
Citation: Shi, C.; Zhang, F. A Forest

Fire Susceptibility Modeling

Approach Based on Integration

Machine Learning Algorithm. Forests

2023, 14, 1506. https://doi.org/

10.3390/f14071506

Academic Editors: Timothy A.

Martin and Cate Macinnis-Ng

Received: 7 June 2023

Revised: 27 June 2023

Accepted: 22 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Forest Fire Susceptibility Modeling Approach Based on
Integration Machine Learning Algorithm
Changjiang Shi and Fuquan Zhang *

College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China;
1213676009@njfu.edu.cn
* Correspondence: zfq@njfu.edu.cn

Abstract: The subjective and empirical setting of hyperparameters in the random forest (RF) model
may lead to decreased model performance. To address this, our study applies the particle swarm
optimization (PSO) algorithm to select the optimal parameters of the RF model, with the goal of
enhancing model performance. We employ the optimized ensemble model (PSO-RF) to create a fire
risk map for Jiushan National Forest Park in Anhui Province, China, thereby filling the research
gap in this region’s forest fire studies. Based on collinearity tests and previous research results, we
selected eight fire driving factors, including topography, climate, human activities, and vegetation for
modeling. Additionally, we compare the logistic regression (LR), support vector machine (SVM), and
RF models. Lastly, we select the optimal model to evaluate feature importance and generate the fire
risk map. Model evaluation results demonstrate that the PSO-RF model performs best (AUC = 0.908),
followed by RF (0.877), SVM (0.876), and LR (0.846). In the fire risk map created by the PSO-RF
model, 70.73% of the area belongs to the normal management zone, while 15.23% is classified as a fire
alert zone. The feature importance analysis of the PSO-RF model reveals that the NDVI is the key
fire driving factor in this study area. Through utilizing the PSO algorithm to optimize the RF model,
we have addressed the subjective and empirical problems of the RF model hyperparameter setting,
thereby enhancing the model’s accuracy and generalization ability.

Keywords: forest fire prediction; PSO-RF; fire risk map; machine learning

1. Introduction

Forests are of utmost importance to our planet as they serve as critical ecosystems,
playing essential roles in soil and water conservation, carbon cycling, and biodiversity
preservation [1]. Forest fires can seriously damage forest ecology. The harm caused by
forest fires is profound, with significant impacts on the natural ecology, economy, and
society [2,3]. A vast number of forest fires occur worldwide every year, making them a hot
topic in environmental protection [4]. The rise in global temperatures and the escalating
occurrence of extreme weather events have contributed to a notable surge in forest fires
across the globe [5]. The prominence of forest fires is growing, underscoring the practical
and strategic significance of studying them. As of 2021, the forested area of Chuzhou City
in Anhui Province, China totals up to 741.5 million acres, earning it the title of “National
Forest City”. As urbanization progresses and human activities become inevitable, the
challenges associated with forest ecological management in Chuzhou City have become
urgent. This paper selects Jiushan National Forest Park in the city as the research site.

The prediction of forest fires is of great importance [6]. The initial methods of forest
fire prediction mainly relied on field observations, followed by the use of statistical analysis
methods to identify potential fire sources [7]. This approach typically requires a significant
amount of manual observation and data collection, which is tedious, time-consuming, and
lacks accuracy [8]. The application of satellite remote sensing technology has transformed
this situation. Researchers can collect, store, and analyze a large number of geospatial data
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via satellites. This information serves as the foundation for devising intricate models to
forecast forest fires. Early forest fire prediction models primarily based on general linear
models proved inadequate in capturing the complex non-linear relationships between
forest fire occurrence and environmental factors, leading to unsatisfactory results [9,10].
Subsequently, generalized linear regression models such as LR and Poisson regression
have been widely applied in forest fire prediction models [11–13]. To some extent, these
generalized linear models solve the issue of nonlinearity between forest fire factors.

During recent years, the utilization of machine learning algorithms has enabled re-
searchers to develop effective and precise forest-fire prediction models. These methods
have proven to be efficient and accurate in forecasting forest fire occurrences. Machine
learning methods can use a large number of data for prediction. Supervised learning meth-
ods can use historical data to predict the probability of fire outbreaks and use classification
or regression algorithms for data analysis [14]. Unsupervised learning methods can cluster
data to identify fire outbreak patterns [15]. Reinforcement learning methods can optimize
fire prediction models by learning how to take action [16]. Machine learning methods can
consider multiple factors, including weather, vegetation, terrain, and human activities, and
can handle a large number of data and complex models [17]. Among them, LR, SVM, and
RF are classic machine learning models. The LR model is a classic classification algorithm,
a linear classifier suitable for binary problems of whether a forest fire occurs [18]. However,
the LR model is sensitive to outliers and cannot handle non-linear problems. If many data
features are processed, it can lead to the curse of dimensionality. The SVM model is suitable
for both binary and multi-class problems in classification. By using kernel functions, the
SVM model maps data into a high-dimensional space and solves non-linear classification
problems well, handling datasets with many features. However, the SVM model is sensitive
to noise data and parameter choices, requiring data preprocessing [19]. The RF model
randomly draws samples, generates multiple decision trees, and combines them through
averaging or voting, reducing overfitting issues and improving the model’s prediction
accuracy [20]. The RF model reveals the non-linear relationships between various factors
well; hence, it is widely applied in the field of forest fire prediction. However, because each
algorithm has some defects, the accuracy of the model is affected. Faced with this situation,
many researchers have found that the accuracy of ensemble models is superior to single
models, so various types of ensemble models are extensively used in related fields [21].

Truong, in his study of landslide susceptibility probability, combined the bagging
ensemble (BE) and logistic model trees (LMTree) to construct a BE-LMTree model. The
results from the validation set showed a predictive accuracy of 83.4%, surpassing that of
a single SVM model [22]. Lingxiao Xie, during his investigation into the susceptibility
mapping of forest fires in Liangshan Prefecture, China, initially processed the triggering
factors using the frequency ratio (FR) method. Subsequently, he utilized the Bayesian
optimization (BO) algorithm to optimize the parameters of the XGBoost model, thus
proposing the FR-BO-XGBoost model. Compared to the RF and SVM models, the FR-
BO-XGBoost model demonstrated superior performance, with an AUC score of 0.887 [23].
Meriame proposed the frequency ratio–random forest (FR-RF) model (AUC = 0.858), which
first processed the dataset with FR and then combined with RF to map the fire risk of
forests in the Mediterranean region [21]. Obviously, in the field of machine learning models,
the performance of ensemble models is higher than that of single models, and ensemble
models are a current trend in the field of forest fire prediction. Among them, most ensemble
models aim at optimizing the hyperparameters of machine learning models to achieve
better models [21,23,24].

To achieve better models, hyperparameters in machine learning algorithms require
manual setting and optimization. Traditional hyperparameter tuning methods often rely on
expert experience, unwritten heuristics, or occasionally brute-force search techniques [24].
Obviously, this subjective method of parameter tuning results in unstable model accuracy.
Certain researchers have attempted to tune models in a more systematic and reasoned
manner. Bergstra used a random search method to tune the parameters of neural networks
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and found that random search in the same domain can find equivalent or better models in a
shorter computation time [25]. Snoek utilized Bayesian optimization with Gaussian process
sampling to model the generalization performance of learning algorithms, with the objective
of identifying the optimal parameter configuration for machine learning algorithms [24].

Hyperparameters in the RF model, such as the number of decision trees (n_estimators)
and the maximum tree depth (max_depth), greatly affect the convergence speed and
prediction performance of the RF model. Most researchers use default parameters in the RF
model ensemble method or select an approximate parameter based on experience, but these
hyperparameter selection methods may reduce the performance of the RF model. To obtain
a better forest fire risk assessment model, this paper proposes an ensemble model (PSO-RF)
that employs PSO to optimize key parameters within RF, thus avoiding the limitations
and defects of traditional RF model parameter optimization methods [26]. To validate its
performance, this paper also cites the LR, SVM, and RF models for comparative analysis. To
gain further insights into the factors influencing wildfires, the optimal model was employed
to evaluate the importance of different features. This analysis helped identify the primary
triggering factors associated with wildfires in the region. At the same time, prediction
accuracy, recall rate, F value, and AUC curve were utilized to assess the precision of the four
models [27]. This paper fills the gap in forest fire research in the Jiushan area by conducting
a study on forest fire risk assessment and provides a novel forest fire risk assessment
method based on the PSO-RF ensemble model. The advantage of this method in terms of
accuracy and generalizability has been demonstrated through comparison with traditional
methods. The forest fire risk map of the Jiushan area, drawn based on the PSO-RF model,
demonstrates superior accuracy compared to other models. This study’s findings enhance
forest stewardship in the Jiushan region, offering valuable insights to administrators for
strategizing forest fire mitigation. Future research can further explore the implementation
of other optimization algorithms in forest fire risk-assessment models, with the aim to
provide more effective forest fire control and resource management solutions in a wider
range of areas and scenarios.

2. Materials and Methods
2.1. Study Area

Jiushan is located within the jurisdiction of Chuzhou City, Anhui Province, located
within the southern mountainous area of Fengyang County. It lies between 117°19′–117°48′

east longitude and 32°37′–32°46′ north latitude. The terrain is primarily hilly and relatively
flat, covering an area of 249.12 square kilometers. Figure 1 shows the satellite image of the
Jiushan area. Jiushan is located in a region characterized by a North subtropical monsoon
climate. It maintains an average annual temperature of 14.9 °C and receives an average
annual rainfall of 876 mm. During the developed monsoon period, the hottest month in
Jiushan experiences an average temperature above 22 °C, while the coldest month typically
sees temperatures ranging between 0–5 °C. Jiushan is situated in the transition zone of
the north and south plant regions. The forest structure is mainly composed of deciduous
broad-leaved forests of the Fagaceae family and evergreen conifers of the Pinaceae family.
The famous tourist attraction, Jiushan National Forest Park, is located here [28]. The fire
prevention period in Jiushan is from November each year to April of the following year.

2.2. Data Sources

Forest fire-related data can be divided into independent variable data and dependent
variable data [29]. Independent variable data include slope, aspect, topographic wetness
index (TWI), altitude, distance to roads (DTR), distance to population centers (DTP),
normalized vegetation index (NDVI), and mean monthly temperature (MMT) [30]. The
dependent variable data are the fire point. The slope, aspect, TWI, and altitude data are
derived from the SRTMDEMUTM90M resolution digital elevation data in the DEM digital
elevation dataset of the Geospatial Data Cloud platform, and the selected timeframe is
March 2019. The distances between fire points and roads, as well as residential areas,
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were obtained from the 2017 data in the 1:250,000 National Basic Geographic Database
available in the National Geographic Information Resources Catalogue Service System.
The normalized vegetation index and average monthly temperature data are sourced from
Landsat-8 OLI (30 m resolution) satellite data [31], with the NDVI data coming from satellite
images from March 2019 and the fire point data derived from Sentinel-2 satellite data (60 m
resolution). All these data were processed using ENVI 5.3 and ArcMap 10.2. Since the
resolution of satellite images is not uniform, we used ArcMap 10.2 software to resample
the images based on the nearest neighbor allocation method. Table 1 shows the specific
sources of the data, and considering subsequent fire point extraction, the grid resolution of
all data is set to 30 × 30.

Anhui Province
Chuzhou City

Figure 1. Study area.

Table 1. Classification of fire factors.

Data Type Factors
Data Range

Data Source
Min Max

Terrain factor

Slope 0 39.5

https://www.gscloud.cn, accessed on 10 July 2021Aspect 0 360
TWI 3.29 24.6

Altitude 51 339

Human activity DTR 400 1500 https://www.webmap.cn, accessed on 10 July 2021DTP 500 5500
Vegetation NDVI −0.64 0.58 https://earthexplorer.usgs.gov, accessed on 10 July 2021Meteorological MMT 12.57 29.96

2.2.1. Fire Point Data

In light of the inadequate availability of actual fire record data in this research, we
collected data from the thermal infrared sensors on satellites using remote sensing algo-

https://www.gscloud.cn
https://www.webmap.cn
https://earthexplorer.usgs.gov
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rithms, which processed the infrared and near-infrared band data as historical fire data for
the study area. We downloaded Sentinel-2 data with a time resolution of 10 days and a
spatial resolution of 60m from the Copernicus Data Centre (https://scihub.copernicus.eu,
accessed on 15 July 2021) and extracted a total of 396 fire points from 2018–2020 through
band calculations. To match the spatial resolution of other data, we used the SNAP6.0
software from the European Space Agency as a preprocessing tool to resample the down-
loaded data to 30 × 30 m grids. Next, we extracted the near-infrared (NIR) and short-wave
infrared (SWIR) bands and carried out band computations using the normalized burn ratio
(NBR) index [32] and the differenced normalized burn ratio (dNBR) index [33].

NBR = (NIR− SWIR)/(NIR + SWIR) (1)

dNBR = NBRpre− f ire − NBRpost− f ire (2)

The NBR is a vegetation index constructed from the NIR and SWIR bands. It leverages
the spectral reflectance characteristics of burned areas, which increases in the SWIR band
and decreases in the NIR band, thereby separating burned areas from other features.
Based on the pre-fire and post-fire images’ NBR, we computed the dNBR. As per the
recommendations of the United States Geological Survey (USGS) [34], we used a dNBR
threshold of 0.1 to delineate burned (>0.1) and unburned (<0.1) areas. Eventually, we
extracted a total of 396 fire points from the burned areas based on the dNBR values for the
years 2018–2020. Previous studies have shown that the accuracy of fire point extraction
from Sentinel-2 images using the dNBR method can be as high as 86% [35,36], so the fire
points extracted in this study can be used for fire prediction.

2.2.2. Terrain Factors

Terrain factors include altitude, slope, aspect, and TWI. As the altitude increases,
the temperature tends to decrease while humidity levels tend to increase, which lowers
vegetation dryness and flammability, thereby reducing the likelihood of forest fires. Higher-
altitude areas are easily affected by precipitation, which increases vegetation moisture and
lowers fire risk. The greater the slope, the longer the sunshine duration, which raises the
temperature, accelerates surface water evaporation, and renders vegetation flammable. The
TWI is a terrain factor that considers rainfall, soil water content, and vegetation coverage,
reflecting the distribution and changes in surface water [37]. Areas with high TWIs usually
have higher soil water content and vegetation coverage and hence better vegetation growth
and lower fire risk levels. Conversely, areas with low TWIs are usually dry or semi-arid
regions with poor soil water content and vegetation coverage, which are more prone to fires.

2.2.3. Vegetation Factors

The selected vegetation parameter is the NDVI, a powerful tool for observing the plant
habitat. As a form of remote sensing information, NDVI demonstrates the geographical
arrangement and abundance of greenery [38]. It represents the quotient obtained from
the distinction between near-infrared red (NIR) and red (R) bands over their aggregate,
yielding a range for NDVI between −1 and 1. Generally, clouds and water exhibit negative
NDVI values, rocks and barren land register an NDVI of 0, and regions with more compact
vegetation tend to have NDVI values nearing 1.

2.2.4. Human Activity Factors

Elements of human activity, such as roads and villages in Chuzhou City, were se-
lected to illustrate the impact of human behavior on wildfire occurrences. As a result of
urbanization, the population in the forested areas around cities is increasing, and a large
number of roads have been built. Road construction intensifies the burning of forests for
land clearance along the route, raising the likelihood of wildfires [39]. Villages are located
in mountainous areas; on the one hand, the closer it is to a village, the more likely a wildfire

https://scihub.copernicus.eu
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is to be triggered by human activities; on the other hand, wildfires in areas far from villages
are often hard to detect and control in a timely manner, leading to an escalation of the fire.

2.2.5. Meteorological Factors

Temperature indices, which are representative in forest fire research, were chosen as
meteorological factors. The mean monthly temperature at the time of fire point occurrence
in the study area was obtained using the atmospheric correction method. As the temper-
ature rises, the evaporation speed of vegetation water in forest areas will accelerate, and
the dryness of vegetation will gradually increase. This, in turn, will increase the speed and
range of fire spread, thus escalating the likelihood of forest fires [40]. Figure 2 shows the
specific influencing factors.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Cont.
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(g) (h)

Figure 2. Distribution of fire impact factors. (a) Altitude, (b) aspect, (c) slope, (d) TWI, (e) NDVI,
(f) distance to roads (DTR), (g) distance to population gathering point (DTP), and (h) mean monthly
temperature (MMT).

2.3. Research Method

In this study, we selected the Jiushan area as our research site and identified a total of
396 fire points from 2018 to 2020. Data balance and randomness can enhance the predictive
capacity of the model and align with the random application scenarios of future models.
Therefore, based on spatial and temporal randomness, we selected 396 non-fire points,
resulting in a total of 792 sample data points. Each sample contains relevant information
about the point, and we split the samples into training and test sets in a 7:3 ratio [29,41,42].
We trained on four types of machine learning models using the training set and evaluated
the performance of each model with the help of the validation set. Finally, we visualized
the model results and drew a fire risk map of the research area [43,44]. The detailed process
is shown in Figure 3.

2.3.1. Dataset Configuration

This study uses machine learning models for classification prediction, so the dependent
variable is divided into two categories: the occurrence and non-occurrence of forest fires.
This study extracted a total of 396 fire points using remote sensing images. These fire
points were randomly grouped, with 70% used as the training set and 30% as the validation
set. The sample data also require non-fire point data. Based on previous experience, we
adjusted the ratio of fire points to non-fire points to 1:1 [19,20].

2.3.2. PSO-RF Model

Particle swarm optimization random forest (PSO-RF) is a hybrid approach that com-
bines the PSO algorithm with the RF algorithm to tackle classification and prediction
tasks. PSO-RF aims to enhance prediction accuracy and stability by optimizing RF model
parameters using the PSO algorithm. Figure 4 shows the flowchart of the model.

The PSO model has the capacity for global search and rapid convergence, enabling it
to find the optimal solution in a relatively short period of time. This avoids the trial-and-
error and experience accumulation process of traditional optimization methods, thereby
improving the efficiency of optimization. Simultaneously, the PSO model has a degree of
adaptability and randomness, which helps avoid local optimal solutions and overfitting
issues, thus optimizing the RF model more effectively [45].

The hyperparameters of the RF model, such as the number of decision trees (n_estimators)
and the maximum depth of the tree (max_depth), significantly impact the model’s conver-
gence speed and predictive performance [46]. With a low number of decision trees, the
model may experience underfitting. While a high number of decision trees can improve
model performance, it also increases computation time and offers limited performance
improvement. Similarly, appropriately setting the maximum depth of the tree is also crucial.
Traditional parameter optimization methods are usually based on experience or trial and
error; they are less efficient and are often unable to achieve the global optimal solution.
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This paper uses PSO to optimize the parameters in RF. The PSO algorithm was im-
plemented in Python using the PyCharm2020.1.5 software , the libraries of which greatly
facilitated our work. Firstly, a group of random particles is generated as the initial popula-
tion. Each particle includes a set of hyperparameters for the random forest (n_estimators
and max_depth) and has an initial position and velocity. Then, the accuracy obtained from
ten-fold cross-validation is used as the fitness value for each particle. Combining the best
position of the particle itself (individual optimal solution) and the best position of the entire
population (global optimal solution), the velocity and position of the particle are updated.
Finally, the model undergoes multiple iterations until the convergence conditions are met.
The output is a random forest model with the optimal combination of hyperparameters.

1.GIS database

30%-validation dataset

Slop、Aspect

TWI、Altitude

NDVI、DTS

Temperature、DTR

2.Multicollinearity 

analysis

4.Model validation

(AUC、Precision

Recall、F-score)

5.Relative importance of 
triggering factors

6.Performance assessment of the models and Forest fire potential maps

3.Configuring and training the models

LR SVM RF PSO-RF

70%-training dataset

Figure 3. The general workflow shows the interaction from data input to the produced fire suscepti-
bility map.



Forests 2023, 14, 1506 9 of 17

PSO-RF model flowPSO-RF model flow

Fire database

396 fire points

396 Non-ignition points

8 factors

Feature evaluation using 

Person’s product moment 

correlation coefficient t-test

Initialize the particle swarm 

and Calculate the fitness value 

of each particle 

Determine individual and 

global extremes and Update 

example speed and location

Final training model 

with optimal parameter

70%-Traing set 30%-Validation set

Forest fire 

prediction result

Best parameter?

YES

NO
Next iteration

") Extremely low

") Low

") Moderate

") High

") Extremely high

Figure 4. Flowchart of the PSO-RF model.

3. Results
3.1. Correlation Analysis of Variables

In this research, we conducted a multicollinearity diagnosis for all forest fire driving
factors. By calculating the VIF values of each factor, Table 2 showed that the VIF values of
all 8 factors were less than 5, indicating no multicollinearity among the factors [47]. Thus,
there was no need to eliminate any influencing factors in this study.

Table 2. Multicollinearity analysis for relevant factors.

Relevant Factors VIF TOL

Slope 4.1 0.24
Aspect 3.1 0.32

TWI 1.8 0.56
Altitude 2.7 0.37

NDVI 1.1 0.91
DTR 2.4 0.42
DTP 3.6 0.28

MMT 3.5 0.29
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To identify the key driving factors closely related to fire occurrence, this study chose
the Pearson correlation coefficient method to conduct a correlation analysis between various
variables and fire points [48,49]. Table 3 visually shows the correlation between the eight
forest fire influencing variables and the fire point data. As evident from Table 3, all 8 factors
exhibit P-values below 0.01, indicating substantial correlations among them. The highest
degree of correlation is between DTR and NDVI, while the lowest degree of correlation is
between the TWI and aspect.

Table 3. The relationship between the independent variables and dependent variables.

Relevant Factors Correlation Coefficient p-Value

Slope 0.26 p < 0.01
Aspect 0.04 p < 0.01

TWI 0.12 p < 0.01
Altitude 0.3 p < 0.01

NDVI 0.36 p < 0.01
DTR 0.39 p < 0.01
DTP 0.18 p < 0.01

MMT 0.28 p < 0.01

3.2. Model Performance Evaluation

We constructed a confusion matrix from the prediction results and evaluated the
model performance using precision, recall, F-value, and AUC from the classification model
evaluation metrics. The AUC value under the ROC curve served as the final evaluation
metric for the model [48]. A larger AUC value signifies better classification performance.
When the AUC value is greater than 0.9, it is considered excellent classification [50]. The
relevant formulas are as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(5)

AUC =
1
2
(

TP
TP + FN

+
TN

TN + FP
) (6)

Our primary focus revolved around evaluating the model’s performance on the test
set. From Table 4, it can be observed that the AUC value of PSO-RF (0.908) is the highest,
followed by RF (0.877), SVM (0.876), and LR (0.846). The AUC values of all these models
surpass 0.8, making them widely employed algorithms in forest fire prediction research.
The ensemble model (PSO-RF) proposed in this paper outperforms the other three models
in terms of accuracy and generalization ability, making significant improvements over the
random forest (RF) model based on experience and subjective assignment.
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Table 4. Forest fire driver correlations.

Model Sample Type TP TN FP FN AUC Precision Recall F Value

LR Training set 210 222 51 70 0.851 0.805 0.75 0.776
Validation set 93 91 32 22 0.846 0.744 0.809 0.775

SVM Training set 241 248 31 34 0.933 0.886 0.876 0.881
Validation set 104 87 30 17 0.876 0.776 0.860 0.816

RF Training set 275 259 11 9 0.999 0.962 0.968 0.965
Validation set 94 100 26 18 0.877 0.783 0.839 0.810

PSO-RF Training set 262 271 7 13 0.999 0.974 0.953 0.963
Validation set 104 98 20 16 0.908 0.839 0.867 0.852

3.3. Prediction Results of Fire Risk Map Level

Each pixel’s fire occurrence probability within the research zone was classified using
the natural break approach through ArcGIS 10.2 software. The natural break method of
classification is based on the distribution characteristics of the data, determining classifica-
tion boundaries according to the natural gaps between data points. Compared with the
threshold method, which is subjectively set, the natural break method is more objective
and reliable, and it is suitable for delineating forest fire risk levels. This is consistent with
previous research [42]. Fire point probabilities were divided into five categories: very low,
low, medium, high, and very high [51]. Figure 5 presents the fire risk maps drawn by the
four models.

") Extremely low

") Low

") Moderate

") High

") Extremely high

") Extremely low

") Low

") Moderate

") High

") Extremely high

(a) (b)

") Extremely low

") Low

") Moderate

") High

") Extremely high

") Extremely low

") Low

") Moderate

") High

") Extremely high

(c) (d)

Figure 5. Forest fire susceptibility maps. (a) LR, (b) SVM, (c) RF, and (d) PSO-RF.

In this study, four machine learning models (LR, RF, SVM, and PSO-RF) were com-
pared. Firstly, the LR model had the lowest predictive performance, which may be due to
its lower performance in discrete and irregular data than non-parametric models (SVM
and RF). In various indicators of the training and validation sets, the LR model performed
poorly. After classifying the fire probabilities of each grid using the natural break method,
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38.43% belonged to the very low- and low-risk areas, 16.24% to the medium risk area, and
45.33% to the high-risk area.

Secondly, the predictive performance of the RF model was superior to LR and SVM
but inferior to the PSO-RF model. After classification by the natural break method, 66.69%
belonged to very low- and low-risk areas, 16.3% to medium-risk areas, and 17.01% to
high-risk areas. The predictive performance of the SVM model was only higher than LR but
lower than the other two models. After classification by the natural break method, 46.96%
of the area was classified as very low and low risk, 16.11% was classified as medium risk,
and 36.93% was classified as high risk.

Finally, the PSO-RF model had the greatest predictive performance. The credibility of
the drawn fire risk map was the highest, serving as an important reference for the forest fire
work in the Jiushan area. In the risk map, 70.13% belonged to the very low- and low-risk areas,
14.03% to medium-risk areas, and 15.23% to high-risk areas. Combining Figures 5d and 2a,f,
we found that the red areas (very high) were densely distributed at the foot of the mountain
and on both sides of the road.

Figure 6 shows the proportions of these four models in the distribution of each fire risk
level. We designated areas with very low and low fire-risk levels as regular management
areas, and those with high and very high fire-risk levels as alert areas. The proportions of
regular management areas for the LR and SVM models were below 50%, which is obviously
not reasonable given that the average number of fire points extracted per year is 132,
suggesting that most areas should be regular management areas. The proportion of regular
areas in the PSO-RF model was 70.73%, which clearly aligns with reality.

Figure 6. Specific rank distribution of the fire risk map.

3.4. Importance Evaluation of Influencing Factors

In this study, we selected eight factors influencing fires based on the experience of
previous researchers (slope, aspect, TWI, altitude, NDVI, DTR, DTP, and MMT) as inputs
for the models (LR, SVM, RF, and PSO-RF). Finally, we drew a fire sensitivity map for the
study area. To further explore the driving factors of forest fires in the Jiushan area and
measure the relative importance of input features in forest fire data, we used the feature
importance evaluation method in machine learning models [52].

The analysis of model performance demonstrated that PSO-RF exhibited superior
performance among the four models, indicating its ability to effectively elucidate the
correlation between fire points and various triggering factors. We used the PSO-RF model
for feature importance evaluation. The results showed that among the factors causing fires,
the NDVI has the highest importance, followed by Altitude and DTR. Figure 7 specifically
shows the importance of each triggering factor.
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Figure 7. Ranking the importance of triggering factor features.

4. Discussion

This study uses the Jiushan area as an example, using the PSO-RF algorithm to
establish a forest fire prediction model. Standard machine learning frameworks like LR,
SVM, and RF were selected for comparative analysis. The assessment of these models
revealed that PSO-RF topped the list with an AUC value of 0.908, succeeded by RF (0.877),
SVM (0.876), and LR (0.846). The findings reveal that the accuracy of the RF model was
enhanced post-optimization with the PSO algorithm. This facilitated the creation of a
more precise fire risk map for the area under study, thereby offering more scientifically
informed guidance for managing departments. We selected eight factors influencing fires
as inputs for the model: slope, aspect, TWI, altitude, NDVI, DTR, DTP, and MMT. After
multicollinearity diagnosis, there is no multicollinearity relationship among these eight
factors, and they can be used to build a forest fire prediction model. A Pearson correlation
analysis was conducted between these factors and fire point data, and the results show
that the factors with a higher correlation with fire points are DTR, NDVI, altitude, and
MMT. The feature importance results of the PSO-RF model showed that NDVI was the
most important factor in causing fires, a conclusion also drawn by related scholars [21,53],
followed by altitude and DTR. The most important factors causing forest fires can vary due
to the differences in the study area. In his research on the Pu Mat National Park area in
Vietnam, Tran [42] identified DTP as a key influencing factor, finding that fires in the area
were primarily caused by human carelessness. Meanwhile, Mario discovered that DTR was
a critical driver of forest fires in the southern region of Italy [54]. Human activity has been
recognized as an important trigger for forest fires [42,54,55].

NDVI reflects vegetation cover. Areas with higher NDVI usually have denser vegeta-
tion, which may cause fires to spread more easily [56]. The DTR reflects human activity;
discarded cigarette butts, camping, traffic accidents, etc., can all potentially cause forest
fires. The higher the temperature, the easier vegetation dries out, thus making it more
flammable. Higher-altitude areas usually have lower temperatures and sparser vegetation,
so the risk of fire may be relatively lower. The fire risk map drawn by the PSO-RF model
shows that high-risk fire areas are densely distributed at the foot of the mountain and on
both sides of the road. The altitude and slope of the foothill areas are lower, and there are
more human activities on both sides of the roads. Table 3 also points out that DTR, NDVI,
and altitude have a strong correlation with fire points. Therefore, the fire risk map drawn
by the PSO-RF model has a certain reference significance. Evidently, local fire departments
should pay attention to forest fire prevention at the foot of the mountains and on both sides
of the roads.
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In random forest models, the configuration of hyperparameters requires manual ad-
justment. For instance, the max_depth parameter determines the maximum depth of the
decision tree. If the depth is too small, the model may suffer from underfitting, while exces-
sively high depth may lead to overfitting. Thus, selecting appropriate hyperparameters is
crucial for achieving optimal model performance.

Haoyuan Hong conducted an investigation into fire susceptibility in Dayu County,
Jiangxi Province, China. Utilizing a genetic algorithm (GA), he identified the optimal
mix of variables associated with forest fires and employed both RF and SVM to construct
fire hazard maps. The results revealed the superior performance of the optimized RF
model (AUC = 0.8495), which surpassed that of the original RF model (AUC = 0.8169) [53].
On a similar vein, Zohre embarked on an investigation in Iran’s Minudasht Township,
deploying boosted regression tree (BRT), generalized additive model (GAM), and RF to
formulate a fire risk map. Here, the GAM proved to be the most efficient (AUC = 0.877),
while the RF lagged behind (AUC = 0.7279) [57]. In other research conducted by Ngoc in
the Thuan Chau area of Vietnam, the use of SVM, RF, and the perceptron neural network
(MLP-Net) model was implemented in studying forest fire susceptibility. The MLP-Net
model showed the highest predictive performance (AUC = 0.894), surpassing the RF model
(AUC = 0.883) [41]. These studies indicate that relying solely on the RF model often leaves
researchers unsatisfied, underscoring the need for optimization to improve its performance.

Past studies mainly relied on experience or used default parameters in ensemble
packages to set the RF model’s hyperparameters. However, due to the variability of fire
point regional data, there is no standard uniform hyperparameter setting applicable to all
situations. Although hyperparameters set based on experience or default settings can still
achieve good results in general, adjusting hyperparameters to optimize model performance
is still necessary for specific studies [58]. The method proposed in this paper, which uses
the PSO algorithm to optimize the RF model’s hyperparameters, further improves the
model’s accuracy and benefits our scientific research.

The RF model has multiple hyperparameters, and this study chose to optimize those
that significantly impact the model using PSO. The PSO-RF model used in this study can
obtain the optimal parameters within a limited parameter range. This method circumvents
issues such as overfitting and computational resource squandering that are common with
traditional approaches to hyperparameter configuration, thereby boosting the effectiveness
of the RF model. However, when using PSO to optimize RF parameters in this study, the
value of the fitness function each time was the result of a three-fold cross-validation of the
RF model. As PSO needs multiple iterations to obtain the optimal parameters, the training
time is relatively long.

5. Conclusions

Fire risk maps play a crucial role in forest fire risk management. Given the diverse
terrains, climates, vegetation, and road systems across different study areas, the selection of
a suitable methodology is crucial for the development of fire risk maps tailored to specific
research regions. In the present research, the Jiushan region serves as the focal point, and a
predictive model for forest fires is developed leveraging machine learning algorithms. We
propose an ensemble model combining PSO and RF, with LR, SVM, and RF as comparison
models. Historical fire point data obtained from Sentinel fire products was analyzed, and
factors such as altitude, slope, aspect, TWI, DTP, DTR, NDVI, and MMT were used as
model inputs. Model performance evaluation adopted confusion matrix indicators, ROC
curves, and ten-fold cross-validation. A fire risk map of the Jiushan area was finally drawn.

Correlation analysis shows that the distance from fire points to roads in human
activities and the NDVI in vegetation factors have a more significant impact on fire risk
compared to other factors. The model evaluation results indicate that PSO-RF performed
the best among the four models. Based on the feature importance analysis of the PSO-RF
model, the primary triggers for wildfires in the Jiushan area are the NDVI, followed by
altitude and DTR.
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By combining the fire risk map drawn by the PSO-RF model, and integrating feature
importance analysis and correlation analysis, we found that high-risk fire areas are primarily
located near the foot of the mountains and on both sides of the roads. The temperature at the
foot of the mountain is high, and the vegetation has a low water content, which can easily
cause wildfires. Human activities are frequent in the foothills, which may lead to a higher
amount of dead branches and leaves as frequent human activities could potentially cause
vegetation to die. Vehicle traffic on the roads and surrounding human activities can also
easily cause fires, for instance, cigarette butts discarded by drivers or open flames caused
by vehicle breakdowns. Therefore, the conclusions of this study have practical value.

Fire prevention in the Jiushan area should focus on the daily management of forests,
including the timely clearing of withered vegetation and the reasonable adjustment of veg-
etation density. Also, road management at the foot of the mountains needs to be enhanced,
including the timely sweeping of flammable materials on the road, the strengthening of
propagation, the education of forest fire prevention knowledge among tourists and local
residents, and the improvement of safety awareness when using fire sources. Currently,
forest fire prevention and control in the Jiushan area mainly rely on manual patrols and
monitoring from lookout towers. Patrol routes are usually based on experience, and the
monitoring range of lookout towers is limited, making fire prevention methods relatively
outdated. Using fire risk maps to plan patrol routes, optimize the layout of lookout towers,
and focus on deploying fire prevention resources in high-risk areas may become an effective
fire prevention measure.
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