highest precision, recall, and mAP@.5:.95, indicating that
it can significantly enhance the accuracy of forestry pest detection.
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Table 3. Results of the ablation experiment.

YOLOv5 DyHead C2f Precision (%) Recall (%) mAP@.5:.95 (%)
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3.3. Analysis of Transfer Learning Results
3.3.1. Analysis of Whole Detection Situation

The influence of transfer learning on the results was compared in terms of precision,
recall, and mAP@.5:.95, and the comparison graph is presented in Figure 7. The results
show that precision, recall, and mAP@.5:.95 have all increased to varying degrees, with
mAP@.5:.95 experiencing the highest increase, reaching 2.7%. This indicates that transfer
learning has a positive impact on improving the performance of the model.
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Figure 7. Detection before and after transfer learning.

Figure 8 illustrates the declining trend of the three losses during training before and
after applying transfer learning. The comparison reveals that transfer learning has a
significant impact on accelerating the training process, particularly during the initial stages.
This leads to faster model convergence and expedites the overall training process.
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3.3.2. Analysis of Single Type Pest

The dataset used in this experiment consists of 31 categories, representing various
types of pests with distinct body states and specific shared attributes. Figure 9 showcases
the detection results of each pest category by YOLOv5_C2fD, comparing the performance
with and without transfer learning.
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Figure 9 illustrates the impact of transfer learning on the detection accuracy of different
pest categories. The results indicate that after applying transfer learning, 29 pest categories
exhibited an improved detection accuracy, one category showed a decreased detection
accuracy, and one category remained unchanged. These findings demonstrate the potential
of transfer learning in enhancing the detection of forestry pests, particularly in complex
backgrounds.

3.4. Confusion Matrix

Confusion matrix is the most intuitive and simple method to measure the accuracy
of classification models. For the test set of forestry pests, the confusion matrix of the
YOLOv5_C2fD model based on transfer learning is shown in Figure 10.
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In Figure 10, the diagonal of the confusion matrix represents the proportion of correct
detections in each category. The higher the accuracy of the detection, the deeper the color
of the diagonal. The color of the diagonal of one class of pests is obviously lighter than that
of other pests, which may be caused by the inaccurate labeling of the position of the label
box. The accuracy of each type of pest detection is closely related to the size and shape of
the pest itself, as well as the sample amount of that type of pest.

3.5. Comparison with Existing Target Detection Methods
3.5.1. Detection Results of Different Models

To assess the performance of our method, we conducted a comparative analysis with
several existing target detection methods using the forestry pest dataset. Specifically, we
compared our method with Faster RCNN, YOLOv4-Tiny, YOLOv6, YOLOv7, and YOLOv8,
which are representative mainstream target detection methods. The evaluation results can
be found in Table 4.

Table 4. Performance comparison of the models.

Models Precision (%) Recall (%) mAP@.5:.95 (%)

Faster RCNN 92.3 90.4 58.7
YOLOv4-Tiny 96.0 93.0 64.3

YOLOv6 98.0 97.4 84.0
YOLOv7 97.7 98.1 83.8
YOLOv8 98.0 96.0 86.0

Ours 98.1 97.5 88.1

The results obtained from the comparison experiments presented in Table 4 reveal
that our proposed method surpasses the selected target detection method YOLOv8 by
achieving a 2.1% higher detection accuracy. Additionally, our method outperforms all the
other selected target detection methods in terms of detection accuracy, with a remarkable
maximum improvement of 29.4% in mAP@.5:.95. These compelling experimental results
demonstrate that our method excels in pest detection performance, delivering a high
detection accuracy.

3.5.2. Pest Detection Visualization Comparison

The comprehensive analysis of the aspects mentioned above shows that the YOLO-
v5_C2fD combined with the transfer learning model exhibits a superior detection per-
formance. To further validate its effectiveness in real-world scenarios, a set of test data
consisting of small targets, dense scenes, and occlusions was selected to compare the
detection results of each model. The detection outcomes are illustrated in Figure 11.

Figure 11 shows that the proposed model in this paper demonstrates a good detection
performance in dense scenes and complex backgrounds. In comparison, YOLOv4-Tiny
and YOLOv7 exhibit incorrect detections or fail to detect objects in complex backgrounds.
Additionally, YOLOv6, YOLOv8 and Faster RCNN show cases of missed detections in dense
scenes. These results clearly illustrate the superior detection capability of the proposed
model in complex and lush environments. The improved performance outperforms existing
models, making it a valuable tool for forestry pest detection and management.
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3.6. The Realization of the Model Deployed on a Laptop

To verify that the model can achieve real-time detection after deployment, this paper
deployed the model on a Lenovo Xiaoxin Pro14 laptop (Lenovo (Beijing) Co., Ltd., Beijing,
China) with an external cell phone as a camera for easy mobility. Figure 12 presents the
results of real-time detection after deployment. As can be seen in Figure 12, the pests were
identified and localized.
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In order to better promote the development of forestry pest identification, our next
step was to advance the issue of model deployment to enable real-time monitoring such as
for drones or robots.

4. Conclusions

Forestry is facing significant challenges due to the threats posed by pests and diseases,
resulting in substantial economic losses. The accurate identification of forestry pests is
crucial for timely preventive measures and for minimizing financial impacts. To address
the limitations of conventional methods, this paper proposes the YOLOv5_C2fD model
based on transfer learning, which enhances pest feature extraction, extracts meaningful
features, reduces redundancies, and improves pest identification and localization in com-
plex backgrounds. The C2f module, which parallelizes gradient flow branches, captures
richer gradient flow information, and the DyHead module exhibits a simultaneous aware-
ness of size, task, and spatial factors, making it suitable for pest detection. The model is
initially trained on an agricultural dataset and then transferred to a forestry pest dataset,
facilitating rapid parameter optimization, and improving the detection of pest targets. The
experimental results demonstrated an impressive performance in detecting 31 types of
forestry pests, achieving a detection precision of 98.1%, recall of 97.5%, and mAP@.5:.95 of
88.1%. Significantly, our method outperforms all the compared target detection methods,
showcasing a minimum improvement of 2.1% in mAP@.5:.95. The improved performance
outperforms existing models, making it a valuable tool for forestry pest detection and
management. Quantitative experiments were conducted, demonstrating the superiority of
the proposed method over other detectors in terms of pest localization and classification.
Although the current model achieves good results in regard to forest pest identification,
small target identification is still a challenge. We will subsequently optimize and improve
the model to further enhance its ability to detect small targets. In addition, reducing the
impact of missing labels on the model of the pest dataset will be the next direction of our
research in our future work.
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