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Abstract: Effective water and vegetation management requires a better understanding of vegetation
dynamics, and their response patterns to drought. Here, based on the normalized difference vegeta-
tion index (NDVI) and the standardized precipitation evapotranspiration index (SPEI), we investigate
the vegetation response patterns to drought in Shaanxi Province (SAX), using Spearman’s correlation
analysis. The results show that the NDVI increased significantly (p < 0.01) from 2000 to 2019, with a
trend of 0.054/10 yr. The maximum correlation coefficient between the NDVI and the SPEI (Rmax)
showed a significantly positive correlation (p < 0.05) in most areas (84.5%) of SAX. The Rmax of
Northern Shaanxi (NS, median = 0.55) was higher than that of Central Shaanxi (CS, median = 0.53)
and Southern Shaanxi (SS, median = 0.52). The corresponding timescale of Rmax was longer in CS
(median = 7 months) than NS (median = 4 months) and SS (median = 3 months). The occurrence date
of Rmax in NS (median = July) lagged that in CS and SS (median = May). The vegetation response
patterns to drought varied with elevation; the Rmax decreased significantly (p < 0.01) with increasing
elevation, while the corresponding timescale exhibited fluctuations. Additionally, Hurst exponent
analysis indicated that 78.6% of the areas in SAX will exhibit a humidification trend in the future, and
that vegetation growth in 74.7% of the areas in the region will be promoted.

Keywords: vegetation dynamics; drought; spatial patterns; regional heterogeneity; Shaanxi Province

1. Introduction

Drought occurs when the water availability remains below average levels for an
extended period [1], leading to significant damage to terrestrial ecosystem vegetation. In
the northern hemisphere mid-latitudes, drought causes a 48% decline in gross primary
productivity (GPP) [2]. Similarly, the combination of drought and heatwaves in Europe in
2003 reduced the vegetation productivity by approximately 30% [3]. Additionally, the 2010
drought in south-western China caused a regional GPP reduction of 65 Tg C yr−1 [4]. With
climate change, the frequency and intensity of drought events are projected to increase,
posing a severe threat to vegetation [5,6]. Therefore, studying vegetation response patterns
to drought is vital to understanding vegetation vulnerability to climate change.

Numerous indicators have been developed for drought assessment [7]. Among them,
widely used indicators include the Palmer drought severity index (PDSI) [8], the Standard-
ized Precipitation Index (SPI) [9], and the Standardized Precipitation Evapotranspiration
Index (SPEI) [10]. However, the PDSI has faced criticism due to its fixed timescale [11],
given that drought has been widely accepted as a natural phenomenon with multiple
timescales [1]. While the SPI considers multiple timescales, it overlooks the role of poten-
tial evapotranspiration (PET), a crucial component of the hydrological cycle [12]. On the
other hand, the SPEI combines the advantages of both indicators, and provides a better
characterization of drought events, particularly in arid and semi-arid regions [10,13]. In
terms of vegetation assessment, the NDVI stands as the most commonly used indicator,
utilizing the “red-edge” phenomenon to detect light and infer the presence of active plant
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material and available water in the vegetation’s root zone [14]. Therefore, the NDVI is an
effective measure for characterizing vegetation response to drought.

By applying the SPEI and the NDVI, many studies have provided literature on vegeta-
tion response patterns to drought, and have demonstrated significant effects of drought on
vegetation. Vicente-Serrano et al. [1] reported that the NDVI was significantly correlated
with the SPEI in 72% of the global vegetated area. Zhang et al. [15] confirmed this conclu-
sion, and found that the positive significant correlation between the NDVI and the SPEI
was exhibited in most areas of China. Meanwhile, Xu et al. [16] showed that 43% of the veg-
etation in northern China was significant affected by drought. In addition to the response
degree characterized by the correlation coefficient magnitude, researchers also focused
on the timescale of the SPEI, which can describe the vegetation resistance to drought [1].
Qi et al. [17] reported that in the Qinling mountains of China, the forests responded to
drought on a longer cumulative timescale, compared to the grassland and shrub. This
conclusion has also been confirmed in the Yellow River Basin of China [18]. Based on the
response degree and its corresponding SPEI timescale, recent studies examined the relation-
ship between different vegetation types and drought. In general, woody plants can resist
drought on a longer timescale, and with a lower response degree, compared to herbaceous
plants [13]; this difference in the vegetation response to drought is primarily determined by
the physiological properties of the vegetation type [1]. However, the vegetation response
patterns to drought are not constant across regions, as they are also influenced by the
topography, climate, and even human activities [19]. A study conducted in south-western
China demonstrated that the response degree of forests was greater than that of grassland
in the karst region [20]. Moreover, water requirements vary among vegetation types, and
even within the same species, during different seasons [15]. Consequently, the vegetation
response patterns to drought are not only related to the response degree and timescale, but
also to the occurrence date that indicates the peak drought sensitivity in the vegetation [17].
Nevertheless, the response degree and corresponding timescale are considered, while the
occurrence date are often neglected [13,21]. Therefore, it is necessary to study the vegetation
response patterns to drought in specific regions, from multiple perspectives.

Owing to its dependence on the short-term precipitation events between June and
August, drought is the most severe and frequent natural calamity in SAX [22,23]. From 1951
to 2012, the region experienced 110 episodes of moderate drought (−1.5 < SPEI ≤ −1), and
18 cases of extreme drought (SPEI ≤ −2) [24]. Moreover, the region has long suffered from
severe soil erosion and vegetation degradation [25]. To mitigate this situation, the Chinese
government identified SAX as a pilot province for the ‘Grain to Green Project’ (GTGP) in
1999, resulting in a sharp increase in vegetation coverage. However, research indicates that
this policy may exacerbate the depletion of local soil moisture [26,27], thereby increasing
drought sensitively in vegetation, while the vegetation response patterns to drought in
SAX are still unknown.

Our primary objectives are as follows: (1) to assess the vegetation dynamics in SAX
from 2000 to 2019; (2) to analyze vegetation response patterns to drought in SAX; and
(3) to predict future trends in aridification/humidification, and the drought sensitivity
of vegetation.

2. Materials and Methods
2.1. Study Area

SAX is situated in inland China (105◦29′–111◦15′ E, 31◦42′–39◦35′ N), covering a
total area of approximately 205,000 km2 (Figure 1a). The region is divided into three
sub-regions: Northern Shaanxi (NS), Central Shaanxi (CS), and Southern Shaanxi (SS)
(Figure 1b). Predominantly located on the Loess Plateau, NS covers an area of 92,521.4 km2,
accounting for 45% of SAX. The average altitude, annual temperature, and precipitation of
NS are between 900 and 1900 m, 7 and 12 ◦C, and 400 and 600 mm, respectively. CS is one of
China’s significant grain-producing regions [28], and covers a total area of 55,623 km2, with
a vast central plain. The altitude, average annual temperature, and precipitation of CS are
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190–3700 m, 14–16 ◦C, and 500–700 mm, respectively. SS, which encompasses a total area of
57,655.6 km2, is mainly composed of mountains. The altitude, average annual temperature,
and precipitation of SS are 300–2900 m, 15–17 ◦C, and 700–900 mm, respectively. By 2016,
SAX had afforested a total area of 2.5 million ha, with NS, CS, and SS afforesting 1.123, 0.616,
and 0.759 million ha, respectively [25]. From 2000 to 2019, the proportion of unchanged
vegetation types in the region was 30.8% for cropland, 9.1% for forests, 11.8% for shrub, and
34.8% for grassland (Figure 1c). Based on local climatic characteristics, we define March to
November as the growing season [29].

Figure 1. (a) The location, and (b) the topographical and (c) unchanged land-use types in SAX.

2.2. Data Collection and Preprocessing
2.2.1. Meteorological Data

The National Earth System Science Data Center provided monthly gridded precipita-
tion and mean temperature data at a spatial resolution of 1 km. These data were obtained
by downscaling the low-spatial-resolution climate data provided by the Climate Research
Unit (CRU). A comparison between the downscaling results, and observations from 496 me-
teorological stations revealed deviations of 13.3 mm for the monthly precipitation, and
0.82–1.28 ◦C for the mean temperature [30].

2.2.2. NDVI Data

The Google Earth Engine (GEE) offers NDVI data (MOD13A2 V6.1) with a temporal
and spatial resolution of 16 days and 1 km, respectively. These data have been widely used
in vegetation monitoring, and have been proven to have a higher accuracy, compared to
the GIMMS3g NDVI product [31]. To minimize the influence of clouds and atmospheric
conditions [32], the acquired NDVI data have been processed using the maximum value
composite (MVC) method on a monthly basis. The MVC method emphasizes the peak
vegetation growth state. Its fundamental principle is to identify the maximum NDVI value
among multiple NDVI observations for each pixel within a specific time range, which is
then considered as the final NDVI value [33]. For instance, in March 2000, the MOD13A2
product provided NDVI data for two specific dates (5 March and 21 March). At the pixel
level, we selected the maximum NDVI value from these two images, to represent the
ultimate NDVI value for that particular month.

2.2.3. Vegetation Type and DEM Data

The Resource and Environmental Science and Data Centre provided us with vegeta-
tion type data at a resolution of 30 m. The data covered the period from 1980 to 2020; we
downloaded the data for five years: 2000, 2005, 2010, 2015, and 2020. The elevation informa-
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tion was derived from Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010),
with a spatial resolution of approximately 232 m. For detailed descriptions of each dataset,
please refer to Table 1.

Table 1. Data description.

Data Data Source Website

Temperature National Earth System Science
Data Center

http://www.geodata.cn/ (accessed on
7 December 2022)Precipitation

Vegetation type Resource and Environment Science and
Data Center

https://www.resdc.cn/ (accessed on
16 February 2023)

MOD13A2 NDVI Google Earth Engine https://code.earthengine.google.com/
(accessed on 21 December 2022)GMTED2010

2.3. Methods

In this study, we analyzed vegetation dynamics in SAX from 2000 to 2019, using NDVI
data. Furthermore, we examined the relationship between the NDVI and the SPEI, through
Spearman’s correlation analysis. Finally, we employed the Hurst exponent, to assess the
future drought sensitivity of vegetation. The technical flowchart for this study is shown in
Figure 2.

Figure 2. Flow chart for this study. Figure elements: TR, temporal resolution; SR, spatial resolu-
tion; MVC, maximum value composite; parallelogram, datasets; rectangle with blue background,
study methods.

2.3.1. Slope Analysis

To detect the variation trends in the NDVI, we employed an ordinary least-squares-
based linear regression analysis [34], with the following formula:

slope =
n∑n

i=1 iNDVIi − (∑n
i=1 i)(∑n

i=1 NDVIi)

n∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where n is the length of the NDVI series data, NDVIi is the NDVI in the ith year, and
slope > 0 or slope < 0 indicates the increasing or decreasing trend, respectively.

http://www.geodata.cn/
https://www.resdc.cn/
https://code.earthengine.google.com/
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2.3.2. SPEI Calculation

The SPEI calculation process was divided into three steps. Firstly, we calculated the
difference sequence between the monthly precipitation (PRE) and the potential evapotran-
spiration (PET):

Di = PREi − PETi (2)

where Di represents the difference between the PRE and PET in ith month, PREi represents
the PRE in ith month, and PETi represents the PET in ith month. To calculate the potential
evapotranspiration, we utilized Thornthwaite’s approach [35].

Secondly, we fitted the Di sequence, using probability distribution. Ma et al. [36]
employed the Z-test to compare five commonly used probability distribution functions
(Weibull, Pearson-III, log-logistic, generalized Pareto distribution, and generalized extreme
value distribution), and concluded that the three-parameter log-logistic distribution was
more suitable for SPEI calculation in the Chinese region. Therefore, we selected a three-
parameter log-logistic distribution to fit the Di sequence:

F(x) = [1 + (
α

x− γ
)

β
]
−1

(3)

where α, β, and γ represent the scale, shape, and location parameters of the D values,
respectively, and can be fitted using the linear moment method.

Finally, we determined the SPEI as the normalized value of F(x), based on the classical
approximation method [37]:

P = 1− F(x) (4)

W =

{ √
−2 ln(P), P ≤ 0.5√
−2 ln(1− P), P > 0.5

(5)

SPEI =

 W − C0+C1W+C2W2

1+d1W+d2W2+d3W3 , P ≤ 0.5
C0+C1W+C2W2

1+d1W+d2W2+d3W3 −W, P > 0.5
(6)

where P represents the standardizing probability density function. C0, C1, C2, d1, d2, and d3
are constants. In this study, the SPEI with 1- to 12-month timescales were calculated using
the “Geographic and Meteorological Analysis (GMA)” package in Python. SPEI = 0.5 and
SPEI = −0.5 were taken as the threshold values for humidity and drought [36].

2.3.3. Correlation Analysis

Considering that the relationship between the NDVI and the SPEI may be nonlin-
ear [16], Spearman’s correlation coefficients between the SPEI and the NDVI were calculated
for different months at different timescales, using the following equation:

Ri,j = Cor(NDVI, SPEIi,j) 3 ≤ i ≤ 11, 1 ≤ j ≤ 12 (7)

Rmax = max
{

Ri,j
}

(8)

where NDVI is the mean value during the growing season, i denotes the ith month from
March to November, j denotes the timescale of the SPEI from 1 to 12 months, and Ri,j denotes
Spearman’s correlation coefficients between the NDVI and the SPEI. Thus, 108 (9 × 12)
correlation coefficients can be obtained for each pixel. Given that a larger correlation
coefficient represents a greater impact of drought on vegetation, while a negative correlation
implies an increasing NDVI value during the drought period (i.e., drought has no impact on
vegetation growth) [38], we selected the maximum Ri,j (Rmax), which represents the highest
drought sensitivity of vegetation, according to Equation (7). In this study, a two-tailed
t-test was used to determine the significance level of Rmax, with values of ±0.38, ±0.44,
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and ±0.56 indicating the 10%, 5%, and 1% significance levels, respectively. Spearman’s
correlation analysis was implemented using the “Pingouin” package in Python.

To further investigate the vertical patterns in the vegetation response to drought, we
extracted Rmax and its corresponding SPEI timescale for different altitude intervals, in steps
of 100 m, and fitted them using linear regression. In addition, we also extracted the Rmax
and its corresponding SPEI timescale across vegetation types, using the “Extract by Mask”
function in ArcGIS, to analyse the response patterns to drought under different vegetation
types in SAX.

2.3.4. Hurst Exponent and R/S Analysis

To predict future trends in the SPEI, we utilized the Hurst exponent (H). To calculate
H, we employed the widely used rescaled range (R/S) analysis [39]. The principles for
the R/S calculation can be found in Sánchez Granero et al. [40]. The H ranges from 0 to 1,
H > 0.5 indicates a consistent future trend compared to the past, H = 0.5 indicates the
independence of future and past trends, and H < 0.5 indicates an opposite future trend
compared to the past.

2.3.5. Drought Sensitivity Classification

The assessment of drought sensitivity for vegetation should be conducted from two
perspectives: the response degree, and the corresponding SPEI timescale [17]. The response
degree reflects the magnitude of the drought impact on vegetation, while the corresponding
timescale indicates the vegetation resistance to drought [1]. Vegetation with a higher
sensitivity to drought exhibits a greater response degree, and a shorter SPEI timescale,
and vice versa [41]. Moreover, based on a two-tailed t-test, we have identified 0.38, 0.44,
and 0.56 as the thresholds for positive correlation, at 10%, 5%, and 1% significance levels,
respectively. Hence, we classified drought sensitivity for vegetation according to Table 2.

Table 2. Drought sensitivity classification for vegetation.

Timescale 1–6 Months 7–12 Months

Rmax ≤ 0.38 Not sensitive
0.38 < Rmax ≤ 0.44 Moderately sensitive Mildly sensitive
0.44 < Rmax ≤ 0.56 Severely sensitive Moderately sensitive

Rmax > 0.56 Extremely sensitive Severely sensitive

3. Results
3.1. Spatial–Temporal Variations in the NDVI

Figure 3 shows the inter-annual variations in the NDVI in SAX. The multi-year mean
NDVI is 0.53 during the growing season. In total, the NDVI values have exceeded the
multi-year mean for 10 years, specifically in 2009, and from 2011 to 2019. The minimum
NDVI value (0.45) and maximum NDVI value (0.58) occurred in 2000 and 2018, respectively,
with a difference of 0.13. Overall, the NDVI in SAX showed a significant (p < 0.01) increase
from 2000 to 2019, with a trend of 0.054/10 yr. In addition, we noted a sharp increase in the
NDVI in SAX from 2000 to 2003, followed by a trend of steady, fluctuating increases.

The trend of NDVI variation in SAX spans from −0.2/10 yr to 0.23/10 yr, with 96.8%
of the area exhibiting a positive trend. In NS, CS, and SS, the respective trends in the NDVI
are 0.076/10 yr, 0.037/10 yr, and 0.042/10 yr. Notably, the central-eastern NS demonstrates
the most pronounced increasing trend in the NDVI, while central CS has experienced a
declining trend (Figure 4a). Moreover, a significant increase in the NDVI (p < 0.05) was
observed in 98.9% of the SAX area from 2000 to 2019 (Figure 4b). In NS, CS, and SS, the
percentage of areas with a significant increase in NDVI was 98.9%, 77.24%, and 87.9%,
respectively. Overall, vegetation recovery was most prominent in NS, followed by SS
and CS.
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Figure 3. Inter-annual variations in the NDVI.
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3.2. Drought Response Patterns and Their Regional Heterogeneity in Vegetation
3.2.1. Spatial Pattern of Response Degree

The vegetation in SAX exhibited a significant response to drought, with a median Rmax
of 0.53 (p < 0.05) for the region during the growing season, from 2000 to 2019. The Rmax
was statistically significant in 84.5% of the area in SAX, of which 38.5% and 45.9% were
significant at the 1% and 5% levels, respectively. Additionally, the response degree in all
the sub-regions was significant, with the median Rmax values of 0.55, 0.53, and 0.52 for NS,
CS, and SS, respectively. Regarding the spatial distribution, the vegetation exhibiting a
more pronounced response degree was mainly located in eastern NS, northern CS, and
north-eastern and south-western SS (Figure 5a).
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Figure 5. The spatial patterns of the (a) Rmax, (b) corresponding SPEI timescale, and (c) occur-
rence date.

3.2.2. Spatial Pattern of Response Timescale

The response timescale provides an indication of vegetation resistance to drought,
with short timescales indicating a low resistance, and vice versa. In SAX, the vegetation in
43.5% of the area was affected by drought on a 1- to 3-month timescale, with a predominant
distribution in central-eastern NS and south-eastern CS. Meanwhile, the vegetation in 26.3%
of the area exhibited the highest drought sensitivity on a 9- to 12-month timescale, mainly
in the western areas of NS and CS. In CS, the vegetation exhibited the longest timescale of
response to drought (median = 7 months), followed by in NS (median = 5 months), and in
SS (median = 3 months) (Figure 5b).

3.2.3. Spatial Pattern of Response Occurrence Date

The occurrence date associated with Rmax reflects the period of vegetation most vulner-
able to drought stress. In SAX, vegetation in 48.8% of the area was most sensitive to drought
stress from March to May, primarily located in central-eastern CS and north-eastern SS,
while vegetation in 43.5% of the area demonstrated the highest sensitivity to drought in
June and July, mainly found in most parts of NS, western CS, and south-western SS. Overall,
the vegetation in 92.3% of the area in SAX showed high sensitivity to drought from March to
July. Additionally, the vegetation in NS was the last to respond to drought (median = July),
while in CS and SS, the occurrence date of the vegetation response to drought was relatively
consistent (median = May) (Figure 5c).

3.2.4. Vertical Patterns of Vegetation Response

We further analyzed the vertical patterns of vegetation response to drought in SAX
(Figure 6). To mitigate the influence of human activities, we only selected unchanged
vegetation types, within the altitude range above 500 m. As the altitude increased, the Rmax
significantly decreased, indicating that the response degree diminished with higher alti-
tude. Moreover, vegetation exhibited the highest response degree at around 1500–1700 m
in altitude (Figure 6a). The response timescale varied with altitude, and could be divided
into three intervals: 500–1700 m, 2700–3500 m, and 1700–2700 m. In the altitude range of
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500–1700 m and 2700–3500 m, the response timescale increased significantly with altitude.
However, in the altitude range of 1700–2700 m, the response timescale decreased signif-
icantly with increasing altitude (Figure 6b). Vegetation in areas above 3000 m showed a
lower drought sensitivity, with a lower response degree, and a longer response timescale.

Figure 6. The vertical patterns of (a) the Rmax, and (b) the corresponding timescale. Note: error
band = ± 1 standard deviation.

3.2.5. Regional Heterogeneity of Vegetation Response

There was regional heterogeneity in the response patterns among vegetation types
in SAX (Table 3). In NS, cropland exhibited the highest drought sensitivity, with a larger
response degree and a shorter response timescale, followed by shrub and grassland. In
CS and SS, grassland showed higher drought sensitivity, compared to shrub and cropland.
Additionally, among all three sub-regions, forests exhibited a lower drought sensitivity,
compared to the other three vegetation types. Overall, in SAX, grassland was most sensitive
to drought, followed by cropland and shrub exhibiting similar levels of drought sensitivity,
while forests show the lowest level of drought sensitivity.

Table 3. The median values of the Rmax and the corresponding SPEI timescales across vegetation
types in different regions.

Rmax Timescale (Months)

Region Cropland Forests Shrub Grassland Cropland Forests Shrub Grassland

NS 0.56 0.53 0.55 0.54 3 5 5 5
CS 0.52 0.52 0.55 0.56 7 7 6 6
SS 0.53 0.52 0.54 0.54 4 4 4 3

SAX 0.54 0.52 0.54 0.54 5 6 5 4

3.3. Prediction Drought Sensitivity for Vegetation in the Future
3.3.1. Spatial Patterns of Drought Sensitivity for Vegetation

According to Table 2, we classified the drought sensitivity of vegetation in SAX. We
observed that vegetation in SAX is highly susceptible to drought stress during the growing
season. Specifically, 24.1% of the area is classified as extremely sensitive to drought,
while 42.1% is identified as severely sensitive. These areas are primarily located in north-
eastern and southern NS, northern CS, and north-eastern and south-western SS (Figure 7a).
Furthermore, when comparing the different sub-regions, we observed that SS exhibits
a higher proportion of extremely and severely sensitive areas (69.5%), compared to NS
(68.4%) and CS (58.8%).
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Figure 7. The spatial pattern of (a) the drought sensitivity in vegetation, and (b) the future trend of
drought. Aridification refers to a condition where the current trend of drought is decreasing, but is
expected to increase in the future, while humidification indicates that the current trend of drought is
increasing, but will be alleviated in the future (H < 0.5). Consistent refers to a condition where the
future trend of drought will align with the current stage (H > 0.5).

3.3.2. Future Trend of Humidification/Aridification

Based on the response timescale and response occurrence date corresponding to Rmax,
we predicted the future trend of humidification/aridification on the pixel scale (Figure 7b).
In the future, humidification is predicted in 78.6% of SAX, and the humidification type
will be dominated by consistent humidification, primarily in central-eastern NS, western
CS, and north-eastern SS. Aridification is excepted to occur in 21.4% of the region area,
primarily in western and southern NS, eastern CS, and southern SS. Moreover, we predict
that 83.7% of the area in SS will show a humidification trend in the future, followed by CS
(80%) and NS (73.4%).

3.3.3. Spatial Patterns of Drought Sensitivity for Vegetation in the Future

We overplied Figure 7a,b to obtain the classification of drought sensitivity for future
vegetation in SAX (Figure 8). In the future, vegetation growth in 74.7% of the SAX area will
be promoted by humidification, while growth in 19.3% of the area will be suppressed by
aridification. Differentiating the sub-regions, future humidification is predicted to promote
vegetation growth in 79% of the area in SS, followed by CS at 74%, and NS at 71.5%.
Additionally, future vegetation management should focus on the western and southern
parts of NS, the north-eastern part of CS, and the southern part of SS, where aridification is
predicted, and vegetation is identified as being vulnerable to drought stress.
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Figure 8. The spatial pattern of vegetation sensitivity to drought in the future.

4. Discussion

Consistent with numerous previous studies [13,15,16], our study revealed that the
vegetation in most areas of the study region is vulnerable to drought during the grow-
ing season, emphasizing the importance of water availability as a major factor affecting
vegetation growth in SAX. In NS and CS, vegetation exhibits a larger response degree to
drought, compared to in SS. There are two possible factors contributing to this disparity.
Firstly, NS and CS experience lower precipitation, compared to SS. Secondly, the “Grain
to Green Project” (GTGP) has led to the significant depletion of soil moisture in NS and
CS [42], which may further exacerbate the response degree. We observed that vegetation
in NS and CS shows a longer response timescale, compared to in SS. There could be three
possible reasons for this. (1) The entire NS and the majority of CS are situated on the
Loess Plateau, the largest loess deposit in the world, and the soil has a high water-holding
capacity [43,44]. As a result, the soil moisture changes more slowly in NS and CS, compared
to in SS. This, in turn, contributes to the longer response timescale of vegetation to drought
in NS and CS. (2) NS and CS are dominated by semi-arid regions, where vegetation tends
to respond to drought on a longer timescale, due to its ability to tolerate water deficits [1].
(3) We observed that the vegetation in SS is more sensitive to drought around springtime.
The rapid warming and inadequate rainfall in spring result in frequent occurrences of
moderate and intense drought (SPEI ≤ −1) in SS [45]. Chen et al. [46] reported that the
SPEI = −1 is the warning threshold for most vegetation types. In other words, vegetation
in SS is more vulnerable to drought with moderate and higher intensity around springtime.
Ding et al. [47] confirm this conclusion, and found a higher correlation between the NDVI
and the SPEI on a shorter timescale (1–3 months) in SS. Additionally, we also observed
that the vegetation response lags behind in NS, compared to in CS and SS, possibly due to
the higher latitude of NS. Huang et al. [48] illustrated that the optimum temperature for
vegetation growth is 23 ± 6 ◦C, with a higher latitude meaning that this temperature is
reached later, which correspondingly delays the critical vegetation growth period.

Previous studies have indicated a clear correlation and pattern between vegetation
growth and altitude [49,50]. In SAX, we observed vertical variations in the vegetation
response patterns to drought. Specifically, as the altitude increases, the response degree
significantly decreases. The vegetation at altitudes above 3000 m exhibits the lowest
response degree to drought. These high-altitude areas exhibit cold temperatures, low
evapotranspiration, and high precipitation, creating cold and humid climate conditions.
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Consequently, temperature and solar radiation conditions constrain the vegetation growth
in such areas [51]. As the altitude decreases, the climate transitions from cold and humid
to warm and dry, which alters the influence pattern of climate factors on the vegetation.
In lower-altitude areas, water availability becomes the key factor controlling vegetation
growth [50]. As a result, vegetation in these areas shows a higher sensitivity to drought.
Furthermore, we observed that within the elevation range of 1700–2700 m, the rate of
decrease in the vegetation response degree to drought slows down, accompanied by a
shorter response timescale. This suggests an increased drought sensitivity in vegetation at
this altitude range. One possible explanation is that within this altitude range, the effect
of temperature on vegetation growth shifts from inhibition to promotion, amplifying the
vegetation sensitivity to variations in the water balance, particularly a water deficit [52].

In SAX, there is regional heterogeneity in the response patterns to drought among
vegetation types. Specifically, in NS, cropland exhibits the highest drought sensitivity. This
can be attributed to the predominance of rainfed and mosaic cropland in the region [19].
Contrary to in CS and SS, the grassland in NS demonstrates a lower drought sensitivity
compared to shrub. NS experiences the highest frequency of drought [45], making water
availability crucial for vegetation growth. Compared to shrub, herbaceous plants require
less precipitation to sustain growth [20]. Additionally, the ground coverage of herbaceous
plants helps to reduce soil evaporation, and retain a small amount of precipitation during
drought, contributing to their ability to maintain growth [53]. Li et al. [42] recommended
that ecological restoration in NS should prioritize grassland, due to its ability to maintain
the effectiveness and stability of soil moisture. In CS, a major food-producing region, we
found that the drought sensitivity of cropland is comparatively low, compared to shrub
and grassland. Human activities, such as irrigation and fertilization [54], have reduced
the drought sensitivity of cropland. Shrub and grassland in CS can resist drought for a
longer timescale, compared to NS and SS, while their response degree is more pronounced.
Corresponding with the high evapotranspiration, a drought lasting for six months can
deplete the soil moisture, and have a negative cumulative effect on vegetation growth [55],
which may cause a significant decrease in the vegetation greenness [56]. Forests in SAX
exhibit a lower drought sensitivity, which is consistent with previous studies [15,16]. Due
to their deep root systems [57], forests can absorb water from deeper soil layers during
drought periods, to maintain a normal physiological state. Therefore, compared to the
other three vegetation types, forests exhibit the lowest drought sensitivity.

Please note the limitations of our study. We assume that the vegetation dynamics are
mainly caused by variations in drought. In fact, the impact of pests, diseases, soil salinity
and nutrient deficiencies, and human activities on vegetation cannot be ignored [34,58].
Furthermore, several studies have used solar-induced chlorophyll fluorescence (SIF), which
characterizes vegetation photosynthesis, as an indicator to describe the physiological status
of vegetation, and have suggested that SIF is more advantages for capturing drought
stress [47]. Therefore, a future study should be based on multi-vegetation indicators, and
focus on the combined effect of diverse factors, to further analyze the vegetation response
patterns to drought.

5. Conclusions

In this study, we analyzed vegetation dynamics, and emphasized their response
patterns to drought, in SAX, with the key conclusions drawn as follows. The NDVI in
SAX experienced a significant increase from 2000 to 2019. Furthermore, a significant
positive correlation was observed between the NDVI and the SPEI in most areas of the
study region, suggesting that water availability plays an important role in vegetation
growth. There is regional heterogeneity in the vegetation response patterns to drought
among vegetation types in SAX. Therefore, it is important to implement differentiated
management strategies for vegetation in different regions. In the future, the humidification
trend is predicted in most areas of SAX, which will promote the growth of local vegetation.
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However, attention should be given to the western and southern NS, and the south-eastern
SS, where aridification is predicted, and vegetation is highly vulnerable to drought stress.
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