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Abstract: As the primary mountain range in Central Asia, the Altay Mountains receive water vapor
carried by westerly circulation, resulting in relatively abundant local precipitation and lush pastures
in all seasons. Consequently, it has become one of the important transportation routes between Asia
and Europe. The exploration of long-term variations in precipitation is meaningful for understanding
the ebb and flow of the Asia–Europe steppe trade routes. However, previous dendroclimatological
studies of the Altay Mountains focused more on temperature changes than precipitations variations.
We carried out a 404-year precipitation reconstruction based on the tree rings of Siberian larch growing
on the south slopes of the Altay Mountains, which could explain 45.9% of the variance observed in
the February–October precipitation. Our reconstruction demonstrated some severe drought events
which could be found in the historical documents, such as the drought in the late Ming Dynasty
(1640s) and the Ding-Wu Disaster (1870s). The spatial correlation analysis, cross-wavelet spectrum
and wavelet coherency analysis indicated that the precipitation variations in the study area may
be related to the ENSO and NAO. This study presents a robust precipitation reconstruction of the
southern Altay Mountains, serving as a reference for future research on large-scale climatic forces
acting on Altay precipitation.

Keywords: precipitation reconstruction; tree rings; Siberian larch; the Altay Mountains; North Arctic
Oscillation

1. Introduction

Paleoclimatology is an essential support for comprehending future climate change
scenarios. In addition to limited instrumental climate data, it is the only way to evaluate
the accuracy of climate model predictions. Climate reconstruction frequently relies upon
natural proxies such as tree rings, stalagmites, ice cores, etc. As commonly utilized proxy
records, tree rings allow for the collection of long-term climatic data. The use of long-
standing data allows us to estimate interannual, decadal and multi-decadal historical
climate variability. In addition, these data serve as a reference for better comprehending
the characteristics of current climate patterns and predicting future regional climates and
the dynamic reactions of Earth’s systems to climate change. Due to their high resolution,
wide dispersion, vast number of copies, reliable dating and ability to provide unambiguous
and measurable signals of environmental change, tree rings have become an essential
proxy index for climate change research. Different studies have involved extensive research
in numerous world locations over the past several decades [1–3]. In addition to the
reconstruction of regional climates, new attempts and progress have been made in the
fields studying climate as a driving force for forest regeneration [4], El Niño–Southern
Oscillation (ENSO) [5], sunspot activity [6] and spatial climate patterns [7]. Multiple
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climates constitute bridging zones between the Asian monsoon region and Central Asia’s
mid- and high-latitude climate systems [8]. Due to this unique characteristic, Central Asia’s
influence on climatic conditions extends beyond its geographic boundaries. Numerous
mountain ranges and plateaus in the interior of Asia are covered with coniferous forests,
which have a crucial role in the climates and environments of the planet [9]. The Altay
Mountains are the most extensive range in Central Asia and are situated in the geographical
heart of the Eurasian continent. In addition to their complicated physical geography and
climate interactions, the Altay Mountains preserve several coniferous species in natural
ecosystems. Some forests in the Altay Mountains are dominated by Siberian larch and
spruce, which have high potential for the establishment of century-long tree ring width
chronologies. Recent dendroclimatic reconstructions of Altay have relied heavily on these
tree rings [10–13].

We reconstructed the precipitation variations during the region’s long-term history
using Siberian larch samples and examined whether large-scale climatic circulations drive
this variation. In order to meet this objective, we initially generated the chronology using
the standard dendrochronological procedure and then reconstructed the precipitation
utilizing instrumental data and a linear regression model. Then, we utilized spatial analysis
to demonstrate the geographical representativeness of the reconstruction sequence and
utilized spectral analysis to evaluate the sequence and discover whether it was associated
with large-scale climatic circulations. Our study extended the region’s limited precipitation
reconstruction chronology and demonstrated the precipitation distribution in the Altay
Mountains from 1615 to 2018. This study’s explanation of the influence mechanism of
precipitation fluctuation is more comprehensive than the explanations provided in other
research in the Altay region. This could assist us in better comprehending the patterns of
precipitation and drought in Inner Asia and its surrounding regions.

2. Materials and Methods
2.1. The Study Region and Sampling

This research was conducted in the Fuyun region of the southern Altay Mountains
in northern Xinjiang, China (Figure 1a). The area has a typical continental, temperate,
cold-zone climate. The westerly circulation carries moisture vapor from the Atlantic Ocean,
which enters the mountains along the Irtysh River and Kazakhstan Zaisan Valley. The
major climatic characteristics are windy springs and cool, dry summers. As the region
is adjacent to the Siberian region of Mongolia and affected by the Asian High, the win-
ter is cold and long. The annual average temperature in the Altay Mountains can drop
below 4 ◦C, despite being above 4 ◦C in the plains and river valley. The sampling loca-
tion is situated in a transition zone between the eastern mountains and western plains
(Figure 1b). The annual average temperature is approximately 3 ◦C, July is the warmest
month (mean temperature 21.9 ◦C). From November to March, it is winter, and January
is the coldest month (mean temperature −21.1 ◦C). This region is obstructed by terrain
and receives less precipitation, with an annual average of roughly 200 mm. Siberian larch
is the dominant species in the forests of this region (46◦57′ N, 90◦09′ E, ~1752 m above
sea level). At the termination of the 2018 growing period, twenty-five Siberian larch trees
at the sampling site that were alive, dispersed, and showed old tree characteristics were
selected for sampling. We extracted 50 cores using a 5 mm increment borer. The sam-
pling site environment is not especially affected by humans and can reflect the natural
climate conditions.
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Figure 1. (a) Positioning map of the sampling site and meteorological stations. (b) Dimensional
topographic map of sampling site.

2.2. Tree Ring Width Chronology

Researchers took samples of tree rings back to the laboratory. During sample process-
ing, we utilized a standard dendrochronological methodology [14,15]. The samples were
initially affixed to wooden holders and left to air dry before being flattened with sandpaper
to polish the tree rings. After being dried, mounted, and surfaced, the ring widths of the
samples were analyzed, with an accuracy of 0.01 mm, using the LINTAB tree ring station.
The COFECHA program was used to evaluate the cross-dating quality [16]. The data
were then normalized using the ARSTAN program [17] based on the negative exponential
function, used to eliminate age-related growth trends, while retaining the climate signal. In
the fitting process, the sequence autocorrelation was removed, the influences of non-climate
signals were eliminated, and the order of the autoregressive model was determined to
build the optimal regression model.

The final chronology was produced by calculating the robust bi-weighted averages
of yearly tree ring indices. According to the unstandardized tree ring width dataset, we
extracted various dendrochronology-typical statistical features. The mean sensitivity (MS)
is used to evaluate yearly change in tree ring width and is consequently employed to
assess how effectively the chronology mirrors regional climatic variations [18]. The first-
order autocorrelation coefficient (AC1) reveals the impact of growth from the previous
year on current growth. The signal-to-noise ratio (SNR) is the ratio of climatic signals to
other noises in the chronology, which reveals how much environmental information the
sample expresses. The standard deviation (SD) reflects the amount of climate-related data
contained in tree ring chronologies. The subsample signal strength (SSS) quantifies how
closely the constructed chronology resembles the ideal one. The MS of the common period
series for tree ring width is 0.306, showing that interannual fluctuation in tree ring width
is relatively high and sensitive to climate change. The AC1 is 0.473, suggesting that the
previous year’s climate delayed tree growth. Both the SD and SNR are relatively high. The
above dendrochronology-typical statistical characteristics demonstrate that the chronology
is reliable and provides a wealth of climate data. For reconstruction considerations, the
cutoff for each record was the first year in which the subsample signal strength (SSS)
was more than 0.85, a typical dendroclimatology threshold [19]. After 1615, the main
chronology’s SSS is larger than 0.85. Thus, we constructed the standard (STD) chronology,
residual (RES) chronology and Arstan (ARS) chronology, with a length of 404 (1615–2018)
years (Figure 2).
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Figure 2. Number of cores, together with the tree ring standard (STD), residual (RES) and Arstan
(ARS) chronologies of Siberian larch.

2.3. Meteorological Data and Statistical Analysis

The Fuyun climatological station is near the sampling site. The station’s instrumental
climate records (1956–2016) were retrieved from the China National Climatic Data Center
(http://data.cma.cn/ accessed on 15 March 2023). The climate records consist of monthly
temperature and precipitation measurements (Figure 3). We conducted a correlation
analysis between the tree ring width chronology and the instrumental data’s overlap period.
The correlation analysis explored the response relationship between the meteorological
data and tree ring width chronology from the January of the previous year to the October
of the current growth year. Because the STD chronology had the strongest link with
precipitation, as determined through our correlation analysis, it was chosen for further
research. The rainfall of the southern Altay region was reconstructed using a single-
variable linear regression model based on the STD chronology and meteorological data.
Then, we verified the reconstruction model to ensure its dependability. Using the KNMI
climate explorer (http://climexp.knmi.nl/ accessed on 17 March 2023), spatial correlations
were performed between the reconstructed precipitation and the 0.5◦ resolution gridded
February–October precipitation dataset from the Climate Research Unit (CRU TS4.01) for
the period of 1901–2016 to illustrate that our reconstructed precipitation series reflects
a wide range of precipitation variability. For the reconstruction sequence, we used the
MultiTaper method (MTM) of spectral analysis [20] and Wavelet spectral analysis [21] to
investigate whether large-scale climate forcings could have a potential influence on the
reconstructed precipitation variations in the Altay region.
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3. Results
3.1. Climate Response Analysis

As demonstrated previously, the dependable chronology (SSS > 0.85) spans from
1615 to 2018 (Figure 2). On the basis of the instrumental data, the findings of climatic
response studies revealed the correlation coefficients of monthly temperature and precipi-
tation for tree ring STD chronology in the southern Altay Mountains (Figure 4). After a
joint correlation analysis, the STD chronology was identified to have the highest correlation
with the previous year of February–October precipitation (r = 0.678). The chronology has
the highest correlation with the instrumental precipitation data, showing that precipitation
is the most influential climatic control element for Siberian larch. The Siberian larch sam-
ples thrived on poor or rocky soils, leading to a limited capacity for water storage. This
characteristic further explains the trees’ drought stress, causing heightened sensitivity to
precipitation variations. In order to extend our reconstruction to a larger period, we finally
chose the previous year of February–October precipitation as the appropriate object.
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3.2. February–October Precipitation Reconstruction

Based on the high correlation of the STD chronology with the instrumental precipita-
tion data from February to October in the previous year, we reconstructed the precipitation
series of the southern Altay Mountains (Figure 5). The single-variable linear regression
model between the STD chronology and February–October precipitation for the calibration
period produced a significant result (F = 49.4, p < 0.001, adjusted r2 = 0.45). The model
obtained was as follows:

Y(t) = 42.77045 + 117.1726 × X(t)

Y is precipitation and X is the tree ring width index.
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Figure 5. Observation and reconstruction of February–October precipitation during the calibration
period of 1957–2016.

As shown in Table 1, both the reduction error (RE) and the coefficient of efficiency
(CE) based on the respective tests (p < 0.001) are significantly positive, showing that the
model has considerable validity [14]. The outcomes of ST, which reflect how closely the
projected value follows the actual data’s direction, surpass the 95% confidence threshold.
These findings demonstrate that the model passed the essential checks in this instance.
For the entire calibration period (1957–2016), the correlation between the tree ring width
chronology and meteorological precipitation data is 0.678, which explains 45.9% of the
previous February to October precipitation variation. The reconstructed precipitation has
a high degree of concordance with the observed value, indicating that the reconstruction
equation is reliable.

Table 1. Calibration and verification statistics for the reconstruction.

Calibration Verification Calibration Verification Full Calibration

(1957–1986) (1957–1986) (1987–2016) (1987–2016) (1957–2016)

r 0.713 0.713 0.576 0.576 0.678

r2 0.508 0.508 0.331 0.331 0.459

RE 0.435 0.258

CE 0.421 0.179

ST 23+/7− 22+/8− 47+/13−

After applying the model of linear regression with a single variable, the annual pre-
cipitation (previous February–October) for AD 1615–2018 was reconstructed (Figure 6).
The low-pass filtering could be used to investigate the stage characteristics of precipitation
fluctuation in the southern Altay Mountains, allowing us to better comprehend and assess
the overall precipitation trend. The 10-year, low-pass-filtered total precipitation is pre-
sented in Figure 6. The reconstructed precipitation varied from 66.9 mm to 254.7 mm, with
1983 being the driest year (66.9 mm) and 1704 being the wettest (254.7 mm). Accord-
ing to the calculation, the standard deviation (σ) and long-standing mean (mean) are
34.7 and 157.7 mm, respectively. The dry (wet) periods were characterized by a 10-year low-
pass-filtered value that was always lower (higher) than the long-term mean from 1615 to
2018. According to this definition, dry periods with below-average precipitation occurred
in AD 1631–1648, 1651–1660, 1686–1696, 1712–1722, 1752–1773, 1810–1830, 1870–1903,
1972–1992 and 2004–2013; wet periods were identified during AD 1620–1631, 1671–1686,
1695–1708, 1722–1733, 1737–1752, 1780–1793, 1798–1811, 1830–1860, 1903–1919, 1933–1944,
1953–1963 and 1992–2004. We defined an extremely dry year as <mean − 1σ (123 mm)
and an extremely wet year as >mean + 1σ (192.4 mm). In the precipitation reconstruction
from 1615 to 2018, 71 years were classified as exceptionally dry and 69 as extremely wet.
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Our reconstruction illustrates the distribution of wet and dry periods in the history of the
southern Altay Mountains over 404 years. The reconstructed precipitation series captured
some significant historical drought events, such as the severe drought in the late Ming Dy-
nasty during the 1630s and early 1640s. This drought resulted in a total economic collapse,
intensified social unrest, and hastened the demise of the Ming Dynasty [22]. Additionally,
the Qing Dynasty experienced a severe drought following the most serious occurrence,
the El Niño event in 1876, which affected a large portion of Asia, causing drought and
famine for 160 to 200 million people [23]. Previous research has already established the
impacts of these two droughts on northern China, and our study further corroborates these
findings [24].
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Figure 6. Reconstructed and 10-year, low-pass-filtered (black line) values of February–October
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After investigating the variations in the reconstructed precipitation on various time
scales and the likely explanation for its periodic alterations, the MultiTaper spectral analysis
results revealed that the precipitation in this area showed 2–7-year, 10.5-year, 29.2-year,
42.6–60.2-year and 1000-year quasi-periodic variations (Figure 7). However, consider-
ing its boundary effect, the 1000-year cycle is less reliable. As a supplement, Wavelet
analysis was also utilized to examine the temporal characteristics of the various cycles.
Wavelet analysis is the simultaneous time and frequency domain decomposition of a time
series. It can identify the main period series and its changes over time. The wavelet
transform of a discrete time sequence is defined as the conjugate of the sequence and the
scale and transform function of the selected wavelet function. The changes in amplitude
and frequency with time can be obtained by transforming the wavelet’s time scale and
the wavelet’s scaling function. The wavelet analysis shows approximately 60-year quasi-
periodic variations from 1765 to 1890 and an approximately 24-year cycle from 1670 to
1750. In previous dendroclimatic research, the abovementioned cycles were frequently
reported to be observed in reconstructions of the Altay region. The frequency of the
2.7-year and 11-year cycles was detected in the reconstructed precipitation of the southern
slopes of the Altay Mountains using tree ring δ13C [25]. The reconstructed precipita-
tion series for the upper Irtysh River Basin indicated cycles of 24.3 years, 3.2 years and
2.1 years [26]. The 2.2-year cycle, 12-year cycle and 24-year cycle were discovered in a study
of the reconstructed streamflow series of the Haba River [12]. A reconstructed 310-year
early summer temperature series for northern Kazakhstan also contained 11-year and
2-year cycles [27].
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4. Discussion
4.1. Regional-Scale Precipitation Signals

Despite this area’s complicated landscape and geographical variances in precipitation
fluctuation and radial tree growth, the spatial correlation analysis reveals that our recon-
struction has a significant connection with the CRUTS 4.01 precipitation grid-box data for
the vast Altay Mountain region (r > 0.4, p < 0.01) (Figure 8). Comparatively, the spatial
correlation patterns between the reconstruction and grid-box data are similar to those of
the instrumental precipitation data and grid-box data. On the basis of this information,
we concluded that February–October precipitation is the most significant climatic factor
restricting the growth of Siberian larch in southern Altay, and our reconstruction is an
excellent geographical representation of this region.

As with previous proxy-based climatological reconstruction research, we verified
our reconstruction’s reliability by comparing our precipitation series to those of other
reconstruction studies from neighboring regions (Figure 9a). Based on the tree rings of
Siberian spruce, a valid precipitation sequence for the southern Altay Mountains was previ-
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ously reconstructed [11]. Despite the use of different tree species in the reconstruction work
in the two studies, our precipitation reconstruction exhibits a significant correlation (r > 0.6,
p < 0.01) with the previous precipitation reconstruction during the overlapping periods
(AD 1825–2009), which further validates the reliability of our precipitation reconstruction.
Even though both reconstructions demonstrated that the major dry and wet periods were
comparable (Figure 9b), there were differences in the length and intensity of climate condi-
tions. Discrepancies in tree species, calibration period scope, sample site topography, or
other factors might have caused this. The commonalities in the patterns of the two series
indicate that the southern Altay Mountains are subject to comparable forcings. Numerous
trees in this region thrive on poor or rocky soils, resulting in a limited capacity for water
storage, and precipitation is the dominant factor limiting tree radial growth.
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reconstructions [11] from the surrounding areas. (b) For a convenient comparison, both series were
normalized and smoothed using SPSS to emphasize long-term variations.
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4.2. Climate–Growth Response

Since around the middle of the 20th century, tree growth index and climate sensitivity
decline has been identified in tree ring width and density records from several circumpolar
northern latitude locations. This occurrence is frequently referred to as the “divergence
issue” [28]. As shown by the relationship (r > 0.6) between radial tree growth and cli-
matic conditions, the climate sensitivity of Siberian larch in the Altay Mountains has not
diminished. Consequently, the tree ring width chronology of Siberian larch from the Altay
Mountains enables us to analyze the recent climatic changes from a long-term perspective.
Previous research has revealed that owing to their geographic position, trees in Northwest
China have a limited capacity for water storage. Hence, drought often threatens their
growth [12,29]. In this research, the association between the tree ring width chronology
and meteorological data revealed that precipitation from February to October in the pre-
ceding year was the main factor constraining Siberian larch growth. When plants begin
their active growth period in the spring, moisture deficiency is vital [30]. Trees’ radial
expansion is constrained by the climatic circumstances of the growing season and the
weather conditions before the growing season [14]. The study area’s average temperature
in September and October is approximately 10 ◦C. Siberian larch can also carry out photo-
synthesis. Precipitation can strengthen photosynthesis and encourage trees to accumulate
more nutrients, aiding tree regrowth in the following year. Beginning in the October of
the previous year and continuing to March in the current year, the area was dominated by
snowfall that accumulated on the surface. Studies have shown that melting snow can meet
the need for water during the early and middle growth of trees [31]. In the initial stages
of the growing period, considerable moisture is needed for the division and expansion of
tree cells [14]. In this stage, the rainfall in the study region was still insufficient, but the
previous winter’s snowmelt provided enough water for tree growth [32]. According to
the correlation analysis between tree growth and weather patterns, the chronology was
positively associated with precipitation and negatively related to mean temperature from
May to September in the previous year. The correlation coefficient implies that drought
was the primary factor limiting tree growth within the southern Altay region during this
period. Similar findings were observed in China’s arid and semiarid areas [33,34].

4.3. The Influence of North Arctic Oscillation Westerlies

The westerly circulation is situated in the middle latitudes, and the primary control
range extends from 40◦ N to 60◦ N. In the Northern Hemisphere, the prevailing westerlies
produce southwesterly winds. Westerly winds from the ocean can deliver copious precipi-
tation [35]. The Tibetan Plateau divides the westerlies into the north and south branches
of westerly airflow, which expands the influence of the westerly winds on China. The
north-westerly airflow forms a southwest airflow in the northwest of the plateau, which
carries certain types of precipitation to the north of the plateau. [36].

When this warm and humid airflow from the Atlantic bypasses northern Xinjiang, it
merges with the cold and dry polar continental air mass from Siberia to the south due to the
thermal difference between the land and sea. It turns into a strong northwest airflow, which
makes the winter monsoon in China more powerful, and it extends far south. The North
Atlantic climate zone, controlled by the cold, high pressure of the Northern Hemisphere,
influences climate change in Central Asia and even East Asia through the action of the
westerly winds. The Altay Mountains are located in the Central Asian region, where the
upper westerly jets play an important role in this critical geological location. Considering
that our sampling site is located on the southern Altay Mountains’ windward slopes,
we reasonably suspected that the influence of the westerlies is one of the factors driving
precipitation change in the study area.

The North Atlantic Oscillation (NAO) is the pressure gradient between the Icelandic
Low and the Azores High. It is a north–south “see-saw” and significant oscillation phe-
nomenon in the atmosphere of the Northern Hemisphere, as well as an essential climate
variable affecting the Northern Hemisphere’s climate. The NAO index can accurately reflect
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variations in the upper reaches of the westerlies, and its low and high values correspond
to the strengthening and waning of the mid-latitude westerlies [37]. Combined with our
periodic analysis, our precipitation reconstruction’s approximately 30-year periodicities
are consistent with the NAO activity cycle [38] or Bruckner cycle [39,40]. Thus, we sus-
pected that NAO or solar activity may significantly influence precipitation variation in the
study region.

To further investigate the precipitation variability of the Altay Mountains, which the
atmosphere–ocean system may influence, we compared our reconstructions with the west-
erly index [41] and the NAO index [42]. As we expected, the decrease (increase) in the NAO
index corresponds to the increase (decrease) in the westerly index, and the strengthening
(weakening) of the westerlies leads to increases (decreases) in precipitation. Based on
22 years of low-pass filtering to illustrate the multi-year intergenerational alterations in
the sequence, the westerly wind index sequence is positively correlated with precipita-
tion (r = 0.41, p < 0.1), while it is negatively correlated with the NAO index (r = −0.45,
p < 0.1). At multiple time intervals, the three sequences exhibit congruent trends (Figure 10).
Numerous previous studies have mentioned this NAO and westerly climate model [43–45].
As indicated previously, the fluctuations in average rainfall in the southern Chinese Altay
region are affected by westerlies and the NAO.
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4.4. Other Synoptic Influence Mechanisms of Precipitation Variation

The MultiTaper method (MTM) spectral and Wavelet spectral analysis results of the
reconstructed precipitation show that the precipitation sequence in the southern Altay
Mountains has a quasi-periodic variation pattern of 2–7 years. Our reconstructed precipita-
tion’s 2–7-year quasi-periodic variation lies within the fluctuation range of ENSO [46]. This
periodic change suggests teleconnections between ENSO and the precipitation fluctuations
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in the southern Chinese Altay region. Furthermore, the above cycles are consistent with
earlier dendroclimatic research that demonstrates ENSO’s effect on interior Asia’s inter-
annual precipitation fluctuations [47–49]. The negative correlations of the precipitation
series with the gridded HadlSST1 SST in the tropical Pacific support such an association
(Figure 11a). According to the history of the ENSO event sequence [50], 20 of the 69 extreme
wet years (precipitation > mean + 1σ) occurred in ENSO years. To further validate the
connections between the reconstructed precipitation and large-scale climatic circulation,
we computed the correlation coefficient between the precipitation from July to September
in our precipitation series and the NINO 3.4 index. A comparison between the two records
showed a certain correlation (r > 0.3, p < 0.1). The above shows that ENSO is correlated
with precipitation changes south of the Altay Mountains.
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Figure 11. (a) Spatial correlation plots for the reconstructed precipitation with averaged HadlSST1
sea surface temperatures (SST) from July to September during the period of 1950–2018. (b) Wavelet
coherency (WTC) and cross-wavelet spectrum (XWT) analysis revealing the relationship between the
reconstructed precipitation and sunspot series.

In order to explore whether solar activity is the factor influencing the precipitation
changes in the study area, cross wavelet (XWT) and wavelet coherency (WTC) analyses
between the sunspot number (http://sidc.oma.be/silso/datafiles/ accessed on 16 April
2023) and the reconstructed precipitation in the southern Altay Mountains were carried out
(Figure 11b). In the temporal frequency space, the XWT is used to locate areas where the
time series exhibit a high common power, while the WTC is used to identify areas where
the two time series co-vary. The U-shaped line in the figure represents the cone of influence.
The effective value is within the range of this line. The thick, black line, indicating the 95%
confidence level, and the arrows (vectors) designate the phase displacement between the
reconstructed precipitation and sunspots. According to the analysis results, solar activity
impacted our reconstructed precipitation sequence with different periodic changes. It is
worth noting that the solar activity has a common, high-intensity, 11-year cycle with our
precipitation sequence. The MultiTaper method spectral analysis results showed that the

http://sidc.oma.be/silso/datafiles/
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precipitation in this area has quasi-periodic variations every 10.5 years (Figure 7). Our
rebuilt precipitation series’ 10.5-year cycle hinted at a potentially significant relationship
with the 11-year Schwabe quasi-periodic pattern of sunspot activity [51]. This shows that
solar activity has been the factor influencing precipitation in the study area after 1860 AD.

5. Conclusions

The total precipitation of the previous February–October was reconstructed using
a 404-year regional tree ring width chronology of the southern mountains of the Altay
region. The reconstruction is based on a significant correlation between instrumental
data and the radial expansion of Siberian larch (r = 0.678, p < 0.01). The reconstruction
results showed regional precipitation variations from 1615 to 2018. This reconstruction
represents 45.9% of the variation in the instrumental precipitation records from 1957 to 2016.
Based on the Pearson correlation analysis results, the precipitation in the southern Altay
Mountains is the most influential hydrological factor in the growth of Siberian larch. Our
spatial correlation analysis implied that the reconstructed precipitation provides a specific
spatial representation of the Altay Mountains. Therefore, the tree ring width chronology
of the Siberian larch in the southern Altay Mountains provides valuable information with
which to investigate climate change in a long-term context. As with many other historical
climate reconstruction studies based on proxies, we inspected the reconstructed model and
compared our reconstructed precipitation series with other precipitation reconstructions
from the regions nearby to verify the validity of our study. As implied in the case of our
reconstruction, the rainfall variation series of the southern Altay Mountains reflects the
distribution of dry and wet periods. Our spectral analysis results indicate that multiple
large-scale climate forcings may influence regional moisture variability over the Chinese
Altay region.

Further spatial correlation analysis, cross-wavelet spectrum analysis and a comparison
with the westerly circulation and winter NAO index demonstrated a potential association
of the rainfall fluctuations in the southern Altay Mountains with solar activity and the
atmosphere–ocean system. Our preliminary findings need to be confirmed through ongoing
dendroclimatological research. Continued research in this area could assist us in better
comprehending the characteristics of precipitation and drought in Inner Asia and its
surrounding areas.
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