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Abstract: LiDAR technology has been widely used in forest survey and research, but the high-
resolution point cloud data generated by LiDAR equipment also pose challenges in storage and
computing. To address this problem, we propose a point cloud simplification method for trees, which
considers both higher similarity to the original point cloud and the area of the tree point cloud. The
method first determines the optimal search neighborhood using the standard deviation of FPFH
information entropy. Based on FPFH information entropy and Poisson disc sampling theory, the point
cloud is partitioned and sampled. By optimizing the separation thresholds of significant feature points
and less significant feature points using a genetic algorithm with the Hausdorff distance and point
cloud area as the objective function, the final simplified point cloud is obtained. Validation with two
point cloud data sets shows that the proposed method achieves good retention of the area information
of the original point cloud while ensuring point cloud quality. The research provides new approaches
and techniques for processing large-scale forest LiDAR scan point clouds, reducing storage and
computing requirements. This can improve the efficiency of forest surveys and monitoring.

Keywords: point cloud; FPFH; information entropy; point cloud simplification

1. Introduction

LiDAR technology has been increasingly used in forest survey and research [1]. LiDAR
scanning can generate high-precision and high-fidelity three-dimensional point clouds of
forests [2], which is important for growth monitoring, unmanned aerial vehicle spray route
planning, and prescription map generation [3].

With the continuous development of laser radar technology, scanning resolution has
also been significantly improved [4]. However, high-resolution devices also produce a
large amount of data points, which brings tremendous challenges to point cloud data
storage, computation, and transmission. Meanwhile, existing simplification methods
focus on improving the similarity between the simplified point cloud and the original
point cloud. However, forest point clouds need to retain information like leaf area for
applications such as pest control and biomass monitoring, which is not considered by
current simplification methods.

Point cloud simplification is understood as a process of reducing the level of detail,
the main purpose of which is to remove some specified points while ensuring that the sim-
plified point cloud still retains important features [5]. Point cloud simplification has been
extensively studied [6,7]. Simple simplification methods such as uniform simplification
and grid simplification effectively reduce the storage space occupied by point clouds [8,9].
However, these methods do not consider the global impact of key points on the point
cloud, resulting in decreased accuracy and a loss of final model features [10]. Curvature
simplification methods consider local changes in point clouds and surfaces [11]. More
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specifically, fewer points are retained in areas with flat curvature, while more points are
retained in areas with changing curvature. This method can ensure the retention of certain
features in the point cloud. However, it is not easy to determine the retention of points in
large flat areas [11,12].

Feature-preserving point cloud refinement methods have become a hot topic in cur-
rent research [13,14]. The selection of feature points is mainly determined by parameters
such as normals and curvatures [7]. Han et al. [15] proposed a method based on normal
vectors to determine and retain edge points based on octrees, and establish the topological
relationship of points in space, achieving high point cloud simplification performance.
Shi et al. [6] clustered the feature point set by mean clustering and used refinement meth-
ods to ensure that the simplified point cloud can retain more points in areas with flat
curvature and avoid the imbalanced distribution of the simplified point set. Leal et al. [16]
used the high area ratio of point cloud data as feature points and selected points to be
retained using mean curvature so that the point cloud simplification result retains the
original geometric features. Yuan et al. [17] first clustered the point cloud using K-d trees
and then traversed all clusters using principal component analysis to find feature points,
reducing point cloud simplification errors. In addition, based on changes in point cloud
curvature, Markovic et al. [18] proposed a curvature-sensitive point cloud simplification
method that applies support vector machines to distinguish high-curvature areas and flat
areas. This method can effectively detect point sets in sharp areas and simplify the point
cloud. Sometimes, feature points are determined by considering a combination of multiple
parameters [19]. In this case, various studies combine the concept of entropy with these
parameters as the basis for determining features, and a higher entropy represents richer
information [11,20].

The above methods propose some solutions for point cloud simplification. By opti-
mizing parameters such as the Hausdorff distance and average error, they remove high-
frequency information from the original point cloud to ensure a higher similarity between
the simplified point cloud and the original point cloud, so as to facilitate high-precision
three-dimensional reconstruction of the point cloud [21–23]. However, these methods are
not suitable for simplifying forest point clouds because forest point clouds have some
unique characteristics and requirements [24]. In the process of controlling plant diseases
and insect pests, it is often necessary to obtain the leaf area information of forests, which is
an important reference index for the precision operation of spraying machinery [25]. If the
simplified point cloud cannot retain this information, it will affect the biomass monitoring
of forests and the effect of variable spray.

To address this problem, this study considers the quality and area of the point cloud
simplification of trees. Based on FPFH information entropy and the Poisson disc sampling
theory, the point cloud is partitioned and sampled. By optimizing the separation thresholds
of significant feature points and less-significant feature points using a genetic algorithm
with the point cloud simplification quality and area as the objective function, the final
simplified point cloud is obtained.

To address this issue, this study segmented and sampled the point cloud based on
FPFH information entropy and the Poisson disk sampling theory. By using a genetic
algorithm to optimize the separation threshold between important and unimportant feature
points with point cloud simplification quality and the area as the objective function, the
final simplified point cloud was obtained. This research considered both the quality and
area of tree point cloud simplification, while reducing the storage demand of the point
cloud, which is helpful for improving the efficiency of forest survey and monitoring.

2. Related Works
2.1. Fast Point Feature Histograms Principle

Fast Point Feature Histograms (FPFH) is a local feature. FPFH is an improved version
of PFH (Point Feature Histograms), which are feature descriptors calculated based on
the local geometric features of points [26,27]. Compared with PFH, FPFH weighs the
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relationships between neighbors during the calculation to obtain a more discriminating
feature descriptor. Specifically, when calculating the SPFH (Simplified Point Feature
Histogram), the FPFH takes the weighted average of the SPFH values of each neighbor to
consider the relationship between neighbors. Therefore, compared with the PFH, the FPFH
has a higher pose invariance and discrimination ability. In addition, the computational
complexity of the FPFH is lower than that of the PFH, and the calculation speed is faster.

According to the different neighboring-point search methods, FPFH can be divided
into two types: KNN search FPFH and radius search FPFH. The solution method of KNN
search FFPH is as follows:

The simple point feature histograms (SPFH) are first developed. A local coordinate
system x0y0z0 (cf. Figure 1) is then established for P0 and P1. Afterwards, the number of
neighborhood points of the two points is determined, and the corresponding vectors (V0
and V1) according to the fitting surfaces of P0 and P1 (SP0, SP1) are obtained. The normal
vector deviation between the two points can be expressed in terms of a, b, and c:

a = ar cos
(

y0· P1−P0
||P1−P0||

)
b = ar cos(V0·V1)

c = arc tan V1·x0
V1·y0

(1)

As shown in Figure 1, d is the Euclidean distance from P0 to P1:

d =||P1 − P0|| (2)

SPFH(Pq) is a parameterization of the surface normal relative position of a point and
its neighbors, and the SPFH features of point P0 can be expressed as:

SPFH(P0) = [a, b, c] (3)

After obtaining the SPFH(P0) of the specified point and the SPFH of the neighborhood
points, the inverse wi of the Euclidean distance between the specified point and the k
neighborhood points is used as the weight to obtain the FPFH of point P0. For any point
(Pq) in the point cloud, the FPFH(Pq) can be computed as

FPFH(Pq) = SPFH(Pq) +
1
k

k

∑
i=1

wi·SFPH(Pi) (4)

where
wi =

1∣∣∣∣Pq − Pi
∣∣∣∣ (5)
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Figure 1. Fitting surface and local coordinate system.

Figure 2 shows the FPFH calculation of the query points, where the black line indicates
that the points in the connection line should be computed twice.
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The method of obtaining the FPFH by KNN search is similar to that of the radius
search FPFH. The only difference is the neighbor points selected in the surface fitting stage.
The radius search method sets a specific radius around a point and chooses all neighboring
points within that radius as neighbors. The KNN search method calculates the distance
between a point and its neighboring points in the point cloud, sorts them in ascending
order, and considers the closest points to be neighbors. However, for other steps, there is
no difference in the calculation methods between the two. This paper adopts the KNN
search method to establish FPFH.

Compared with the radius search method, the KNN search FPFH method adaptively
determines the number of neighbor points according to the local density of the point cloud.
In sparse areas, more neighbor points are selected, while in dense areas, fewer neighbor
points are selected. This avoids selecting too many or too few neighbor points due to the
fixed search radius. Therefore, the FPFH descriptor obtained by the KNN search method
can better reflect the local geometric characteristics of the point cloud and has higher
recognition and discrimination ability.

In summary, the KNN search FPFH method chooses neighbors more adaptively based
on the density of local points in the point cloud, so the final FPFH feature descriptor can
better reflect the geometric features of the local point cloud. This paper adopts the KNN
search method to calculate the FPFH feature descriptor.

2.2. The Proposed Method
2.2.1. Determination of FPFH Neighborhood Searching Ranges

According to FPFH theory, for different numbers of searched neighbor points, the
fitted surface and normal vector of the same point are different, and the components of
FPFH in each interval will also change [26,28]. When the search radius is too small (k = 2),
there will be more empty values in the FPFH components (as shown in Figure 3). When the
search radius is too large, as shown in Figure 3 (k = 50), the differences between the FPFH
features of each point will become smaller and smaller. At such a search radius, no matter
any point in the point cloud, the distribution of its FPFH components is more uniform,
which is also not conducive to finding feature point clouds based on the differences of
FPFH. In order to obtain the most suitable number of neighbor points, we used information
entropy [29] to measure the differences of FPFH of each point.

For a point cloud dataset P which has N points, the information entropy is expressed as

H(i) = − ∑
e∈FPFH(Pi)

p(e) ln(p(e) + ∆) (6)

where i ∈ [ 1, 2, . . ., N ] and p(e) represent the probability that the feature is e, and ∆ is a
minimal value in order to avoid the appearance that p is 0.



Forests 2023, 14, 1507 5 of 16

Typically used in the optimization of system equations, information entropy is a key
indicator of system information quantification. The change in FPFH information entropy
is strongly related to the number of search neighbors. To maximize the feature difference
between points and find the most appropriate number of neighbors, the standard deviation
of information entropy, cov(H), is used to represent the dispersion of FPFH features at
each point:

cov(H) =

√√√√√ N
∑

i=1
(H(i)− ave(H))2

N
(7)

The maximum cov(H) is then chosen to obtain the search number k of optimized FPFH
neighbors as:

k = argmax(cov(H)) (8)
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2.2.2. Extraction of Feature Points

FPFH can be used to distinguish different planes [26]. For spheres and cylinders, the
histogram of FPFH features has peaks at the center; for edges and corners, the histogram
of FPFH features has peaks at the edges and corners; for planes, the histogram of FPFH
features has a similar distribution in all directions. Therefore, points with larger information
entropy are concentrated at edges, sharp areas and high-curvature areas. Figure 4 shows
the point clouds obtained by extracting 10% of the points with the maximum information
entropy from the point cloud files (hand and bunny) in the Stanford model library, according
to the FPFH information entropy.

Specifically, for the point clouds of hand and bunny, the FPFH feature descriptor of
each point is first calculated, and then the information entropy of each point is calculated
according to Formula (6). The points with the top 10% information entropy are extracted as
significant feature points Pd. As can be seen from Figure 4, these significant feature points
are mainly distributed at the edge of the model, which reflects the geometric features of the
model. We call these points significant feature points Pd. These points need to be retained
in the point cloud simplification process.

Pd contributes abundant detail features, but retaining only these points will lead to
the clustering of point clouds and a large number of voids. Therefore, we introduced less
significant feature points Pl in the simplified point cloud to fill the visual gaps. Pl is obtained
from the point set by Poisson disc sampling. The Poisson disc sampling algorithm uses a
uniform grid to divide the point cloud space. Combined with random point sampling and
minimum distance constraints, it can ensure that the sampled points are neither too far nor
too close [30]. Pd and Pl constitute the simplified point cloud Ps. Their relationship satisfies
Equation (9):

Ps = Pd + Pl (9)
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Pd and Pl constitute the simplified point cloud. However, different combinations
between them will still affect the final result of point cloud simplification. For this reason,
we set a threshold ratio T to define the boundary between Pd and Pl. T satisfies Equation (9):

T =
nd
ns

(10)

where T ∈ [0, 1], nd is the number of Pd points and ns is the number of Ps points.
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The selection of T should consider the target features of the point cloud. This study
used two target features. The first is the point cloud area deviation ∆s. The point cloud
area determines the leaf area. The smaller ∆s is, the smaller the leaf area deviation. After
triangulating the point cloud using the rolling ball algorithm, the point cloud is divided
into multiple non-intersecting triangles. If the vertex coordinates of the triangle are p1, p2,
and p3, respectively, let:

a1 = ‖p1 − p2‖2
a2 = ‖p3 − p2‖2
a3 = ‖p1 − p3‖2
h = a1+a2+a3

2

(11)
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The area of the triangle can be obtained by using Heron’s formula:

s =
√

h(h− a1)(h− a2)(h− a3) (12)

The area S of the entire point cloud can be expressed as

S =
n

∑
i=1

si (13)

After calculating the area SP of the original point cloud, and the area SPs of the
simplified point cloud are obtained, ∆s is then expressed as

∆s =|SP − SPs | (14)

Secondly, the simplified point cloud needs to ensure the maximum similarity to the
original point cloud. The Hausdorff distance refers to the maximum of all Euclidean
distances from a point in one set to the nearest point in another set. It can represent the
degree of similarity between two point clouds. The smaller the Hd, the higher the similarity
between the two. For the point clouds P and Ps before and after processing, the Hd between
them is defined as:

Hd(P, Ps) = max

{
sup
p∈P

in fps∈Ps d(p, ps), sup
ps∈Ps

in fp∈P(p, ps)

}
(15)

Then, the objective function of point cloud simplification is expressed as

f (T) = λ× ∆s + (1− λ)× Hd, λ ∈ (0, 1) (16)

When the objective function reaches its minimum value, the allocation of Pd and Pl
is optimal. At the same time, the effect of point cloud simplification is the best. In order
to obtain the optimal point cloud simplification effect, we used a genetic algorithm to
optimize the value of T. The genetic algorithm is an optimization algorithm based on
natural selection and metaheuristics. It simulates the natural evolution process to solve
optimization problems. The specific solution steps are as follows:

1. Encoding: Each chromosome is represented by a real number in the range (0, 1).
2. Initialize the population: Randomly generate n real numbers as the initial population,

where n is the population size.
3. Evaluate fitness: Calculate the objective function value corresponding to each chro-

mosome, and set the fitness of the chromosome with the smaller value higher.
4. Selection: Use the roulette wheel selection method to select chromosomes to generate

the next generation population. The probability of selecting a chromosome with
higher fitness is greater.

5. Crossover: Use two-point crossover, randomly select two parent chromosomes and
exchange the middle part to generate two offspring chromosomes. The crossover
probability is pc.

6. Mutation: Randomly select a gene of a chromosome, add a small random value, and
the mutation probability is pm.

7. Repeat Steps 3 to 6 until the maximum number of generations is reached.
8. Select the chromosome with the highest fitness from the last generation as the optimal

solution.

The convergence curve obtained using the genetic algorithm is shown in Figure 5:
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As the number of generations increases, the objective function value gradually de-
creases and finally stabilizes near the minimum value, indicating that the optimal solution
has been found. The optimal T value can be obtained from the chromosome with the
highest fitness in the final population. By using this T value, the optimal allocation of
significant feature points Pd and less significant feature points Pl can be obtained, and the
best point cloud simplification effect can be achieved.

In summary, the genetic algorithm is used to search for the optimal T value by opti-
mizing the objective function. By maximizing the fitness, the T value corresponding to the
minimum objective function value can be obtained, so as to achieve the optimal allocation
of Pd and Pl and the best point cloud simplification effect.

2.3. Evaluation Metrics of Simplification

By comparing the simplified point cloud with the original point cloud through some
quantitative indicators, the quality of point cloud simplification can be intuitively seen [31].
The geometric error is obtained by calculating the Euclidean distance between the sampling
point and its projection point on the simplified point cloud. For the original point cloud P and
the simplified point cloud Ps, the average geometric error Md between P and Ps is defined as

Md = (P, Ps) =
1
||P|| ∑p∈P

d(p, Ps) (17)

To evaluate the balance of the proposed method, we also use the root-mean-square
error (RMS) mentioned in [13] to evaluate the simplification result of the point cloud. RMS
estimates the error by comparing the side lengths of the triangular meshes generated from
the point clouds. It is defined as

RMS =

√
1

n− 1

n

∑
i=1

(li − l) (18)

where li is the length of the i-th triangle side, and l is the average triangle side length.
Md and RMS quantify the error between the simplified point cloud and the original

point cloud. The smaller the values, the better the simplification effect.

2.4. Platforms and Software

All experiments in the article were conducted on a Windows 10 operating system. The
computer CPU was AMD 5600X with 32 GB of running memory. The code compilation and
running environment was Matlab R2021b. The point cloud model display and comparison
software were CloudCompare v2.12 and MeshLab v1.3.4.
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CloudCompare v2.12 is a powerful open-source software for point cloud and 3D mesh
processing. It supports various point cloud and 3D mesh formats, and provides point cloud
registration, segmentation, simplification, filtering and other preprocessing tools, as well
as measurement, CAD model fitting, geographic location annotation and other functions.
The software is simple and easy to use, and is often used for point cloud data visualization,
analysis and preprocessing.

MeshLab v1.3.4 is an open source 3D mesh processing system that supports most
3D mesh formats. It provides a wealth of 3D mesh processing tools, including mesh
repair, segmentation, foldover drawing, measurement, texture mapping, smoothing, etc.
The software is widely used in cultural-relic digital protection, medical image processing,
Internet content creation and other fields. In the experiment of this paper, CloudCompare
was selected to visualize the point cloud data, and its built-in point cloud simplification
tool Space was used as one of the comparison methods. MeshLab was used to calculate
errors and visualize error visualization.

2.5. Test Data Set and Process

To test the applicability and performance of the method proposed in this paper, we
obtained two sets of point cloud data (referred to as Dataset 1 and Dataset 2, respectively)
using the acquisition equipment (FARO Focus, FOCUSS 70).

We selected three other point cloud simplification algorithms for comparison: Space,
implemented by CloudCompare; Curvature, a simplification method based on curva-
ture [32]; and Partition Simplification (PS) [13]. We used these methods to simplify the
two sets of point cloud data to the same simplification ratio Sr (simplification ratio) and
compared the simplification results of the four methods. Sr represents the degree of point
cloud simplification and is expressed as

Sr =
N′

N
(19)

where N′ is the number of points in the simplified point cloud, and N is the number of
points in the original point cloud.

We first simplified Dataset 1 using four methods. Due to space limitations, we show
the simplification effects at Sr = 20% and 80%, as can be seen from Table 1.

Table 1. Comparison of visual effects of simplification results.

Method
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To further quantitatively verify the method proposed in this paper, we used Dataset 2
with a larger data volume to compare the performance of the four methods. We selected Hd,
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3. Results

Dataset 1 includes four trees (longitude 118.8121528316, latitude 32.0811017391), con-
taining 1,559,395 points in total (see Figure 6a). Dataset 2 is the point cloud data of the
plantation (longitude 119.0106180107, latitude 32.3553524651), containing 3,253,332 points
in total (see Figure 6b).

Forests 2023, 14, x FOR PEER REVIEW 11 of 17 
 

 

Table 2. Comparison of errors under different Sr in Meshlab. 

Method Sr = 20% Sr = 50% Sr = 80% 

PS 

   

Proposed 

   

Space 

   

Curvature 

   

3. Results 
Dataset 1 includes four trees (longitude 118.8121528316, latitude 32.0811017391), con-

taining 1,559,395 points in total (see Figure 6a). Dataset 2 is the point cloud data of the 
plantation (longitude 119.0106180107, latitude 32.3553524651), containing 3,253,332 points 
in total (see Figure 6b). 

 
 

(a) (b) 

Figure 6. Point cloud data for testing (Colored with height). (a) Dataset 1. (b) Dataset 2. Figure 6. Point cloud data for testing (Colored with height). (a) Dataset 1. (b) Dataset 2.

When Sr = 20%, it can be clearly observed that in the tree leaf area, due to the large
change in the point cloud normal vector in this part, the simplification result of Curvature
has an obvious point cloud missing. There are no obvious differences between the other
three methods. In the tree trunk area, PS, Curvature and the proposed method retain detail
features, but Curvature has voids at the trunk position. The simplification result of Space
does not highlight geometric features, and the points are distributed uniformly. When
Sr = 80%, more points are retained at this time, and the visual differences between the four
methods are small.

From the comparison results of the evaluation indicators (Figure 7), it can be seen that
for all methods, Hd, Md and RMS will decrease with the increase in Sr, and finally tend
to 0. Among the four methods, Curvature performed the worst; as can be observed from
Table 1, Curvature always has the most green. This is because Curvature simplifies based
on the curvature characteristics of points, resulting in voids during simplification, so the
performance is poor. Space performed better than Curvature. PS and the proposed method
have better simplification effects. It can be seen from the comparison of Hd that when
Sr ≤ 50%, the Hd of our method is the smallest. When Sr > 50%, the proposed method
performs slightly worse than PS. In the comparison of Md, PS had the best effect. In the
RMS results, PS and the proposed method performed very similarly. Combined with the
error comparison map (Table 2), PS and the proposed method have very similar colors, and
we can also observe the same error distribution. In the comparison of Ar, the proposed
method has the best score at any Sr. This shows that the proposed method maintains the
area of the point cloud while ensuring the quality of the point cloud.

Specifically, with the increase in Sr, the Hd, Md and RMS of all methods decrease,
indicating that the simplification degree is increasing. However, compared with other
methods, the proposed method and PS have the smallest decrease in these indicators,
indicating that it can achieve the highest similarity with the original point cloud under the
same simplification ratio. Curvature has the largest decrease, indicating the loss of more
details. In the comparison of Ar, the proposed method has the smallest decrease, indicating
that it retains the most area information of the original point cloud.
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Figure 7. Comparison of the simplification effects of the four methods at different Sr. (a) The variation
curve of Hd with Sr. (b) The variation curve of Md with Sr. (c) The variation curve of RMS with Sr.
(d) The variation curve of Ar with Sr.

PS and the proposed method achieved good simplification effects. Compared with PS,
the proposed method has certain advantages in retaining area information. It can achieve
better area retention under the same simplification ratio.

4. Discussion

Point cloud simplification is a very important preprocessing step in point cloud
processing. It can greatly improve the efficiency of point cloud analysis and understanding.
For tree point clouds, the area of the point cloud is a very important index that determines
the leaf area of the tree. Based on the theory of FPFH information entropy and Poisson disc
sampling, this paper realizes the simplification of tree point clouds while maintaining the
area parameters of the original point cloud through the genetic optimization of Pl and Pd.

4.1. FPFH and Neighborhood Search

Compared to using convex hull algorithms to extract boundary points and normal
estimation to detect high-curvature regions, using FPFH entropy is more convenient and
efficient. However, FPFH is quite sensitive to the point cloud density, while most point
clouds do not have uniform density. Improper selection of the neighborhood size may lead
to erroneous feature point extraction.

It is known from FPFH theory that different neighborhood selections can have signifi-
cant impacts on the FPFH results. In point cloud research, neighborhood selection is an age-
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old topic. Demantké et al. [33] also used information entropy based on three-dimensional
features to determine the search neighborhood. The optimized search neighborhood
enhanced the variation of dimensional features, providing useful clues for subsequent
segmentation and classification algorithms [34]. This gives us some inspiration. As a local
feature descriptor, the FPFH calculates the differences between a point and its neighboring
points in each dimension. Points in different regions exhibit different FPFH distributions.
Using this trait, points on edges and high-curvature areas can be extracted. We used the
cov(H) of th FPFH information entropy to calculate the optimal neighborhood size, to
ensure maximum differences in the FPFH between points, while avoiding erroneously
classifying some unsuitable points as P.

4.2. Key Points and Area of Point Cloud

The rolling ball algorithm is used to generate a triangular mesh from a point cloud
by using a fixed radius ball. By accumulating the area of each triangle in the triangular
mesh, the total area of the point cloud can be obtained. However, this method has some
limitations:

(1) Boundary points and high-curvature feature points have a greater impact on the area.
Ignoring or missing these points during simplification will cause a large change in the
calculated area.

(2) In the acquired point cloud, the point density near the center is larger, while the point
density far away becomes sparse. The final point cloud cannot guarantee a uniform
point density at each position.

(3) If the points in Pl are too sparse, it will also have a great impact on the area calculation
result, resulting in the overestimation or underestimation of the area.

To solve these problems, this paper selects Poisson disc sampling to generate less
significant points Pl. By combining the boundary points, high-curvature feature points Pd
and Pl, a simplified point cloud Ps that retains the overall shape and area information of
the original point cloud can be obtained. Poisson disc sampling can generate uniformly
distributed points to fill in the sparse areas and avoid redundant points in dense areas.

4.3. Density of Point Cloud and Sr

In the Ar comparison results of Dataset 2, when Sr < 50%, the Ar of the four methods
all exceeded 0.1, which means that the area deviation of the point cloud is increasing. When
Sr or the density of the point cloud is large, the triangular mesh calculated by the rolling
ball algorithm correctly covers every point. At this time, the area of the triangular mesh is
the leaf area (Figure 8a). However, when Sr or the density of the point cloud is small, the
division of the triangular mesh is not accurate (Figure 8b). At this time, the calculated area
is not meaningful.
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Specifically, when calculating the area of point clouds with different densities using
the rolling ball algorithm, the following situations may occur:

(1) When the point density is high, the generated triangular mesh can accurately cover
all points, and the calculated area is close to the actual area.

(2) When the point density is low, the generated triangular mesh cannot cover all points,
resulting in an inaccurate area calculation result. Some areas are overestimated while
some areas are missing.

(3) When the Sr is small and the point density is high, although the number of points
after simplification is small, the density is still high. The generated triangular mesh
can still cover the overall shape of the point cloud, and the calculated area is still close
to the actual situation.

(4) When the Sr is small and the point density is low, the number of points after simplifi-
cation is small and the density is lower, resulting in a large error in the calculated area.

In summary, a higher point density helps to obtain a more accurate area calculation
result under the same Sr. When the point density is low, a larger Sr is required to ensure
calculation accuracy. Therefore, the minimum Sr that can be achieved depends on the
density of the original point cloud. For point clouds with high density, a small Sr can meet
the needs. For point clouds with low density, a larger Sr is required.

5. Conclusions and Future Work

This study proposes a point cloud simplification method for forests based on FPFH
information entropy and the Poisson disk sampling theory. This method first partitions and
samples the point cloud using FPFH information entropy and the Poisson disk sampling
theory. It takes point cloud simplification quality and area as the objective function and
optimizes the thresholds of significant feature points and less-significant feature points
through genetic algorithms to obtain the final simplified point cloud.

The experimental results show that the proposed method has the best performance
in comprehensive evaluation indicators such as similarity, simplification degree and area
retention. Compared with Curvature and Space, the proposed method and PS can achieve
higher-quality simplification results. Compared with PS, the proposed method has cer-
tain advantages in retaining area information. It can achieve a better balance between
simplification degree and area retention.

The results verify that the proposed point cloud simplification method based on
information entropy and Poisson disc sampling can achieve higher-quality simplification
while ensuring area retention. This helps to obtain a simplified point cloud that retains the
original geometric features as much as possible. This can benefit applications like biomass
monitoring and precision spraying.

In summary, the proposed method can better meet the needs of forest point cloud
simplification. Compared with existing point cloud simplification methods, the main
contributions of this study are as follows:

(1) A method for determining the optimal search neighborhood based on the standard
deviation of FPFH information entropy is proposed, providing a basis for subsequent
sampling and optimization;

(2) The FPFH features and the Poisson disk sampling theory are used to partition and
sample each point cloud to retain the geometric features of the point cloud;

(3) The point cloud simplification quality and area are taken as the objective function, and
genetic algorithms are used to optimize the thresholds of significant feature points and
less-significant feature points to control point cloud simplification quality and area.

It should be noted that this study did not investigate the relationship between point
cloud density, Sr and simplification quality, and the size of the point cloud datasets currently
used is still relatively small. In future work, we will consider obtaining the relationship
between point cloud density, Sr and simplification quality, and designing density-adaptive
simplification algorithms. In addition, optimization algorithms more suitable for point
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cloud processing will be adopted to replace genetic algorithms, which can further improve
and increase the computational speed of this method. We will also select point cloud data
containing more tree types to verify the algorithm.
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