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Abstract: Accurately estimating aboveground biomass (AGB) is crucial for assessing carbon storage
in forest ecosystems. However, traditional field survey methods are time-consuming, and vegetation
indices based on optical remote sensing are prone to saturation effects, potentially underestimating
AGB in subtropical forests. To overcome these limitations, we propose an improved approach that
combines three-dimensional (3D) forest structure data collected using unmanned aerial vehicle
light detection and ranging (UAV LiDAR) technology with ground measurements to apply a binary
allometric growth equation for estimating and mapping the spatial distribution of AGB in subtropical
forests of China. Additionally, we analyze the influence of terrain factors such as elevation and slope
on the distribution of forest biomass. Our results demonstrate a high accuracy in estimating tree
height and diameter at breast height (DBH) using LiDAR data, with an R2 of 0.89 for tree height and
0.92 for DBH. In the study area, AGB ranges from 0.22 to 755.19 t/ha, with an average of 121.28 t/ha.
High AGB values are mainly distributed in the western and central-southern parts of the study area,
while low AGB values are concentrated in the northern and northeastern regions. Furthermore, we
observe that AGB in the study area exhibits an increasing trend with altitude, reaching its peak at
approximately 1650 m, followed by a gradual decline with further increase in altitude. Forest AGB
gradually increases with slope, reaching its peak near 30◦. However, AGB decreases within the
30–80◦ range as the slope increases. This study confirms the effectiveness of using UAV LiDAR for
estimating and mapping the spatial distribution of AGB in complex terrains. This method can be
widely applied in productivity, carbon sequestration, and biodiversity studies of subtropical forests.

Keywords: UAV LiDAR; aboveground biomass; spatial distribution; topography; subtropical forests

1. Introduction

Estimating aboveground biomass (AGB) is critical for assessing carbon storage and the
quality of forest ecosystems [1,2]. AGB plays a significant role in the carbon cycle between
land and atmosphere and climate change [3,4]. Accurate and rapid acquisition of spatial
distribution of AGB not only improves resource assessment, carbon storage, and carbon
modeling but also plays a vital role in the spatiotemporal monitoring of structure and
function of forest ecosystems [5].

Traditional methods for estimating forest AGB relies on high-density ground surveys
and the construction of statistical models for tree growth equations [6,7]. While these meth-
ods offer high accuracy, they are time-consuming and challenging to implement for spatial
distribution and monitoring of AGB at large scales [8]. With the advancement of remote
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sensing technology, various sensors such as optical remote sensing, light detection and rang-
ing (LiDAR), and aerial photography have been widely used for AGB monitoring [9–13].
Each remote sensing sensor has strengths and limitations, which can be leveraged in differ-
ent situations to improve AGB estimation accuracy [14]. In subtropical and tropical forests,
the relationship between AGB derived from optical remote sensing data and vegetation
indices (such as the Normalized Difference Vegetation Index, Enhanced Vegetation Index,
Ratio Vegetation Index, and Difference Vegetation Index) may be affected by saturation
effects, resulting in underestimation of AGB [15]. To address this issue, various empirical
regression models and non-parametric algorithms based on different remote sensing data,
such as multispectral, synthetic aperture radar, and LiDAR, have been developed for AGB
estimation [16–18]. For example, scientists effectively depicted the distribution of AGB in
California’s national forests by integrating data from medium-resolution imaging spec-
trometers with precipitation, temperature, and altitude information [19]. AGB estimation
models have also been proposed, including process-based ecosystem models, Geographic
Information System (GIS)-based empirical models, biomass expansion factor models, and
LiDAR-based estimation models [20]. However, accuracy validation is particularly crucial
for AGB estimation in complex terrain forests due to the uncertainties associated with the
variables, parameters, and their interactions obtained from different methods [21].

Topography is an important environmental factor in forest ecosystems that regulates
the distribution of AGB by affecting soil type, soil hydrological processes, temperature, light
conditions, and photosynthetic efficiency [22,23]. Altitude, slope, and aspect act as pivotal
drivers for tree species distribution, with vegetation at varying elevations potentially facing
constraints associated with temperature fluctuations and the availability of water, which
affects the distribution of AGB [24–26]. Utilizing generalized additive models (GAMs), a
study revealed that within a defined range (e.g., 500 to 2000 m), AGB exhibits an increasing
trend with altitude, while beyond this range (e.g., above 2000 m), the relationship tends to
reach saturation [27]. The growth of trees in valleys experiences detrimental effects due
to high humidity, resulting in reduced transpiration rates and nutrient uptake. Valleys
also suffer from diminished sunlight availability caused by dense canopies, ultimately
leading to lower photosynthetic intensity and reduced biomass accumulation [28]. Steep
slopes (e.g., greater than 30 degrees) exhibit a concentration of AGB in small-diameter trees,
whereas flat areas tend to concentrate most of the AGB within a few large trees [29]. Present
research on the influence of terrain on AGB primarily relies on field survey data obtained
at the plot scale. Nevertheless, due to the limited size and duration of traditional field plots,
accurately capturing the impact of complex terrain conditions on tree species coexistence
and the spatial distribution of AGB at the regional scale remains a challenge [30–32].

Unmanned aerial vehicle (UAV) LiDAR, as an active remote sensing technology, en-
ables direct acquisition of precise 3D structural information of forest canopies and terrain
at high spatial resolution [33,34]. Compared to traditional remote sensing methods, UAV
LiDAR offers higher detection accuracy and is more convenient for data collection in
challenging field environments, making it widely utilized for obtaining structural and func-
tional parameters of forest ecosystems [35–38]. The objective of this study is to accurately
estimate AGB of subtropical forests in China by utilizing high-resolution forest canopy and
terrain 3D information obtained from UAV LiDAR. Firstly, we extract the 3Dstructure of
the forest using LiDAR data. Secondly, we assess the accuracy of the extracted LiDAR data
by combining it with ground survey data. Finally, we employ a binary allometric equation
to estimate and map the spatial distribution of AGB in the subtropical forests of China.
Specifically, the objectives of this study include: (1) utilizing UAV LiDAR to capture the
structural attributes of single trees for estimating AGB in subtropical forests and validating
its accuracy; (2) mapping the spatial distribution of AGB within 1.72 km2 of the study area;
(3) exploring the effects of topography (altitude and slope) on the spatial distribution of
AGB in the study area.
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2. Materials and Methods
2.1. Study Area

Jiangxi Nanfengmian National Nature Reserve is located in Suichuan County, Jiangxi
Province, as shown in Figure 1. It lies on the eastern side of the southern segment of
Wanyang Mountain and the northern segment of Zhuguang Mountain, within the southern
section of the Luoxiao Mountain Range. The reserve’s coordinates range from 114◦40′50′ ′

to 114◦07′20′ ′ E and 26◦17′09′ ′ to 26◦22′44′ ′ N. A subtropical hilly and mountainous mon-
soon humid climate, with mild temperatures, abundant rainfall, and significant terrain
variations throughout the area, characterizes the climate in this region. The average annual
temperature ranges from 15.1 ◦C to 17 ◦C, while the annual precipitation ranges between
1400 and 2000 mm. The frost-free period extends for an average of 287 days per year [39].
The dominant vegetation type in this area is subtropical evergreen broad-leaved forest,
consisting primarily of well-established evergreen populations, including species from the
families Fagaceae, Lauraceae and Theaceae (Figure S1).
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Figure 1. The study area and 40 × 40 m sample plot.

2.2. Methods
2.2.1. Technical Processes

The technical workflow of this study is illustrated in Figure 2. Initially, UAV LiDAR
is employed to acquire precise 3D structural information of single trees. Subsequently,
measurement data, including tree height and tree diameter at breast height (DBH), are
collected from representative sample plots (Figure 2). The accuracy of the LiDAR-derived
data is assessed through rigorous evaluation. Finally, an empirical biomass model is applied
to estimate AGB across the study area, thereby mapping the distribution of AGB.



Forests 2023, 14, 1560 4 of 13Forests 2023, 14, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. The technical workflow for mapping AGB based on UAV LiDAR data. Digital elevation 
model (DEM) ; digital surface model (DSM); canopy height model(CHM). 

2.2.2. Data Acquisition 
On 19 November 2021, laser point cloud data for forest structure analysis was col-

lected in the study area using a DJI M300 RTK drone equipped with an onboard LiDAR 
system (Figure S2). The flight altitude ranges from 300 to 400 m above ground level, with 
a scanning angle of 30°. The drone follows a single S-shaped flight path and conducts 
four flights, covering a total scanning area of 1.72 km2. The laser pulse frequency is set to 
380 KHz, the measurement accuracy is 10 mm, and the average point cloud density is 
50.5 times per square meter (Table 1). When paired with a Global Positioning System 
(GPS) inertial measurement unit (IMU) system, the UVA LiDAR subsystem offers 3D 
positioning accuracy and data, enabling it to create a detailed 3D map of the forest cano-
py and terrain. The subsystem can accurately position each LiDAR point cloud. 

Table 1. Flight parameters of UVA LiDAR system. 

Instrument Parameter Name Value 

Aerocraft 

Size 
810 × 670 × 430 mm 

(Blades are not included) 
Symmetrical motor wheelbase 895 mm 

Operating frequency 2.4000–2.4835 GHz 5.725–5.850 GHz 
Maximum horizontal flight speed S mode: 23 m/s  P mode: 17 m/s 

Maximum flight altitude 5000 m 
（2110 blade, Takeoff weight ≤ 7 kg） 

Optical 
measurement 

Laser wavelength 1550 nm 
Beam divergence 0.5 mrad 

Laser emission repetition rate 50 K~2000 K 
Field of view 75°~90° 

Angular resolution 0.001 
Ranging method Pulse-phase 

Scan line frequency 50–600 Lines/sec 
Laser 

measurement 
Relative repeatability 5 mm@100 m 

Multi-echo 7 echoes 

From 10 to 15 July 2021, a field survey plot measuring 40 m × 40 m was estab-
lished in the study area (Figure S1). Measurements and records were made for each 
tree within the plots, including tree DBH, tree height, height to the lowest branch, 

Figure 2. The technical workflow for mapping AGB based on UAV LiDAR data. Digital elevation
model (DEM); digital surface model (DSM); canopy height model(CHM).

2.2.2. Data Acquisition

On 19 November 2021, laser point cloud data for forest structure analysis was collected
in the study area using a DJI M300 RTK drone equipped with an onboard LiDAR system
(Figure S2). The flight altitude ranges from 300 to 400 m above ground level, with a scanning
angle of 30◦. The drone follows a single S-shaped flight path and conducts four flights,
covering a total scanning area of 1.72 km2. The laser pulse frequency is set to 380 KHz,
the measurement accuracy is 10 mm, and the average point cloud density is 50.5 times
per square meter (Table 1). When paired with a Global Positioning System (GPS) inertial
measurement unit (IMU) system, the UVA LiDAR subsystem offers 3D positioning accuracy
and data, enabling it to create a detailed 3D map of the forest canopy and terrain. The
subsystem can accurately position each LiDAR point cloud.

Table 1. Flight parameters of UVA LiDAR system.

Instrument Parameter Name Value

Aerocraft

Size 810 × 670 × 430 mm
(Blades are not included)

Symmetrical motor wheelbase 895 mm
Operating frequency 2.4000–2.4835 GHz 5.725–5.850 GHz

Maximum horizontal flight speed S mode: 23 m/s P mode: 17 m/s

Maximum flight altitude 5000 m
(2110 blade, Takeoff weight ≤ 7 kg)

Optical measurement

Laser wavelength 1550 nm
Beam divergence 0.5 mrad

Laser emission repetition rate 50 K~2000 K
Field of view 75◦~90◦

Angular resolution 0.001
Ranging method Pulse-phase

Scan line frequency 50–600 Lines/sec

Laser measurement
Relative repeatability 5 mm@100 m

Multi-echo 7 echoes

From 10 to 15 July 2021, a field survey plot measuring 40 m × 40 m was established in
the study area (Figure S1). Measurements and records were made for each tree within the
plots, including tree DBH, tree height, height to the lowest branch, crown width, relative
coordinates, and crown density. The RD1000 laser altimeter was used to measure tree height
and height to the lowest branch. Subsequently, a tape measure was used to measure the
vertical projection of the crown in the east–west and north–south directions to determine
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the crown diameter. The southwest corner of the plot was set as the origin of the coordinate
system, with the east–west direction corresponding to the X-axis and the north–south
direction corresponding to the Y-axis. GPS differential positioning was conducted for the
four corner points of the plot.

2.2.3. Tree Height, DBH Extraction, and Accuracy Verification

Tree height and DBH are significantly correlated with the AGB of an individual tree,
and are important parameters for inverting tree biomass. In this study, UAV LiDAR was
used to obtain the attribute characteristics of single wood structure. The point cloud data
collected by the UAV LiDAR system is processed by the onboard forestry module on
LiDAR 360. The primary procedures involve denoising the laser point cloud data, filtering,
segregating ground points, and creating a digital elevation model (DEM) and digital surface
model (DSM). The DSM-DEM is then applied to generate a canopy height model (CHM),
followed by segmenting single trees using the single-wood segmentation approach based
on the CHM. We can obtain a segmented attribute table for single trees, which includes
information such as the tree’s location, height, canopy diameter, and canopy area.

According to the tree height parameters extracted by UAV LiDAR, the empirical
model of tree height and DBH was used to obtain tree DBH information. The forest type
in the study area was natural broadleaf forest, so the H-DBH empirical model suitable
for broadleaf forest species was selected [40] to obtain DBH; the specific formula was as
follows:

H = 1.3 + 20.3586 (1 − e(−0.0451×D)) (1)

where H is the tree height (m), and D is the diameter breast high (cm).
To validate the accuracy of tree height and DBH extraction based on UAV LiDAR, a

linear regression relationship was established between the extracted data and field survey
data. The coefficient of determination (R2) and correlation coefficient (p-value) were used
to verify the results.

2.3. Estimation and Analysis of AGB in the Study Area

Estimating AGB of forests is typically achieved through the inversion of allometric
equations that consider key factors such as tree height and DBH. In this study, we could
not employ the weighing method for calculating forest AGB due to practical constraints.
Therefore, we utilized tree height and DBH obtained from UAV LiDAR data to estimate
AGB. To achieve the most accurate estimation of forest AGB, we employed an empirical
model specific to the local vegetation type, namely, the subtropical evergreen broad-leaved
forest, represented by the equation ln(AGB) = −2.907 + 0.932 ln(D2H) [41], to estimate the
AGB of single tree species within the study area. We generated spatial distribution maps
of AGB in the study area based on tree height and DBH data obtained from UAV LiDAR.
Additionally, we employed the “ggplot2” package in R.4.3.1 software to explore the effects
of altitude and slope on the spatial distribution of AGB.

3. Results
3.1. Spatial Distribution of DSM, DEM, and CHM

Altitude of the study area is in the range of 1348.2–1905.4 m, with an average altitude
of 1613.8 m, and the overall topography is high in the southwest and low in the northeast.
Digital surface elevation values are between 1355.4–1909.9 m (Figure 3). The range of
canopy height is within 0–35.7 m, and the taller trees are mainly distributed in the south-
central and northwestern areas of the study area. A total of 50,547 single trees are generated,
and the single tree structure information table is obtained based on the CHM. More single
trees are distributed in the north of the study area than in the south, which is consistent
with the actual situation in the field investigation.
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3.2. Verification of Tree Height and DBH

To evaluate the accuracy of forest parameter estimation using UAV LiDAR, we estab-
lished a linear regression relationship between the 3D structure of single trees extracted
from UAV LiDAR and manually measured tree height and DBH. The validation results, as
shown in Figure 4, indicate a high level of agreement between ground-measured DBH and
UAV LiDAR-measured DBH. In terms of DBH, R2 was 0.92 (p < 0.05), and for tree height,
R2 was 0.89 (p < 0.05, Figure 4). These findings suggest a strong consistency between UAV
LiDAR measurements and ground-based measurements, with an estimated measurement
accuracy of approximately 90% (Table 2).
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Table 2. Accuracy verification table for Tsuga chinensis.

Ground Surveys UAV LiDAR Surveys

Serial
Number

DBH
(cm)

Tree
Height

(m)

Height
under the

Branches (m)

Crown
Width (m)

DBH
(cm)

Tree
Height

(m)

Height
under the

Branches(m)

Crown
Width (m)

1 43.5 15 8.5 5 43.6 15 8.8 5
2 74 20 10 4 73.9 20 10 4
3 61 15 7.5 6 61.0 15 7.5 6
4 55 17.5 10.5 6 55.2 17 10 6
5 26 11 7 6 26.2 11 7 6
6 57.5 14 5.5 6 57.3 14 5.5 6
7 39.5 13 9 6 39.3 13 9 6
8 60.8 20 6 15 60.8 20 6 16
9 79 28 8 1.8 78.9 28 8 1.9

10 45.7 21 8 10 45.7 21 8 10
11 61.8 22 8 15 61.7 22 8 15
12 38.4 18 7 8 38.3 18 7 8

3.3. Spatial Distribution of AGB and Diameter Structure Distribution in the Study Area

Based on the single tree information obtained from UAV LiDAR data and empirical
biomass models, we estimated the forest’s AGB in the study area and mapped its spatial
distribution. The AGB values in the study area ranged from 0.22 to 755.19 t/ha, with an
average value of 121.28 t/ha (Figure 5). High AGB values were observed in the western and
central-southern parts of the study area, while low AGB values were mainly distributed
in the northern and northeastern regions, which aligns well with the CHM and ground
observations.
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Figure 5. Spatial distribution of aboveground biomass in forests in the study area.

The relationship between the number of individual trees, diameter classes, and forest
aboveground biomass (AGB) in the study area can be revealed by analyzing the proportions
of small-diameter (0 < DBH≤ 10 cm), medium-diameter (DBH > 10 cm), and large-diameter
(DBH > 30 cm) trees. The proportions of small-, medium-, and large-diameter trees in
the study area are 48.99%, 46.62%, and 4.40%, respectively. However, the proportions of
forest AGB for these diameter classes are 3.97%, 56.58%, and 39.45%, respectively. The
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contribution of medium- to large-diameter trees to forest AGB in the study area exceeds
95% (Figure 6).
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Figure 6. Proportion of tree quantity and AGB. S, M, and L represent small- (0 < DBH ≤ 10 cm),
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3.4. The Effects of Altitude and Slope on the Spatial Distribution of AGB

AGB in the study area is mainly concentrated within the altitude range of 1400 m to
1900 m. Within the range of 1400 m to 1650 m, the AGB gradually increases with increasing
altitude and reaches its peak around 1650 m. However, within the range of 1650 m to 1900
m, the AGB gradually decreases with further increase with altitude (Figure 7a). In the area
where altitude is below 1600 m, the slope values are concentrated between 0 and 40◦.
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In the slope range of 0–30◦, AGB gradually increases with increasing slope and reaches
its peak around 30◦. In the range of 30–80◦, AGB decreases with increasing slope (Figure 7b).
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In the area where the slope values are above 40◦, the altitude is concentrated between 1600
and 1900 m.

4. Discussion

This study evaluated the accuracy of extracting individual tree structural attributes
from UAV LiDAR data through field surveys, and the results were found to meet the
required accuracy standards. Based on the UAV LiDAR-derived tree height and diameter
data, combined with a binary aboveground biomass empirical model using tree height and
diameter, the estimation and mapping of forest aboveground biomass at a regional scale
were successfully conducted. Furthermore, the impacts of typical terrain factors, such as
elevation and slope, on forest aboveground biomass distribution patterns were analyzed.
The results of this study demonstrate that UAV LiDAR technology enables rapid and
accurate estimation and spatial mapping of aboveground biomass in subtropical forests.

Previous studies have indicated that factors such as soil fertility, elevation, climate,
species composition, and topography influence the spatial distribution of AGB at the
regional scale [42–44]. This study reveals that the western and central-southern regions of
the study area exhibit higher levels of AGB, primarily due to the concentrated distribution
of large-diameter trees in these regions. Environmental conditions such as temperature,
sunlight, and air humidity create favorable conditions for the growth and development
of these large trees [45]. Despite accounting for only 4.4% of the total number of trees,
these large trees contribute to 39.45% of AGB in the study area. Therefore, the density of
large trees can partially explain the variation in the spatial distribution of AGB in forest
ecosystems [46,47].

Different species exhibit different habitat preferences in terms of spatial distribution.
Differences in species niche differentiation may be responsible for species’ choice of dif-
ferent habitats. Species will accumulate higher biomass in areas with the most suitable
environmental conditions, while the total biomass depends on species with high carbon
stocks [48–50]. Natural or anthropogenic disturbances and restrictions on seed dispersal
may also lead to spatial aggregation of specific species in specific habitats [51], resulting in
a significant association of forest biomass with habitats.

Changes in temperature and precipitation resulting from changes in altitude have
led to spatial variability in AGB of terrestrial ecosystems [52]. Previous studies have
indicated that the AGB of vegetation communities in most vegetation types significantly
decreases with increasing altitude, primarily due to the gradual decrease in temperature
with altitude [53]. At an altitude beyond a certain level, the precipitation in mountainous
areas no longer increases with altitude [54,55]. Lower temperatures limit plant growth,
while higher temperatures, precipitation, and CO2 concentration can accelerate organic
matter mineralization, potentially leading to increased forest biomass in lower altitude
areas [56,57]. However, some findings suggest a gradual increase in forest AGB with
altitudes between 1400 m and 1650 m, which is a positive effect, but a negative effect is
observed above 1650 m. This is consistent with our study results, indicating that within a
certain range [58], stand density increases with altitude, and environmental conditions and
species habitat selection determine the distribution pattern of AGB.

The distribution of high AGB values in the study area was concentrated on a slope
of about 30◦ and then gradually decreased to both sides. On the one hand, most of the
places with high slopes (>25◦) are in steep hills, cliffs, etc., with severe soil erosion, and
poor site conditions; due to gravity, large-diameter trees are easy to fracture and collapse,
and small-diameter trees are more likely to survive, so the AGB is low. In low-slope areas,
trees with large diameters account for a larger proportion of forest biomass [29]. Moreover,
flat land with sufficient sunlight and suitable terrain is conducive to plant growth and the
maintenance of biodiversity, while valleys with limited sunlight and barren soil may be
unfavorable for plant growth [59]. The study area’s north-central and northeastern regions
have slopes below 30◦ and trees are located on shaded slopes. In these areas, there are
many small-diameter trees, and the AGB is relatively low. In the west and south-central
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region, slopes are around 30–80◦ and trees grow mainly on sunny slopes. Here, the number
of large-diameter trees is large, photosynthesis is vital, and the AGB is high, suggesting
that the availability of light may also be a major factor in differences in species composition
between habitats and may contribute to differences in AGB of forests [60].

5. Conclusions

Our results suggested that UAV LiDAR can be used for rapid and accurate estimation
of AGB in the forest of this region. The study employed an efficient method that combines
UAV LiDAR with a binary allometric growth equation empirical model to generate AGB
distribution maps in large-scale batches [61]. This method suits ecologically complex
subtropical forest ecosystems with challenging terrain, offering a potential alternative
to traditional manual surveys. However, we need to acknowledge that the errors in
LiDAR data extraction primarily stem from point cloud data processing, particularly in the
extraction of parameters such as single tree segmentation, tree height, and DBH. Existing
algorithms for LiDAR point cloud data extraction also have certain limitations, with their
applicability varying depending on the circumstances, making them unable to provide
absolute accuracy and universality in all cases. Additionally, the study area is relatively
small, with limited coverage of altitudinal ranges. A broader range of altitudes and slopes
should be considered to investigate the influence of terrain factors on the spatial distribution
of AGB. Future studies should integrate UAV LiDAR, multi-source optical remote sensing
data, and long-term monitoring plots to investigate the dynamics of subtropical forest tree
populations, environmental changes, and their interactions with AGB at larger scales.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f14081560/s1, Figure S1: 40 × 40 m survey plots, vegetation
status, and photographs of field surveys. Figure S2: Three-dimensional digital elevation model (DEM)
of the study area, photographs of the UAV equipment, and a schematic diagram of the UAV flight
path planning.
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