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Abstract: Forest ecological function is one of the key indicators reflecting the quality of forest
resources. The traditional weighting method to assess forest ecological function is based on a large
amount of ground survey data; it is accurate but costly and time-consuming. This study utilized
three machine learning algorithms to estimate forest ecological function levels based on multi-source
data, including Sentinel-2 optical remote sensing images and digital elevation model (DEM) and
forest resource planning and design survey data. The experimental results showed that Random
Forest (RF) was the optimal model, with overall accuracy of 0.82, recall of 0.66, and F1 of 0.62, followed
by CatBoost (overall accuracy = 0.82, recall = 0.62, F1 = 0.58) and LightGBM (overall accuracy = 0.76,
recall = 0.61, F1 = 0.58). Except for the indicators from remote sensing images and DEM data, the five
ground survey indicators of forest origin (QI_YUAN), tree age group (LING_ZU), forest category
(LIN_ZHONG), dominant species (YOU_SHI_SZ), and tree age (NL) were used in the modeling
and prediction. Compared to the traditional methods, the proposed algorithm has lower cost and
stronger timeliness.

Keywords: multi-source data; machine learning; forest ecological function level; forest ecological
function index

1. Introduction

As one of the most important components of the ecosystem, forests provide the basic
natural resource foundation for the sustainable development of human beings [1]. The
forest ecological function index can comprehensively reflect the structure and ecological
benefits of forests. Therefore, establishing a scientific and dynamic comprehensive system
to evaluate forest ecological functions plays an important role in accurately addressing
ecological and economic development [2]. As research progresses, a single analysis of a
particular forest characteristic no longer meets the current requirements. Therefore, it is
important to assess forests’ ecological functions by integrating the synergistic effects of
multiple factors [3,4]. Many scholars have attempted to present concepts or tools for forest
ecological function analysis [5–7], greatly helping to measure and quantify species’ actions.

Currently, some progress in the quantitative estimation of forest ecological functions
has been made in China. In terms of research methods, Li Ma et al. established the
Beijing Forest Ecosystem Health Evaluation Index System (EIS-BFEH) to evaluate the
health function of forest ecosystems and used the hierarchical analysis process (AHP) to
obtain a comprehensive index (CI) representing the health status of forest ecosystems [8].
Fang Xiaomin et al. used a comprehensive index method and a statistical grouping method
to evaluate forest functions and calculated the forest ecological function index to compare

Forests 2023, 14, 1630. https://doi.org/10.3390/f14081630 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f14081630
https://doi.org/10.3390/f14081630
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://doi.org/10.3390/f14081630
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f14081630?type=check_update&version=2


Forests 2023, 14, 1630 2 of 18

forest ecological functions for different age groups, species structure, and origin [9]. Du
Qun et al. proposed that the three factors of forest quantity, quality, and spatial distribution
should be used for forest ecological function evaluation [10]. Although there has been some
progress in research on computational methods and evaluation factors, the current studies
are mainly focused on simple statistical methods, and there is a lack of attempts of using
machine learning methods; this procedure cannot meet the requirements of accurately
evaluating and monitoring forest ecological functions based on multi-data [11].

Among machine learning algorithms, ensemble learning algorithms can combine
multiple classifiers together to improve the accuracy and generalization ability of classi-
fiers. Overall, based on the presence or absence of dependencies between base classifiers,
ensemble learning algorithms are divided into two types: boosting and bagging. Boosting
algorithms have a strong dependency between base classifiers, and a series of base clas-
sifiers needs to be generated serially, represented by AdaBoost and GBDT. In fact, GBDT
is more suitable for multi-category classification, and LightGBM and CatBoost are two
important improved algorithms based on GBDT. In contrast, bagging algorithms do not
have a strong dependency between base classifiers, and a series of base classifiers can be
generated in parallel, represented by Random Forest. Regarding the research data, Wang
Daling et al. evaluated the forest ecological function of arboreal forests based on the data
of subcompartments from the 2018 forest resources planning and design survey of the
Sanchazi Forestry Bureau [12]. Jun Yang et al. conducted a qualitative analysis of the health
and ecological status of Chinese forests in 2009 based on the data of the seventh national
forest resource inventory [13]. Liu Lixia et al. evaluated the ecological functions of forests
based on the data of the forest resources planning and design survey [14]. Zhang Xianwu
et al. used the results of the three continuous forest inventories from 2004, 2009, and 2014 to
analyze the current situation, changes, and reasons of changes in the comprehensive index
of forest ecological functions in Shanghai using nine indicators including forest stock, forest
naturalness, and proportion of forest land area to national land area [15]. Even though
forest resource inventory data has high accuracy, there are still issues of high cost and
difficulty in data acquisition. Forest managers, decision makers, and politicians need to
be able to make data-driven rapid decisions based on short-term and long-term monitor-
ing information, complex modeling, and analysis approaches [11]. Thus, researchers are
increasingly considering incorporating lower-cost data such as remote-sensing images and
lower-cost strategies into our study.

It is necessary to attempt to integrate multi-source data to evaluate the forest ecological
function. In recent years, the application of multi-source data fusion in the forestry field
has become increasingly common, indicating that multi-source data have broad application
prospects. For instance, Wang et al. used multi-source remote sensing data (Gaofen 1,
Sentinel-2, Landsat 9, and Gaofen 3) to classify mangrove species in urban areas of Leizhou
City, Guangdong Province [16]; Abd Rahman Kassim et al. used hyperspectral images
and airborne LiDAR data to evaluate the ecological status of the FRIM campus forest
ecosystem [17]. Some of the studies on multi-source data fusion in the field of forestry
have achieved good results, but there is still more room to explore its application in forest
ecological function level assessment.

This paper aimed to combine multi-source data with machine learning algorithms
to assess the forest ecological function levels based on the unit of forest subcompartment.
Spectral features and topographic features of the study area were collected from remotely
sensed images and DEM. Some ground data with low acquisition cost, such as forest origin,
tree age group, forest category, dominant species, and tree age, were provided by the forest
resource planning and design survey. Based on the multi-source data scheme, three classic
machine learning algorithms, I.e., Random Forest, LightGBM, and CatBoost, were involved
in the study.
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2. Materials and Methods
2.1. Schematic Framework of Materials and Methods

The schematic framework of the Materials and Methods of this study is shown in
Figure 1, including multi-source data, preprocessing methods, models to predict forest
ecological function levels.
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2.2. Overview of the Study Area

Lin’an District (118◦51′~119◦52′ E, 29◦56′~30◦23′ N) is located in the northwest of
Zhejiang Province, with a total area of 3126.8 square kilometers, shown in Figure 2. It is in
the central subtropical monsoon climate zone, rich in plant resources. As a typical southern
forest city, the forestry land area of Lin’an is up to 263,868.79 hm2, with 1603.88 hm3 of
forest standing stock and 81.99% of forest canopy density.
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2.3. Processing of Label Dataset

According to the Technical Operation Rules for forest resources planning and design
survey of Zhejiang Province of 2014 [18] and the Technical Regulations for the Continuous



Forests 2023, 14, 1630 4 of 18

Inventory of Forest Resources of 2020 (GB/T 38590-2020) [19], there are eight investiga-
tion factors (Table 1), i.e., forest biomass, forest naturalness, forest community structure,
tree species structure, vegetation coverage, forest canopy density, mean tree height, and
thickness of dead leaves, involved into the traditional algorithm to evaluate a forest ecolog-
ical function levels. Their weights were determined according to their importance to the
evaluation of forest ecological functions (Table 1).

Table 1. Factors to evaluate forest ecological function levels.

Code Factors
Classification Standards

Weight References
I II III

1 Forest biomass (t/hm2) ≥150 50~149 <50 0.20

[19]

2 Forest naturalness 1, 2 3, 4 5 0.15
3 Forest community structure 1 2 3 0.15
4 Tree species structure 6, 7 3, 4, 5 1, 2 0.15
5 Vegetation coverage (%) ≥70 50~69 <50 0.10
6 Canopy density ≥0.70 0.40~0.69 0.20~0.39 0.10
7 Mean tree height/m ≥15.0 5.0~14.9 <5.0 0.10
8 Thickness of dead leaves 1 2 3 0.05

To facilitate the data standardization, the values of the above eight evaluation factors
were uniformly classified into three classes, I.e., I, II, and III. According to the data type and
the distribution of the values, the above eight evaluation factors were divided into three
categories. The first category, including vegetation coverage, canopy density, mean tree
height, forest community structure, and thickness of dead leaves, was directly classified
into types I, II, and III (as shown in Table 1). The second category. consisting of forest
naturalness and tree species structure, was classified first by the division standards of
Table 2 for naturalness and Table 3 for tree species structure, and then into types of I, II,
and III. The third category merely included forest biomass, which was firstly calculated
according to the amount of forest volume for various dominant species by equations (shown
in Table 4) and then classified into types I, II, and III.

Table 2. Criteria and codes for the classification of naturalness in the continuous inventory of
forest resources.

Naturalness Division Standard Code References

I Forest types are pristine or in a largely untouched
state, with little human influence. 1

[19]
II

Natural forest types with obvious human
interference or secondary forest types in the later

stage of succession, mainly consisting of tree species
with high adaptability at the top level of zonality.

2

III

A secondary forest type with great human
disturbance, in the late stage of secondary

succession. In addition to pioneer species, top-level
species can also be seen.

3

IV Highly disturbed by humans, succession retrograde,
is in an extremely fragile secondary forest stage. 4

V

Highly and continuously disturbed by humans, with
the destruction of almost all zonal forest types, in the

late stage of difficult-to-recover
retrograde succession.

5
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Table 3. Criteria and codes for the classification of forest species structure.

Tree Species
Structure Type Division Standard Code References

I
Pure coniferous forests, where the volume of

individual coniferous species is greater than or equal
to 90% of the total volume.

1

[19]II
Pure broadleaved forests, where the volume of

individual broadleaved species is greater than or
equal to 90% of the total volume.

2

III
Relatively pure coniferous forest, where the volume

of individual coniferous species is greater than or
equal to 65% and less than 90% of the total volume.

3

IV

Relatively pure broad-leaved forests, where the
volume of individual broad-leaved species is greater

than or equal to 65% and less than 90% of the
total volume.

4

V
Mixed coniferous forests, where the volume of total
coniferous species is greater than or equal to 65% of

the total volume.
5

VI

Mixed coniferous and broad-leaved forests, where
the volume of total coniferous species or total

broad-leaved species is greater than or equal to 35%
and less than 65% of the total volume.

6

VII
Broad-leaved mixed forests, where the volume of

total broad-leaved species is greater than or equal to
65% of the total volume.

7

Table 4. Biomass models of major tree species and vegetation types.

Code Tree Species/Vegetation Type Biomass Model References

1 Cunninghamia lanceolata W = 0.3999 V + 22.5410

[20]

2 P. massoniana W = 0.5101 V + 1.0451

3
Other pine and conifer tree species (besides P.

massoniana, Tsuga, Cryptomeria, and Keteleeria),
coniferous mixed forest

W = 0.5168 V + 33.2378

4 Cypress W = 0.6129 V + 46.1451
5 Mixed conifer and deciduous forests W = 0.8019 V + 12.2799
6 Betula W = 0.9644 V + 0.8485
7 Deciduous oaks W = 1.3288 V – 3.8999
8 Eucalyptus W = 1.0357 V + 8.0591
9 Mixed deciduous and Sassafras W = 0.6255 V + 91.0013
10 Tsuga, Cryptomeria, Keteleeria W = 0.4158 V + 41.3318

Note: W is the biomass of forest stand measured in t/hm2, V is the forest volume per hectare measured in
m3/hm2.

2.4. Data Sources and Pre-Processing
2.4.1. Data Sources

The data sources mainly included remote sensing images and Digital Elevation Model
and ground survey data. The remote sensing images from the satellite Sentinel-2 (with
13 Bands, a spatial resolution of 10 m, 20 m, and 60 m) and DEM (with a spatial resolution
of 30 m) with a format of ASTER GDEM, were all downloaded from the International
Science and Technology Data Mirror of the Computer Network Information Centre of the
Chinese Academy of Sciences (www.gscloud.cn) on 27 September 2021. The ground data
were obtained from the forest resources planning and design survey provided by the Lin’an
District Forestry Bureau in 2019.

www.gscloud.cn
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2.4.2. Data Pre-Processing

(1) Forest Resources Planning and Design Survey Data

The original data of forest resource planning and design survey consist of 119,792 sub-
compartments. To eliminate erroneous data, two steps were taken. Firstly, the data
with non-forest, zero volume, and null value of forest ecological function level were
removed. Secondly, according to the Pauta criterion [21], the abnormal data exceeding
the mean (u) ± three times the standard deviation (3σ) were also removed. Consequently,
47,596 valid samples were retained (Table 5), consisting of 26 dominant tree species, that is,
broad-leaved mixed forest, horsetail pine, fir, coniferous mixed forest, coniferous mixed
forest, oak, other hard broad-leaved forest, maple, camphor, yellow pine, etc.

Table 5. Number of experimental samples.

Number of Original Samples Number of Valid Samples Number of Tree Species

119,792 47,596 26

(2) Extraction and processing of characteristic factors based on images from remote
sensing and DEM

For the Sentinel-2 remote sensing images, Sen2Cor® (v2.8, European Space Agency,
Paris, France) was used for atmospheric correction, and SNAP® (v6.0, European Space
Agency, Paris, France) was exploited to resample the bands (band1, band5, band6, band7,
band8A, band9, band10, band11, and band12) to fuse the lower-resolution images of 20 m
and 60 m with higher-resolution images of 10 m by the nearest neighbor method. After
that, by the operations of image mosaic and clipping in ArcGIS® (v10.8, Environmental
Systems Research Institute, Inc., Redlands, CA, USA), a valid and complete remote sensing
image of the Lin’an District (Figure 3) was produced.
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The characteristic factors extracted from the Sentinel-2 optical remote sensing images
consisted of two main types: original factors and derived factors. The former consisted
of 13 bands [22–24]. There were three bands, namely, Band1 for the coastal band, Band9
for the water vapor band, and Band10 for the cirrus band, which were not relevant to the
experiment and were removed. Therefore, the remaining ten original bands (as shown in
Table 6) and eleven vegetation indices-derived factors (as shown in Table 7), that is, a total
of 21 spectral feature factors, were used as independent variables.
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Table 6. Vegetation index formula.

Code Vegetation Index Formula

1 Atmospherically resistant vegetation index (ARVI) ARVI = (NIR – (2 * R) + B)/(NIR + (2 * R) + B)
2 Enhanced vegetation index (EVI) EVI = 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 × B + 1)
3 Differential environmental vegetation index (DVI) DVI = NIR − R
4 Normalized vegetation index (NDVI) NDVI = (NIR − R)/(NIR + R)
5 Ratio red-edge vegetation index (RVIre) RVIre = NIR/Re
6 Inverted red-edge chlorophyll index (IRECI) IRECI = (Re3 − R)/(Re1 − Re2)
7 Normalized red-edge vegetation index1 (NDVIre1) NDVIre1 = (NIR − Re1)/(NIR + Re1)
8 Normalized red-edge vegetation index2 (NDVIre2) NDVIre2 = (NIR − Re2)/(NIR + Re2)
9 Non-linear red-edge index (NLIre) NLIre = ((NIR * NIR) − Re1)/((NIR * NIR) + Re1)

10 Improved normalized red-edge vegetation
index (mNDVIre) mNDVIre = (NIR − Re1)/(NIR + Re1 − 2 * B)

11 Red-edge chlorophyll index (CIre) CIre = (NIR/Re1) − 1

Note: R represents the red band, B represents the blue band, NIR represents the near-infrared band, and Re
represents the red-edge band.

Table 7. Evaluation factors.

No. Factor Name Explanation Source of Data

1 Band 2 Bule

Sentinel-2

2 Band 3 Green
3 Band 4 Red
4 Band 5 VNIR1
5 Band 6 VNIR2
6 Band 7 VNIR3
7 Band 8 NIR
8 Band 8A Narrow NIR
9 Band 11 SWIR 1

10 Band 12 SWIR 2
11 HAI_BA Elevation

DEM12 PO_DU Slope
13 PO_XIANG Aspect
14 LIN_ZHONG Forest category

Forest Resources Planning
and Design Survey Data

15 QI_YUAN Forest origin
16 YOU_SHI_SZ Dominant species
17 NL Tree age
18 LING_ZU Tree age group

19–29 Refer to Table 6
Vegetation indices generated

from optical remote
sensing images

In this study, the remote sensing images and DEM were preprocessed by converting,
stitching, and cropping in ArcGIS. The three topographic factors—elevation, slope, and
aspect—were obtained from DEM images (Figure 4), with a spatial resolution of 30 m.

2.5. Extraction of Feature Factors from Ground Survey Data

Even if the forest Resources Planning and Design Survey data have authenticity and
reliability, many factors, such as forest biomass, vegetation coverage, forest canopy density,
and mean tree height, with very high investigation costs, are not suitable for evaluating
forest ecological function levels. Therefore, the eight factors (shown in Table 1) which were
traditionally used to compute forest ecological function levels were removed, and unrelated
factors such as county code and county name were also removed. After that, 36 variables
remained. To further reduce the dimensionality of the features and improve the efficiency
of the model, the feature importance was ranked (as shown in Figure 5). Furthermore, five
feature factors, that is, QI_YUAN, LING_ZU, NL, YOU_SHI_SZ, and LIN_ZHON, were
selected as independent variables of the model from top to bottom.
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2.6. Multi-Source Data Integration

A total of 29 evaluation factors (as shown in Table 7) were involved in the study, in-
cluding 10 spectral bands, 11 vegetation indices, 5 ground survey factors, and 3 topographic
factors. The integration of the multi-source data was implemented according to the FID.

Finally, the dataset was randomly divided into a training set with 80% of the samples
for modeling and a test set with 20% of the samples for testing.

2.7. Methods
2.7.1. Grid SearchCV

To prevent overfitting and underfitting, a hyper-parameter optimization method—
grid search (Grid SearchCV [25])—was used to select the optimal hyper-parameter values
for the three models. Grid SearchCV allows performing hyperparameter tuning in order to
determine the optimal values for a given model. Specifically, based on a specified parameter
range and a validation dataset, the parameters are gradually adjusted based on a pre-set
step size, and finally the optimal parameter value was selected with the highest accuracy.

2.7.2. Random Forest (RF)

Random forest [26,27] is a collection of multiple decision tree algorithms with random
sampling, which is a combination of Breiman’s “bagging” idea and a random selection of
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features. The procedure consists in making a precise prediction by taking the average or
mode of the output of multiple decision trees (shown in Figure 6). Typically, the greater
the decision trees’ number, the more precise the output and the greater the overhead. In
our study, to balance accuracy and overhead, the default number of decision trees was set
to 100, and the parameter range of the grid search was set to 100–500 with a step size of
5. The final experimental results showed that when the number of subtrees reached 200,
the increase in the number of subtrees had a minimal effect on the model enhancement.
Therefore, the optimal parameter value was finally set to 200. Also, the maximum number
of features was set to 195, which was the square root of the number of training samples
(47,596 * 0.8).
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2.7.3. Light Gradient Boosting Machine (LightGBM)

The Light Gradient Boosting Machine, XGBoost, and Catboost are lifting algorithms [28].
For the LightGBM, during the training process, the decision tree algorithm of Histogram
was adopted, which greatly reduced the calculation amount of the model. Meanwhile, the
leaf-wise growth strategy (shown in Figure 7) was introduced into the growth process of
the subtree, which reduced the splitting of invalid nodes.
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There are three hyperparameters in LightGBM that need to be determined through
the grid search method, namely, n_estimators, max_depth, and learning_rate. Here,
n_estimators is the maximum number of base learners, max_depth is the maximum depth
of the tree, and learning_rate indicates the magnitude of each parameter update. Corre-
spondingly, the parameter ranges were set to [100, 300], [2, 10], and [0.05, 0.2], with step
sizes of 5, 1, and 0.01, respectively. Finally, the optimal values of the three parameters were
200 for n_estimators, 3 for max_depth, and 0.1 for learning_rate, respectively.

2.7.4. CatBoost

CatBoost [29,30] is a GBDT algorithm based on a symmetric binary tree, which can
automatically process category-based features and effectively solve gradient bias and
prediction shift problems and has excellent accuracy and generalization capabilities. In
addition, CatBoost combines multiple categorical features by adding a priori distributed
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modified Greedy TS approach to reduce the effect of noise and low-frequency categorical
data on the data distribution (as calculated in Equation (1)).

Xσp ,k =
∑

j=1
p−1

[
Xσj ,k = Xσp ,k

]
Yσj + a× p

∑
j=1
p−1

[
Xσj ,k = Xσp ,k

]
+ a

(1)

where a is a weighting factor greater than 0; p is the priori.
The default value of n_estimators in CatBoost package we used was 500, which

was already large enough. For the other two parameters, tree depth and learning rate,
their ranges were set to [5, 12] and [0.05, 0.2], with step sizes of 1 and 0.01, respectively.
Consequently, the optimal tree depth was 11, and the learning rate was 0.05.

2.7.5. Performance Metrics

The performance metrics of the model are generally calculated based on a confusion
matrix [31], as shown in Table 8. Here, aij denotes the number of samples, the measured
value is denoted by I, and the predicted value is denoted by j, N is the total number of
samples, k is the number of target categories, and aI+ = ∑j aij, a+j = ∑I aij.

Table 8. Confusion matrix for multi-classification models.

Confusion Matrix
Predicted Value

Category 1 Category 2 Category k Total

Measured
value

Category 1 a11 a21 a1k a1+
Category 2 a21 a22 a1k a2+
Category k ak1 ak2 akk a3+

Total a+1 a+2 a+3 N

Furthermore, the performance of the predicted results was evaluated by accuracy
(Formulas (3)), recall (Formulas (5)), and F1_score (Formulas (8)).

accuracyI =
aI I
N

(2)

accuracy =
k

∑
I=1

accuracyI (3)

recallI =
aI I
a+I

(4)

recall =
k

∑
I=1

recallI (5)

precisionI =
aI I
aI+

(6)

F1_scoreI = 2 ∗ precisionI ∗ recallI
precisionI + recallI

(7)

F1_score =
k

∑
I=1

F1_scoreI (8)
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3. Results
3.1. Labeling of the Data

The quantification scores for Type I, II, and III in Table 1 were assigned to 1, 2, and
3, respectively [32], and the composite score of forest ecological functions were calculated
according to Formula (9) [19]

Y =
8

∑
I=1

WI XI (9)

where Y is the composite score of the forest, XI is the standardized score of the I-th
evaluation factor, and WI is the weight of the I-th evaluation factor.

Hence, the ecological function index was calculated according to the composite score
and is represented by Equation (10)

K =
1
Y

(10)

where K is the the ecological function index with a value less than or equal to 1. The larger
the value of K, the better the forest’s ecological function.

Further, according to the values of K, the ecological function levels were divided into
three groups, I.e., Good, Medium, and Poor (as shown in Table 9).

Table 9. Criteria and codes for rating forest ecological functions.

Ecological
Function Level

Comprehensive Score
Value (Y)

Forest Ecological
Function Index (K) Code References

Good <1.5 >0.6667 1
[19]Medium 1.5~2.4 0.6667~0.4167 2

Poor ≥2.5 ≤0.4 3

Consequently, the classification results based on Equation (10) acted as the labeled
data and were plotted in Figure 8. As shown, 10,844 forest subcompartments were graded
as “good”, 36,365 forest subcompartments were graded as “medium”, and 386 forest
subcompartments were graded as “poor”. In terms of area, the ecological function levels of
“good”, “medium”, and “poor” were 59,094.3 hectares, 92,011.9 hectares, and 487.6 hectares,
respectively, accounting for 38.98%, 60.70%, and 0.32% of the total area of forest land,
respectively. The average forest ecological function index of forested land in Lin’an was
0.63, which was only 0.04 lower than the good ecological function index of 0.67, and the
overall ecological function was at a medium, tending to good, level.
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There was an upward tendency for forest ecological function levels from east to west,
which was consistent with the zoning of construction land in Lin’an District, with more
urban construction land to the east and more ecological forest areas to the west. The extent
to which the experimental results were consistent with the actual situation from the cross-
reference map of the focus areas (Figure 9) was determined. For example, the two national
nature reserves in Figure 9a,b corresponded to areas where the ecological function of the
forest was rated as “good” on a large scale and, partly, as “medium”, with no areas rated
as “poor”. Closer to urban areas, there was a greater chance of a “poor” forest ecological
function level (as shown in Figure 9c). To some extent, this reflected the impact of human
activities on the levels of forest ecological function. The regions with lower human activity
often had higher levels of forest ecological function, while the regions with higher human
activity had lower levels of forest ecological function.
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3.2. Design of the Data Scheme

Four data combination schemes (as shown in Table 10)—A, B, C, and D—were de-
signed according to the three data sources.

Table 10. Data combination schemes.

Data Combination Scheme Data Source

A Sentinel-2
B Sentinel-2, DEM

C Sentinel-2, forest resource planning and design
survey data

D Sentinel-2, DEM, forest resource planning and
design survey data

3.3. Testing Results

The results of the optimal hyperparameters for three models were obtained by grid
search (Section 2.7 for details), as shown in Table 11. Furthermore, the four different data
combination schemes (shown in Table 10) were modeled and analyzed using the random
forest, LightGBM, and CatBoost algorithms, and the experimental results are shown in
Table 12.
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Table 11. Combinations of optimal hyperparameters for three models.

Model Optimal Values of Hyperparameters

RF n_estimators = 200, max_features = 195
LightGBM n_estimators = 200, max_depth = 3, learning_rate = 0.1
CatBoost n_estimators = 500, depth = 11, learning_rate = 0.05

Table 12. Performance of the three models based on the four data combination schemes.

Program Overall
Accuracy Rate

Category Accuracy Rate
Recall F1 Score

Good Medium Poor

RF-A 0.46 0.57 0.80 0.35 0.39 0.39
RF-B 0.47 0.62 0.80 0.40 0.40 0.41
RF-C 0.82 0.73 0.89 0.80 0.54 0.57
RF-D 0.82 0.76 0.89 0.83 0.66 0.62

LightGBM-A 0.47 0.61 0.80 0.32 0.41 0.40
LightGBM-B 0.47 0.62 0.80 0.33 0.40 0.41
LightGBM-C 0.73 0.71 0.90 0.58 0.52 0.55
LightGBM-D 0.76 0.73 0.90 0.64 0.61 0.58
CatBoost-A 0.46 0.59 0.80 0.35 0.42 0.41
CatBoost-B 0.48 0.62 0.81 0.42 0.42 0.43
CatBoost-C 0.73 0.73 0.90 0.57 0.55 0.56
CatBoost-D 0.82 0.75 0.90 0.80 0.63 0.58

Comparing the performance metrics of the four data schemes in the three models in
Table 12, the data scheme A (single-data combination scheme) had the worst performance,
with an overall accuracy rate of only 0.46~0.47 and a classification accuracy of 0.32~0.35 for
the “poor” category samples. However, the data scheme D (multi-source-data combination
scheme) performed the best, with an overall accuracy rate of 0.76~0.82. The accuracy of
the “good”, “medium”, and “poor” categories reached 0.73~0.76, 0.89~0.90, and 0.64~0.80,
respectively, and the F1 score was 0.58~0.62. When comparing the data scheme B (after
adding the DEM data to scheme A) with A, it was found that the DEM had an insignificant
contribution to the model, with an overall accuracy improvement of only 0.01~0.02, and
the accuracy of the “good”, “medium”, and “poor” categories, respectively, improved
by 0.01~0.16, 0~0.01, and 0.01~0.07. However, when comparing the data scheme C (after
adding the ground survey data to scheme A) with A, it was found that the addition of the
forest resource planning and design survey data made a significant positive contribution to
the model, with an overall accuracy improvement of 0.26~0.36, significantly improving the
performance metrics of “good”, “medium”, and “poor” categories, respectively.

Ultimately, the RF-D executed the optimal program with overall accuracy of 0.82, recall
of 0.66, and F1 score of 0.62, and the classification accuracy was significantly improved,
especially for the small sample category of “poor”.

3.4. Ranking of Features’ Importance

Based on the optimal data scheme D, the performance metrics (as shown in Table 12)
were calculated by the three machine learning algorithms of RF, LightGBM, and CatBoost,
and the ranking of the feature importance was obtained and shown in Figure 10.

As shown in Figure 10, there were five factors from the ground survey data that led
to a higher ranking of feature importance and played an important role in the model.
Nevertheless, there were three factors from the DEM data with a lower ranking of feature
importance that played an unimportant role in the model, which is consistent with the
results in Table 11. In the optical remote sensing data, the factors of b12, NDVIre2, EVI,
IRECI, b2, b11, and b4 ranked relatively high in the model.
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4. Discussion
4.1. Performance Metrics

Even if many studies have been aimed to the forest ecological function rating method-
ology, some deficiencies still exist, as reported below.

(1) The evaluation indicators are heavily influenced by foresters’ experience

In the evaluation of forest ecological functions, due to many qualitative indicators such
as forest naturalness, tree species structure, and thickness of dead leaves, the original way
of obtaining data is heavily influenced by foresters’ experience, which makes it difficult
to establish an objective indicator system and may lead to inconsistent forest ecological
function levels evaluated by different foresters for the same forest stand [33,34].

(2) High cost of data acquisition for evaluation indicators

The data of the eight evaluation factors (forest naturalness, forest community structure,
tree species structure, vegetation coverage, forest canopy density, mean tree height, and
thickness of dead leaves) used to calculate the forest ecological function levels are obtained
from ground surveys, which leads to high acquisition costs and time consumption [35].

The proposed evaluation method combined the advantages of multiple sources of
data and machine learning algorithms to effectively reduce the human influence on the
evaluation system and save data acquisition expenses and time. Specifically, the addition
of remote sensing data effectively reduced the influence of human subjective experiences
and increased the frequency of data acquisition. The costs of acquiring remote sensing data
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are also much lower than that of ground surveys [36], especially in areas that are difficult
to access by humans, such as deep forests and cliffs.

4.2. Complementarity of Multi-Source Data

As machine learning algorithms are data-driven, variations in the data could greatly
affect the accuracy of a classification [37]. When providing insufficient data, such as for
data scheme A (merely optical remote sensing data from Sentinel-2), poor results were
obtained (overall accuracy of 0.46~0.47 for scheme A in Table 11). Due to influences by
environmental conditions such as different angles and intensities of sunlight, topography,
water content, and other factors, it is possible that the same object may have different
spectrums, and different objects may have the same spectrum [38,39]. For instance, the
spectral information for the same vegetation on sunny and shady slopes could be different,
and the height of lower vegetation is easily obscured by shadows. This tends to increase
the errors during training. Complementarity of multiple sources of data is generally used
to address this problem.

Compared to the data scheme A, the data scheme D (addition of DEM data and some
ground survey data) significantly increased the overall accuracy by 0.29~0.36, with the
accuracy rates for the “good”, “medium”, and “poor” categories increasing by 0.12~0.19,
0.09~0.1, and 0.32~0.48, respectively. The addition of DEM data complements vertical
structure parameters which are lacking in optical remote sensing data [40], allowing areas
of deciduous trees to be distinguished from areas of vegetation with similar spectral
characteristics (e.g., high-density grassland) [41], which in turn has an impact on the
accuracy of the results. The addition of ground survey data further complements the
growth status information for the vegetation—such as the age of trees that can lead to
changes in their growth rate—thereby improving the accuracy of the model.

4.3. The Feasibility of Machine Learning

Different from the traditional statistical methods used by Huafu Liu et al. [42], Hailong
Yin et al. [43], and Kassim et al. [17], this paper exploited a machine learning algorithm to
develop a comprehensive model to evaluate forest ecological function levels, which has a
higher flexibility and faster processing speed for high-dimensional data with more complex
relationships among feature factors. Most indicators are non-linearly related to forest
ecological function levels, including ground survey factors and spectral characteristics. For
instance, with the increasing NL, the forest ecological function levels increase first and
then decrease. Machine learning algorithms are non-linear approximations to an objective
function, different from than the traditional comprehensive evaluation methods bound to a
linear function, such as the scoring method, principal component analysis, etc. Therefore,
their powerful fitting ability could make the predicted results closer to the reality and
improve the evaluation accuracy of the model.

The Random Forest showed the best performance among the above three models,
with an overall accuracy of 0.82 and an F1 score of 0.62. As a non-linear, parametric classifier,
Random Forest is robust with non-equilibrium data and can randomly generate multiple
decision trees to form a forest, effectively avoiding overfitting [44,45]. It allows the fusion
of high-dimensional data from multiple sources [46] and has a high tolerance for missing
values and outliers, so that it can effectively reduce the interference of noise in the data.
In addition, it can automatically determine the importance of variables, which in turn
improves its accuracy and usability.

4.4. Limitations of this Study

This study, based on the multi-source data of Sentinel-2 remote sensing images and
DEM and partial data from the forest resource planning and design survey, as well as
the three machine learning algorithms RF, LightGBM, and CatBoost, evaluated the forest
ecological function levels. Overall, our results may promote research on the evaluation of
forest ecological function levels. However, the 10 m resolution of the Sentinel-2 images may
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limit a further improvement of the performance metrics. If higher-resolution images can
be acquired in the future, such as remote sensing images from Gaofen series satellites or
UAV images, it will be possible to further increase the performance of our model and even
further reduce the participation of ground survey indicators. On the other hand, from the
perspective of research methods, deep learning algorithms such as YOLO are also worth a
try in the future.

5. Conclusions

Optical remote sensing data, DEM data, and forest resource planning and design
survey data were used in this study to evaluate the forest ecological function levels of
Lin’an District using three machine learning algorithms, I.e., RF, LightGBM, and CatBoost.

In the three models, Random Forest was the best-performing model, with an overall
accuracy rate of 0.82 (the accuracy rates for the “good”, “medium”, and “poor” categories
being 0.76, 0.89, and 0.83, respectively) and with an F1 score of 0.62.

The multi-source data significantly improved the performance metrics. Further-
more, the acquisition of ground survey data such as QI_YUAN, LING_ZU, LIN_ZHONG,
YOU_SHI_SZ, and NL, was achieved at lower costs than those required for the tradi-
tional eight indicators of forest biomass, forest naturalness, forest community structure,
tree species structure, vegetation coverage, forest canopy density, mean tree-height, and
thickness of dead leaves.

If more data sources are used, such as higher-resolution remote sensing images,
LiDAR remote sensing images, etc., the estimation performance might further improve in
the future.
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