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Abstract: Competition among free branches in the tree canopy is an important factor influencing
branch length growth. Therefore, there is a need to quantify this competition and to understand the
impact of the regression technique on the predictive accuracy of the growth of free branch length
(GFBL) model in a Larix principis-rupprechtii plantation. This study focused on an L. principis-rupprechtii
plantation in Saihanba Mechanized Forest Farm. Five competition indices based on 2176-branch data
points from 76 trees were used to quantify the branch competition, and three regression techniques
(nonlinear least squares (NLS), nonlinear mixed-effects model (NLME), and nonlinear quantile
regression (NQR)) were used to construct the GFBL model including the branch competition index.
The results showed that the Chapman–Richards growth function, including the diameter at breast
height (DBH) and depth of branch into crown (DINC), was the optimal equation for describing
the GFBL in the studied L. principis-rupprechtii plantation. The branch competition index (CI) was
found to be optimal for quantifying the branch competition when used with the maximum value
parameter (a0) of the Chapman–Richards growth function. The three parameter estimation methods
were compared, and the NLME, which included the CI, was found to have the highest predictive
accuracy. The results of this study can act as a reference for improving the management, assessing
the management effectiveness, and enhancing the quality of L. principis-rupprechtii plantations.

Keywords: free branch length growth; competition index; nonlinear mixed-effects model; nonlinear
quantile regression; Larix principis-rupprechtii plantation

1. Introduction

Free branches are branches in the upper canopy of a tree that are not constrained or
affected by the surrounding stand density. The growth and distribution of free branches
directly affect the structure and function of the tree canopy [1–3]. However, quantification
of the growth of free branch length (GFBL) is important for studies concerning the number
and spatial structure of branches [4], tree leaf distribution and quantity [5,6], photosynthesis
and nutrient cycling in trees [7,8], tree wood quality [3,9], and forest wildlife habitats [10]. In
addition, estimates of the GFBL can compensate for the difference between photosynthesis
and canopy allometry [11], and they can reflect the impact of varying stand densities on tree
development [9,12]. Therefore, the study of the GFBL is of great significance for improving
tree management practices [13], evaluating tree management effects [14], and enhancing
stand quality [9].

Recent studies have shown that the main factors affecting the GFBL are the tree diameter
at breast height (DBH) [15], tree height (TH) [16], depth of branch into crown (DINC) [11],
crown length (CL) [17], and branch competition [18]. While branch competition has been
shown to have a significant impact on branch development [19], Weiskittel et al. [12] de-
termined that the factors regulating branch competition include nutrient transport [20] and
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canopy resource allocation [18]. Therefore, these factors ultimately impact the growth, survival,
crown structure, and function of branches [12,21,22]. Currently, the commonly used indica-
tors of branch competition include distance-independent indicators and distance-dependent
indicators [23,24], with the former reflecting the competitive ability of branches [25] and the
latter quantifying the degree of competition between branches by measuring their growth
space [26–28]. Therefore, further research is required into the selection of competition indica-
tors for quantifying the impact of branch competition on the GFBL within the canopy.

Competition indicators and different parameter estimation methods affect the accuracy
of the GFBL model [15]. Currently, the commonly used parameter estimation methods for
branch length growth models include the nonlinear least squares (NLS) [18,29], nonlinear
mixed-effects model (NLME) [13,16,30], and nonlinear quantile regression (NRQ) [16]
methods. While the NLS method requires data for independent observations that are
random [31], free branch data within the canopy often exhibit time-dependence and spatial
heterogeneity [30]. The NLME method effectively overcomes the above limitation of the
NLS method [30] and has been widely applied in studies concerning the height–diameter
equation [32,33], taper equations [31], and branch length growth prediction models [13,20].
The NQR method can describe the complete conditional distribution of data and can
illustrate the relationships between independent and dependent variables at different
quantile points [16]. As such, the NQR method allows for the extraction of a greater
quantity of information from data and provides a more flexible means of describing the
relationship between dependent and independent variables [34]. Consequently, the NQR
method has been widely used in studies concerning the height–diameter equation [32],
taper equations [35], and models of branch length and diameter growth [16]. Therefore,
the selection of a suitable approach for estimating parameters is crucial for achieving the
optimal accuracy of the GFBL model.

Larix principis-rupprechtii is commonly cultivated for afforestation in northern China
due to its several advantages, including valued timber and tolerance of cold temperatures.
The Saihanba Mechanized Forest Farm is situated in the warm temperate zone of northern
China in which L. principis-rupprechtii is the primary species cultivated as part of afforesta-
tion efforts. The cultivation of this tree species offers significant economic, ecological, and
social benefits to the Beijing–Tianjin–Hebei region [31]. Therefore, there is value in studying
the growth and development of branches of an L. principis-rupprechtii plantation to improve
forest structure, enhance forest productivity, and leverage multiple ecological and social
benefits.

Competition factors [19] and parameter estimation methods [16] have an impact on
the accuracy of predictions of the GFBL model. However, further work is needed in terms
of the identification of suitable indices for quantifying the impact of branch competition
within the canopy on the GFBL. The hypothesis of the present study is that characterization
of branch competition and regression techniques have an impact on the accuracy of predic-
tions of GFBL models. To validate the above hypothesis, the present study focused on free
branches within the canopy of an L. principis-rupprechtii plantation. The aim of the present
study was to characterize the impacts of regression techniques and branch competition
on the estimates of the GFBL in an L. principis-rupprechtii plantation. The objectives of the
present study were to: (1) evaluate the impacts of different competition indices on the GFBL;
(2) construct a GFBL model that integrates the optimal branch competition index using the
NLS, NLME, and NQR methods; and (3) compare and analyze the effects of different regres-
sion techniques on the accuracies of the GFBL models. The results of the present study can
act as a reference for the accurate prediction of branch growth and development patterns,
optimization of canopy structure, and improvement of forest management practices.

2. Materials and Methods
2.1. Study Area

The Saihanba Mechanized Forest Farm (41◦22′–42◦58′ N, 116◦53′–118◦31′ E) is in north-
ern Hebei Province and has a total operational area of 9.4 × 104 hm2, of which 7.5 × 104 hm2
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is forested land. The L. principis-rupprechtii plantation covers 5.3 × 104 hm2, accounting
for 70.6% of the forested land area. The study area falls within the northern China warm
temperate zone and has elevations ranging between 1010 and 1940 m, average annual, av-
erage maximum, and average minimum temperatures of −1.2 ◦C, 33.4 ◦C, and −43.3 ◦C,
respectively, and average annual sunshine hours, average annual precipitation, average an-
nual snow cover days, and average annual potential evaporation of 2548.7 h, 452.2 mm,
169 d, and 1339.2 mm, respectively. The major soil types in the study area are brown forest
soil, chestnut soil, sandy soil, and loam. The main tree species in the study area include
Larix principis-rupprechtii, Populus davidiana, Betula platyphylla, and Betual davurica. The main
shrubs include Lonicera japonica, Spiraea salicifolia, and Prunus padus. The main herbaceous
plants include Clematis florida Thunb, Campanula punctata, and Saussurea japonica.

2.2. Data Collection

The present study collected data from 38 standardized plots (0.06 hm2) of an L. principis-
rupprechtii plantation in the Saihanba Mechanized Forest Farm between 2017 and 2022.
Mature trees with a diameter at breast height (assumed to be 1.3 m) (DBH) ≥ 5 cm were
measured for each plot. In addition, site factors (elevation, slope, aspect, etc.) and stand
factors (stand age, average crown width, density, etc.) were measured and recorded.
The stand age and density ranged from 14 to 55 years and from 240 to 3 600 tree·hm−2,
respectively. Two standard trees were selected from each plot for stem and branch analysis,
and the tree height (TH), first branch height (FBH), and CL were measured for each tree,
whereas the branch diameter (BD), branch length (BL), depth of branch into crown (DINC),
branch insertion angle (BA), age (BAGE), and azimuthal orientation were measured for
each free branch (Figure 1). The TH, CL, FBL, BL and DINC were measured using a tape
measure; the BD was measured using a vernier caliper; the BA and azimuthal orientation
were measured using a protractor; the DBH was measured using a diameter tape; and
the BAGE was determined via branch analysis. The present study surveyed 76 trees and
2176 branches, and the data were divided into modeling data (1741 branch measurements
from 56 sample trees) and testing data (435 branch measurements from 20 sample trees)
based on a 3:1 ratio (Table 1).
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Figure 1. A graphical description of the characteristics of the tree and free branch variables. HT is
total tree height (m), FB is free branch, CL is crown length (m), BL is branch length (m), DINC is
depth of branch into crown (m), and BA is branch insertion angle (◦).
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Table 1. Summary of the results of the statistical analysis of the modeling and validation data.

Variables
Modeling Data (N = 1741) Verification Data (N = 435)

Max Min Mean Std Max Min Mean Std

TH (m) 23.60 6.50 14.93 4.08 19.30 10.90 15.84 2.82
DBH (cm) 29.80 7.80 17.88 5.43 32.20 13.90 19.98 5.19
CW (m) 3.36 0.94 1.82 0.63 3.55 1.24 1.92 0.49
FBH (m) 13.00 1.65 6.96 2.93 11.70 3.60 7.47 2.50
CL (m) 13.10 4.30 7.98 2.20 12.50 4.40 8.38 2.02

BAGE (year) 27.00 1.00 8.75 5.32 23.00 1.00 9.59 5.69
BD (cm) 50.02 1.60 18.05 8.94 45.41 2.11 18.60 9.20
BL (m) 4.32 0.06 1.46 0.77 3.47 0.14 1.49 0.76

DINC (m) 13.10 0.04 3.69 2.42 10.7 0.05 3.82 2.50
BA (◦) 90.00 10.00 64.79 11.66 90.00 30.00 65.18 11.55

2.3. Competition Indices

Competition among free branches can impact the growth of branches [18]. The present
study used different competition indices (Table 2) to quantify the effects of competition
among free branches on the accuracy of predictions of the GFBL model. The positions of
branches in the crown of the studied L. principis-rupprechtii plantation were determined
based on the DINC and azimuthal orientation of each free branch [13]. Each free branch was
considered a target branch, the four branches closest to the target branch were considered
competing branches [36] and the competition indices were calculated based on the actual
measurement data of the free branches.

Table 2. Selection of competition indices between free branches.

Type Competition Index Name Expression Reference

Distance-dependent

Competition Index (CI) CI =
n
∑

i=1

Dj
Di × Lij

[26]

Competition Area Index (CA) CA =
n
∑

i=1

(
Hi
Lij

Dj
Di

)
[27]

Sum Line Length (SLL) SLL =
n
∑

i=1

Di
Di + Dj

× Lij [28]

Distance-independent
Competing Branch Diameter Ration (CD) CD =

n
∑

i=1

Dj
Di

[25]

Branch Diameter Ration (DR) DR = Di

D
[25]

Note: Dj, Di, Lij, Hi, and D represent the diameter of the competing branch (mm), the diameter of the target
branch (mm), the distance between branches (m), the branch length (m), and the mean value of the diameter of
the branch (mm), respectively.

2.4. Methods
2.4.1. Base Model for the GFBL

Since the GFBL exhibits a nonlinear pattern with increasing age [14,28], the present
study selected five biologically significant nonlinear growth equations as the fundamental
models for the GFBL in an L. principis-rupprechtii plantation (Table 3).

Table 3. Theoretical equations of free branch length growth.

Equation Name Expression Reference

Chapman–Richards BL = a0
(
1− e−a1BAGE)a2 [37]

Schumacher BL = a0e−
a1

BAGE [38]
Gompertz BL = a0e−a1e−a2BAGE [39]

Mitscherlich BL = a0
(
1− a1e−a2BAGE) [16]

Logistic BL = a0
1 + a1e−a2BAGE [23]

Note: BL is free branch length (m); BAGE is free branch age (a); a0, a1 and a2 are the model parameters to
be estimated.
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2.4.2. Nonlinear Mixed-Effects Model

The NLME model is a regression model representing the nonlinear relationship be-
tween the regression function and fixed and random effects [30]. Wang et al. [15] previously
showed the NLME model based on tree-level effects to be the most effective for predicting
the branch length growth of Pinus koraiensis. Therefore, the present study adopted the
tree-level effects approach within the development of the NLME model. The general form
of the NLME model can be expressed as:

yij = f
(
ϕij, xij

)
+ εij

i = 1, . . . , M, j = 1, . . . , N
ϕij = Aijβ+ Bijui

ui ∼ N(0, D)

εij ∼ N
(

0,σ2G0.5
i ΓiG0.5

i

) (1)

where yij is the observed length of the j branch of the i tree; M is the number of trees;
N is the number of branches of the i tree; f is a nonlinear model of branch length growth
containing a parameter vector ϕij and a variable xij; εij is the random error term; β is a fixed
effects parameter vector; Aij and Bij are design matrices for β and ui, respectively; ui is a
random effects parameter vector for the i tree; D is a generalized positive definite matrix
structure representing the variance–covariance matrix of ui [40]; σ2 is the residual variance
of the model; G0.5

i is an ni × ni diagonal matrix used to describe the heterogeneity of
variation within groups; and Γi is an ni × ni diagonal matrix used to describe the structure
of the error correlation within groups.

2.4.3. Nonlinear Quantile Regression Model

The NQR model can be used to estimate the complete conditional distribution of the
dependent variable, to evaluate the differences in predictor variables at different quan-
tiles [41], and to analyze the effects of specific quantiles on the distribution of the dependent
variable [34]. In addition, the NQR model is insensitive to outliers and will continue to
maintain good predictive accuracy under the influence of significant heteroskedasticity [35].
The parameters from the NQR model are obtained by minimizing Equation (2):

S = ∑
y≥yτ

τ(y− yτ) + ∑
y<yτ

(1− τ)(yτ − y) (2)

where S represents the sum of weighted absolute residuals at the quantile; τ (0.1, 0.2, 0.3,
. . . , 0.9); y is the measured branch length; and yτ is the predicted branch length at the
corresponding quantile.

2.4.4. Model Fitting and Evaluation

The present study fitted the NLS, NLME, and NQR models for the GFBL using the
Proc NLIN, Proc NLMIXED, and Proc NLP procedures in the SAS 9.4 statistical analysis
software package. The accuracy of the model fitting was evaluated using the determination
coefficient (R2), adjusted determination coefficient (R2

adj), mean square error (MSE), mean
percentage of bias (MPB), root mean square error (RMSE), Akaike’s information criterion
(AIC), twice the negative log-likelihood (−2LL), and the Bayesian information criterion
(BIC) ((Equation (3)) to (Equation (10))). These statistical methods are commonly used to
evaluate the accuracy of model fitting.

R2 = 1−
[

Σn
i=1(yi − ŷ)2

Σn
i=1(yi − y)2

]
(3)

R2
adj = 1− n− 1

n− p

(
1− R2

)
(4)



Forests 2023, 14, 1495 6 of 15

MES =
∑n

i=1(yi − ŷi)
2

n− 1
(5)

RMES =

√
∑n

i=1(yi − ŷi)
2

n− 1
(6)

MPB = 100× ∑n
i=1|yi − ŷi|
∑n

i=1 yi
(7)

AIC = −2lnL + 2p (8)

BIC = −2ln(L) + pln(n) (9)

−2LL = −2ln(L) (10)

In Equation (3) to Equation (10), yi represents the observed branch length (m);
yi represents the mean branch length (m); ŷi represents the predicted branch length (m); n
is the number of branch samples; L is the maximum likelihood value; and p represents the
number of model parameters.

3. Results
3.1. Development of the GFBL Model

The present study fitted five models describing the GFBL of the L. principis-rupprechtii
plantation using the NLS method (Table 4). The Chapman–Richards growth function
was found to be optimal for describing the GFBL of the L. principis-rupprechtii plantation,
with model R2

adj, MES, RMES, and MPB of 0.7716, 0.1172, 0.3424, and 1.1176, respectively.
Re-parameterizing the maximum parameter of free branch length (a0) in the Chapman–
Richards growth function as a function of the DBH and DINC (regression coefficients of the
DBH and DINC of b0 and b1, respectively) (Table 5) resulted in the highest model fitting
accuracy, with R2

adj, MES, RMES, and MPB of 0.8505, 0.0853, 0.2920 and 0.9500, respectively.
Therefore, the GFBL base model developed in the present study was:

BL =
(

0.0161×DBH + DINC0.4002
)(

1− e−0.1289×BAGE
)0.6110

(11)

where BL is free branch length (m), DBH is the diameter at breast height (cm), DINC is the
depth of the branch into the crown (m) and BAGE is the age of the free branch.

Table 4. Parameter estimates and fitting statistics for the base model of growth of free branch length.

Equation
Parameter Estimates Fitting Statistics

a0 a1 a2 MSE RMES MPB R2 R2
adj

Gomboze 2.8448
(0.0553)

2.2979
(0.0481)

0.1504
(0.0057) 0.1332 0.3650 1.1914 0.7580 0.7578

Logistic 2.6453
(0.0393)

5.8033
(0.2144)

0.2347
(0.0072) 0.1376 0.3709 1.2109 0.7501 0.7499

Schumacher 3.1633
(0.0385)

5.7226
(0.1155) 0.1474 0.3840 1.2533 0.7321 0.7320

Mitscherlich 3.5633
(0.1686)

0.9790
(0.0087)

0.0630
(0.0053) 0.1382 0.3718 1.2135 0.7424 0.7421

Chapman-
Richards

3.9423
(0.3057)

0.0486
(0.0083)

0.8864
(0.0409) 0.1172 0.3424 1.1176 0.7718 0.7716

Note: In parentheses is the standard error.
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Table 5. Statistical analysis of the fit of the diameter at breast height (DBH) and depth of branch into
crown (DINC) to the parameters of the Chapman–Richards growth function.

Impact Factor Position
Fitting Statistics

MSE RMES MPB R2 R2
adj

BL = (b0 ×DBH)
(
1− e−a1×BAGE)a2 0.1257 0.3546 1.1506 0.7827 0.7822

BL =
(

DINCb0
)(

1− e−a1×BAGE)a2 0.1019 0.3193 1.036 0.8238 0.8234

BL = a0

(
1− e−(b0×DBH)×BAGE

)a2 0.1089 0.3299 1.0706 0.8119 0.8114

BL = a0

(
1− e−(b0×DINC)×BAGE

)a2 0.1117 0.3343 1.0847 0.8069 0.8064

BL =
(

b0 ×DBH + DINCb1
)(

1− e−a1×BAGE)a2 0.0853 0.2920 0.9500 0.8519 0.8505

BL = (b0 ×DBH)
(

1− e−(b1×DINC)×BAGE
)a2 0.2380 0.4879 1.5868 0.5868 0.5858

BL =
(

DINCb0
)(

1− e−(b1×DBH)×BAGE
)a2 0.1019 0.3193 1.0383 0.8230 0.8226

BL = a0

(
1− e−(b0×DBH+b1×DINC)×BAGE

)a2 0.2658 0.5156 1.6769 0.5384 0.5341

Note: DBH is the tree diameter at breast height (cm); DINC is the depth of branch into crown (m); a0, a1, a2, b0
and b1 are the model parameters to be estimated.

3.2. Inclusion of the Competition Index into the GFBL Model

The present study considered the effect of branch competition on the maximum GFBL
and growth rate by evaluating the effects of five branch competition indices on the maxi-
mum branch length parameter (a0), growth rate parameter (a1), maximum value parameter
(a0), and growth rate parameter (a1) of the GFBL base model (Equation (11)) and the ac-
curacy of the model fit (Table 6). The CI was shown to be the optimal competition index
for explaining branch competition among free branches; the CI (the regression coefficient
of the CI was b2), along with the DBH and DINC, showed the highest performance in the
model when acting on equation a0. The R2

adj, RMES, and MPB of the model were 0.8870,
0.2507, and 0.8151, respectively. Therefore, the present study constructed the model of
GFBL including branch competition as:

BL =
(

0.0162×DBH + DINC0.4001 − 0.0004×CI
)(

1− e−0.1290×BAGE
)0.6092

(12)

where CI is the branch competition index among free branches.

Table 6. Fitting statistics of different branch competition indices acting on different parameters of
branch growth.

Competition Index Position Competition
Index

Fitting Statistics

RMES MPB R2 R2
adj

BL =
(

b0 ×DBH + DINCb1 + b2 × CI0

)(
1− e−a1×BAGE)a2

CI 0.2507 0.8151 0.8881 0.8870
CA 0.2710 0.8812 0.8754 0.8742
SLL 0.2851 0.9274 0.8621 0.8607
CD 0.2906 0.9449 0.8567 0.8553
DR 0.3871 1.2589 0.7458 0.7433

BL =
(

b0 ×DBH + DINCb1
)(

1− e−(b2×CI0)×BAGE
)a2

CI 0.2683 0.8721 0.8716 0.8707
CA 0.3049 0.9919 0.8361 0.8345
SLL 0.4313 1.4027 0.6776 0.6745
CD 0.2971 0.9659 0.8434 0.8419
DR 0.2783 0.9049 0.8667 0.8663

BL =
(

b0 ×DBH + DINCb1 + b2 × CI0

)(
1− e−(b3×CI0)×BAGE

)a2

CI 0.2882 0.9198 0.8557 0.8547
CA 0.3134 1.0192 0.8294 0.8278
SLL 0.3084 1.0030 0.8347 0.8336
CD 0.5935 1.9305 0.3882 0.3824
DR 0.4020 1.3075 0.7193 0.7167

Note: b0, b1, b2, b3, a1 and a2 are the model parameters to be estimated; CI0 is the branch competition index.
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3.3. Nonlinear Mixed-Effects Model of the GFBL

The present study constructed a nonlinear mixed effect model of the GFBL in an
L. principis-rupprechtii plantation, which included the branch competition index (CI) and
15 different forms of random effect parameters, with 9 forms converging (Table 7). An
optimal equation performance was obtained by introducing random effect parameters
into the DINC (b1) and CI (b2), with an AIC, BIC, and −2LL of 947.8, 966.7, and 929.8,
respectively. Table 8 shows the parameter estimates of the nonlinear mixed-effects GFBL
model. The R2

adj, MES, RMES, and MPB of the model were 0.9076, 0.2327, 0.0542, and 0.7572,
respectively.

Table 7. Fitting statistics of nonlinear mixed-effects models for different random combination forms.
Abbreviations: Akaike’s information criterion (AIC), Bayesian information criterion (BIC), and twice
the negative log-likelihood (−2LL).

Random Effect Parameter Position AIC BIC −2LL

b0 1146.3 1160.9 1132.3
b1 1173.3 1188.0 1159.3
b2 1045.5 1060.1 1031.5
a2 1041.4 1056.1 1027.4

b0, b1 1055.7 1074.5 1037.7
b0, b2 1024.3 1043.1 1006.3
b0, a2 954.8 973.6 936.8
b1, b2 947.8 966.7 929.8
b1, a2 968.1 987.0 950.1

Table 8. Parameter estimates for the branch growth equation including the branch competition based
on the nonlinear mixed effects model.

Parameter Estimate Standard Error 95% Confidence Interval Value of p

b0 0.0208 0.0031 0.0270 0.0147 <0.001
b1 0.3833 0.0152 0.4132 0.3533 <0.001
b2 −0.0123 0.0034 −0.0057 −0.019 <0.001
a1 0.1445 0.0208 0.1854 0.1037 <0.001
a2 0.6545 0.6969 0.7912 0.5178 <0.001

Var(u1) 0.0772 0.0305 0.0587 0.1016 0.003
Var(u2) 0.0196 0.0119 0.0147 0.0260 0.041

Cov(u1, u2) −0.1241 0.0008 −0.4489 −0.1241 0.004
σ2 0.3110 0.0118 0.3001 0.3224 <0.001

Note: u1 and u2 are random parameter vectors; Var(u1) and Var(u2) are the variances of u1 and u2, respectively;
Cov(u1, u2) is the covariance between the random effects; σ2 is the residual variance.

3.4. Nonlinear Quantile Regression Model of GFBL

The present study constructed a model of the GFBL at different quantile points in an
L. principis-rupprechtii plantation based on the NRQ and including the branch competition
index (CI) (Table 9). The highest accuracy of the branch length growth model was achieved
for the quantile τ = 0.5, with an R2

adj, MES, RMES, and MPB of 0.8932, 0.2390, 0.0572, and
0.7775, respectively.

Table 9. Parameter estimates and fitting statistics for the branch growth equation including branch
competition and based on nonlinear quantile regression.

Parameter τ τ τ τ τ τ τ τ τ

b0 0.0040 ** 0.0053 *** 0.0100 *** 0.0106 *** 0.0084 *** 0.0156 ** 0.0148 ** 0.0143 ** 0.0164 *
b1 0.3311 ** 0.3437 *** 0.3922 *** 0.3962 *** 0.4106 *** 0.4317 *** 0.4529 ** 0.4714 ** 0.4890 ***
b2 −0.0006 *** −0.0030 ** −0.0035 ** −0.0085 ** −0.0198 *** −0.0212 *** −0.0236 ** −0.0253 ** −0.0266 *
a1 0.0822 *** 0.1438 ** 0.1073 *** 0.1351 *** 0.0438 *** 0.1440 *** 0.1571 *** 0.1804 *** 0.2154 *
a2 0.6019 *** 0.7460 * 0.6091 *** 0.6452 ** 0.5243 *** 0.6310 *** 0.6125 *** 0.5954 *** 0.5738 ***
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Table 9. Cont.

Parameter τ τ τ τ τ τ τ τ τ

MSE 0.3223 0.1798 0.1127 0.0892 0.0572 0.0788 0.1353 0.1972 0.3286
RMSE 0.5678 0.4240 0.3356 0.2987 0.2390 0.2807 0.3678 0.4440 0.5732
MPB 1.8466 1.3792 1.0916 0.9716 0.7775 0.9133 1.1965 1.4443 1.8646

R2 0.4403 0.6885 0.8044 0.8450 0.8942 0.8617 0.7650 0.6575 0.4294
R2

adj 0.4350 0.6856 0.8025 0.8435 0.8932 0.8604 0.7627 0.6543 0.4240

Note: “***” < 0.001, “**” < 0.01, “*” < 0.05. τ is different quantiles.

3.5. Modeling Verification and Evaluation

The results of the statistical evaluation metrics, including the MSE, RMSE, MPB, R2,
and R2

adj (Table 10), along with the results of the residual analysis (Figure 2), indicated that
the NLME model incorporating branch competition (CI) was optimal for predicting the
GFBL in an L. principis-rupprechtii plantation. The present study predicted and analyzed
the GFBL using various modeling methods (Figure 3). Notably, the NLS and NQR models
(τ = 0.5) showed good predictive accuracy for a branch age range of 1–10 a, whereas the
performance of the NQR model slightly exceeded that of the NLS model for a branch age
range of 11–23 a. However, the NLME model offered the most accurate prediction of the
GFBL across different ages when compared to the NLS and NQR models (τ = 0.5).

Table 10. Evaluation of the predictive accuracy of different parameter estimation methods for the
free branch length growth model.

Parameter NLS
Include Branch Competition Index

NLS NLME NQR (τ = 0.5)

MSE 0.0853 0.0629 0.0542 0.0572
RMSE 0.2921 0.2507 0.2327 0.2390
MPB 0.9500 0.8151 0.7572 0.7775

R2 0.8518 0.8881 0.9085 0.8942
R2

adj 0.8504 0.8871 0.9076 0.8932

Note: NLS is nonlinear least squares model; NLME is nonlinear mixed-effects model; NQR is nonlinear quantile
regression model; τ is different quantiles.
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The present study applied the developed nonlinear mixed-effects GFBL model includ-
ing branch competition to separately simulate the effects of the DBH, DINC and branch
competition index (CI) on the GFBL (Figure 4). For trees with the same DBH at the same
DINC, the GFBL decreased with an increasing CI (Figure 4A); for branches with the same
DINC and CI, the GFBL increased with an increasing DBH (Figure 4B); and for branches
with the same CI in trees with the same DBH, the GFBL increased with an increasing DINC
(Figure 4C).
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4. Discussion

The present study aimed to investigate the effects of different branch competition
indices and regression techniques on the accuracies of GFBL models. Based on the selection
of an optimal base model from among five different theoretical models, the effects of five
different branch competition indices on the branch growth patterns and model accuracy
were compared, and the fitting accuracies of three regression techniques were evaluated.

4.1. Base Model for the GFBL

The present study showed that the Chapman–Richards growth function is optimal
for describing the GFBL in an L. principis-rupprechtii plantation. In this study, the fitting
accuracy of five commonly used growth equations with ecological significance was com-
pared, and it was found that the Chapman–Richards growth function had the highest fitting
accuracy (Table 5). Our results were consistent with previous similar studies conducted by
Li et al. [29] and Wang et al. [15], who also used the Chapman–Richards growth function to
study branch growth in Larix olgensis and P. koraiensis plantations. This could be attributed
to the fact that the Chapman–Richards growth function is more suitable for describing the
branch growth of coniferous tree species in plantation forests [42]. However, our study
results differ from Dong et al. [30], who used the Weibull growth function to study the
branch growth of P. koraiensis under mixed forests. The discrepancies between our find-
ings and Dong et al. [30] may be attributed to the variations in the forest types and the
biological characteristics of the tree species [13]. Therefore, models of branch growth under
different tree species and forest types should be explored in future studies to increase our
understanding of the complexity of branch growth.

4.2. Influence Factors of the GFBL

In this study, the DBH and DINC are identified as the influencing factors of the GFBL
in the L. principis-rupprechtii plantation. Weiskittel et al. [12] observed that branches and
the DBH have the same growth trend in a wide range of silviculture treatments. Therefore,
in this study, the DBH was considered as the influencing factor of the GFBL, reflecting tree
size and vitality and explaining the influence of stand conditions on the GFBL [8,12,16]. The
DINC can reflect the growth state and environment of branches at different locations within
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the crown [42], and it is crucial in quantifying the competition effects of free branches [19,42].
Therefore, this study used the DBH and DINC as influencing factors of the GFBL. Except
for the DBH and DINC, the TH was identified as an important variable for the branch
growth model [13,16]. However, the TH has no significant effect on branch growth in
plantation forests [15,42,43], because the variation in the TH within plantation forests
usually is negligible [42] and the TH not significant for the GFBL [43]. Therefore, the
present study did not examine the effect of the TH on the GFBL in the L. principis-rupprechtii
plantation. Future studies should further analyze the impact of the TH on the GFBL.

The DBH and DINC simultaneously applied to the maximum parameter (a0) and the
GFBL model had the highest fitting accuracy. The results show that when the DBH and
DINC are simultaneously associated with the maximum parameter value (a0) (Table 5),
the model achieves the highest accuracy, with an increase of 7.89% in the R2

adj value.
This finding is consistent with the finding of Wang et al. [15] in constructing a branch
length growth model for P. koraiensis. The positive values of the parameters b0 and b1 in
Equation (12), which are associated with the DBH and DINC, indicate that larger DBHs and
DINCs are related to larger branch sizes (Figure 4). However, in Equation (11), the DINC is
expressed as DINCb1 , which showed that the contribution of different DINCs to the growth
of the GFBL was different [16]. With the increase in the DINC, the branches experience a
decrease in light exposure and nutrient availability [8], resulting in a proportional decrease
in their contribution to the GFBL as the DINC increases [16].

4.3. Response of the GFBL to Competition

The CI was the optimal competition index to describe free branch competition. Com-
petition indices that are distance-dependent are generally more effective than those that
are distance-independent [23,24]. This finding was confirmed in the present study, where
distance-dependent indices (CI, CA, SLL) were preferred over distance-independent ones
(CR, CD) (Table 6). The CI also exhibited higher predictive accuracy compared to the
CA, SLL, CR, and DR (Table 6). Long et al. [24] observed that the CI is the optimal index
for measuring the degree of competition between the target and competing branch for
shared resources, and for quantifying the growth space of branches to explain the degree
of competition between the target and competing branch [23], due to its precision and
effectiveness [44,45]. Therefore, the CI is used as a competition index to quantify free
branch competition in this study. However, in other related studies, different competition
indices have been used to quantify competition [11]. This may be because the effectiveness
of different competition indices is often site-specific and varies depends on forest types and
site conditions [46].

The CI was applied to the maximum parameter (a0) and the GFBL model had the
highest fitting accuracy. The results show that when the CI was associated with the
maximum parameter value (a0) (Table 6), the model achieved the highest accuracy, with an
increase of 3.67% in the R2

adj value. These findings of this study align with those reported by
Gao et al. [13]. In Equation (12), the CI parameter b2 is negative, indicating that increasing
competitive pressure can lead to a slowing of the GFBL and even to death and defoliation
(Figure 4A) [13,21,22,47], which is consistent with the conclusions of Hein et al. [8] and
Weiskittel et al. [10]. In addition, unequal distribution of nutrients among branches [48]
and the influence of hormones on branch growth [49] may be important factors leading to
this phenomenon.

4.4. Regression Techniques Affect Accuracy of the GFBL

This study compares the predictive ability of the NLS, NQR and NLME regression
techniques. Although the NLS method is the most widely used method to construct branch
growth models [16,18,29,42], the NLS method requires data that must meet the assumption
of independent error terms [30,50], which results in lower predictive accuracy than the NQR
and NLME methods (Table 10). However, the NRQ and NLME methods can effectively
solve these problems [16,31,35].



Forests 2023, 14, 1495 13 of 15

The NQR method has high flexibility because all the parameters of the regression
based on various quantiles are different [35]. By comparing the predictive accuracy of
different quantile points, it is found that the NQR method has the highest predictive
accuracy when τ = 0.5 (Table 9). This is the same result as obtained by Xu et al. [31] and
Cao et al. [35]. However, the NQR method treats the data from each individual free
branch as independent from each other [35], ignoring the hierarchical structure of the data
(branches within tree) [31], resulting in the GFBL curves of different trees following the
basic shape specified by the NQR method [16]. Despite this limitation, the NQR method
still has its own advantages in analyzing the distribution of the dependent variable under
specific quantiles [16,32].

The NLME method can solve the problem of the NQR method ignoring the hierarchical
structure of the data [31]. In this study, the tree was used as the grouping variable for
random effects in the NLME model. The fitting effects of different combinations of random
effect parameters were compared using the AIC, BIC, and −2LL values (Table 7). It was
observed that models with more random effect parameters yielded superior fitting effects,
which aligns with previous findings by Wang et al. [15] and Dong et al. [42]. The most
accurate fitting results were achieved when random effects parameters were applied to b1
and b2. Furthermore, by employing a variance–covariance structure to adjust the values
of random effects parameters (Table 8), the NLME model was able to predict the GFBL of
each tree, leading to more specific and realistic predictions [15,16,30,35].

Compared to the NLS and NQR models (τ = 0.5), the NLME model showed the best
fitting accuracy for modeling the GFBL in an L. principis-rupprechtii plantation (Table 10).
The NLME model can significantly alleviate the residual of the model [15,30]. This finding
was confirmed in the present study, in which the residual values were significantly reduced
in the GFBL model after the inclusion of random parameters (Figure 2). Notably, the
NLS and NQR models (τ = 0.5) performed well for the BAGE between 1–10 a, with the
NQR model slightly outperforming the NLS model for the BAGE 11–23 a. However, the
NLME model provided the most accurate prediction of the GFBL across all the BAGE
compared to the NLS and NQR models (τ = 0.5) (Figure 3). These results were similar to
findings obtained by Miao et al. [16]. However, there was an unexplained error of 9.92%
remaining in this study, and in future research, the effects of factors such as genetics [42]
and climate [18] can be considered in the model.

5. Conclusions

The present study aimed to investigate how competition between free branches and
different regression techniques affect the predictive accuracy of the GFBL model for an
L. principis-rupprechtii plantation. The Chapman–Richards growth function considering the
DBH and DINC was the most effective for describing the GFBL in the
L. principis-rupprechtii plantation. The CI was the most effective index for quantifying
branch competition among the CA, SLL, DR, and CD competition indices, and the model
that incorporated the CI in the maximum value parameter (a0) of the Chapman–Richards
growth function demonstrated higher predictive accuracy. Furthermore, the NLME model
accounting for branch competition (CI) showed the best fitting accuracy for modeling the
GFBL in an L. principis-rupprechtii plantation when compared to that of the NLS and NQR
models. The results of the present study can provide a scientific basis for improving the
management measures, assessing management effectiveness, and enhancing the quality of
L. principis-rupprechtii plantations.
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