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Abstract: Although many studies have focused on the roles of soil microbes in phosphorus (P)
cycling, little is known about the distribution of microbial P cycling genes across soil depths. In
this study, metagenomic sequencing was adopted to examine the differences in the abundance
of genes and microbial taxa associated with soil P cycling between organic and mineral soil in
subtropical forests. The total relative abundance of inorganic P solubilizing genes was the highest,
that of P starvation response regulating genes was second, and organic P mineralizing genes was the
lowest. The soil organic carbon concentration, N:P ratio, and available P concentration were higher
in the organic soil than the mineral soil, resulting in abundances of organic P mineralizing genes
(appA and 3-phytase), and inorganic P cycling genes (ppa), whereas those of the inorganic P cycling
genes (gcd and pqqC) and the P starvation response regulating gene (phoR) were higher in mineral
soil. The four bacteria phyla that related to P cycling, Proteobacteria, Actinobacteria, Bacteroidetes,
and Candidatus_Eremiobacteraeota were higher in organic soil; conversely, the three bacteria phyla
(Acidobacteria, Verrucomicrobia, and Chloroflexi) and archaea taxa were more abundant in mineral soil.
Therefore, we concluded that the distribution of genes and microbial taxa involved in soil P cycling
differed among soil depths, providing a depth-resolved scale insight into the underlying mechanisms
of P cycling by soil microorganisms in subtropical forests.

Keywords: phosphate solubilizing microorganisms; phosphorus cycling genes; soil depth; subtropical
forests; metagenomic sequencing

1. Introduction

Phosphorus (P) is the key limitation nutrient for tree growth in subtropical forests [1].
Although total soil P content may be sufficient [2], only small quantities of inorganic
P—namely orthophosphate (H2PO4

− and HPO4
2−) ions—can be directly absorbed by

plant roots [3]. The dominant soil P pools, including low-solubility inorganic and highly
complex organic P forms, can be transformed into orthophosphates by physical chemical
reactions (i.e., dissolution and desorption) and biological activities (i.e., mineralization).
Soil microbes play an essential role in regulating P cycling and available P concen-
tration [4]. Furthermore, natural forest ecosystems are more severely P-limited than
cropland ecosystems [5], highlighting the importance of the soil microbial regulation
of P cycling in forest ecosystems. Three microbial gene groups, including (1) inorganic
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P solubilizing and organic P mineralizing genes, (2) P uptake and transport genes,
and (3) P starvation response regulating genes, are associated with soil P cycling pro-
cesses [6].

Soil depths determine changes in soil structure, nutrient quantity, and availability,
leading to a variation in soil microbial diversity, community composition, and functional
profiles [7]. However, most studies have concentrated on the P cycling-related microbial
taxa and functional genes through metagenome and genome mining only at the surface
soil level [8,9], which will mask finer-scale (i.e., surface soil vs. deeper soil) differences [10].
Moreover, surface soil may be more affected by plant litter while deeper soil may be more
influenced by root exudation [11], resulting in differences in microbial communities and
functions between soil depths. Therefore, it is necessary to systematically understand the
distribution of P cycling genes and microbial community changes at depth-resolved scales
(i.e., separating the different soil layers).

In this study, we tried to elucidate the differences in the genes and microbial taxa
associated with soil P cycling across soil depths through metagenomic mining in subtropical
forests. As we all know, the organic P content accounts for total P decreases with soil depth
in forest ecosystems, whereas that of inorganic P increases [12]. Therefore, compared to
deeper soil, we hypothesized that surface soil has a higher potential to mineralize organic
P. In addition, total soil P concentration and availability are often lower in deeper soil [13],
indicating that P starvation increases with soil depth. It is reasonable to deduce that the P
starvation response regulating genes contained in the soil microorganisms would be more
abundant in deeper soil. Furthermore, soil microbial taxonomic composition determines
their potential function in P cycling [14]. Compared with the better studied and understood
function of bacteria in P cycling, that of archaea and fungi is far from certain [6,9]. For instance,
most of the identified P-solubilizing microorganisms are bacteria species [15]. However, the
potential capacity of microorganisms to cope with P deficiency by relying on their taxonomy
composition remains unclear. Therefore, we also aimed to investigate the soil P cycling genes
harboring taxa of archaea, bacteria, and fungi among surface soil and deeper soil.

2. Materials and Methods
2.1. Site Description

This study was conducted in Dashanchong Forest Park (28◦23′58′′–28◦24′58′′ N,
113◦17′46′′–113◦19′08′′ E) in Changsha County, Hunan Province, China. A hilly topography
with an altitude of 55−217 m a.s.l. has been characterized in the park. The area has a humid
mid-subtropical monsoonal climate with a mean annual precipitation of 1416 mm and
mean monthly temperatures ranging from −10.3 to 39.8 ◦C. The soil is well-drained clay
loam that developed from slate and shale parent rock and is classified as Ferralsols [16],
which is very shallow [17].

This study operated in two typical secondary forests: (1) Pinus massoniana—Lithocarpus
glaber coniferous and evergreen broadleaved mixed forest (PLF), and (2) L. glaber—Quercus
glauca evergreen broadleaved forest (LGF). These two forests are approximately 70 years
old. There are almost no herbs and very sparse shrubs and saplings due to the closed
canopy. A 200 m wide valley separates the PLF (28◦24′36′′ N, 113◦18′12′′ E) and LGF
(28◦24′32′′ N, 113◦18′18′′ E). The environmental factors (e.g., elevation, soil moisture, pH,
and nutrient availability) differed between PLF and LGF [18]. Four plots with 30 m × 30 m
area were established in each forest. The species, diameter at breast height, and height of
all trees were identified and recorded. The stand characteristics were detailed in the work
of Ouyang et al. [19] and Table S1.

2.2. Soil Samples Collection

In June 2022, we randomly sampled seven soil cores (10 cm in internal diameter and
20 cm in depth) in the central 10 m × 10 m area of each plot. Depending on the soil color,
every soil core was separated into two soil depths: a surface layer (brownish-black color;
organic soil) and a deeper layer (brownish-yellow color; mineral soil). The soils at the
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same layer were mixed thoroughly, and about 500 g of mixed soil was collected for each
sample. A total of 16 soil samples were obtained. The stones and roots of each sample were
removed by a 2 mm mesh and then divided into three subsamples: one for measuring soil
moisture; one for determining soil pH and the concentrations of soil organic carbon (SOC),
total P (TP) and nitrogen (TN), inorganic nitrogen (NH4

+-N and NO3
−-N), and available

soil P (AP); and one for metagenomic sequencing.

2.3. Soil Chemical and Physical Analysis

Soil TP concentration was measured using the Mo-Sb colorimetric method [20]. Soil
AP concentration was quantified using a solution of 0.05 M HCl and 0.025 M H2SO4 [21].
The SOC concentration was measured using the K2Cr2O7-H2SO4 oxidation method. Soil
TN concentration was measured using the Kjeldahl method. The inorganic N was extracted
using 0.5 M K2SO4 solution, and then measured the NH4

+-N and NO3
−-N concentrations

of the filtered extract by a flow injection analyzer (FIAstar 5000, FOSS, Höganäs, Sweden).
Soil moisture was quantified by drying the samples at 105 ◦C to constant weight. Soil pH
was determined at a soil-to-water ratio of 1:2.5 by using an FE20 pH meter (Mettler Toledo
Instrument Co., Ltd., Shanghai, China). Soil properties are presented in Table 1.

Table 1. Physico-chemical properties (mean±SD) of organic and mineral soil in the two subtropic
forests. The letters a and b indicate significant differences between organic and mineral soil in PLF, as
do x and y in LGF.

PLF LGF

Organic Soil Mineral Soil Organic Soil Mineral Soil

pH 4.54 ± 0.15 4.69 ± 0.18 4.17 ± 0.05 y 4.46 ± 0.08 x

SOC (g kg−1) 75.72 ± 18.54 a 23.44 ± 3.32 b 73.35 ± 24.05 x 28.19 ± 1.47 y

Total N (g kg−1) 2.82 ± 0.26 a 1.44 ± 0.09 b 2.84 ± 0.59 x 1.66 ± 0.15 y

NH4
+-N (mg kg−1) 22.74 ± 5.51 15.09 ± 6.38 31.98 ± 10.82 x 14.29 ± 4.86 y

NO3
--N (mg kg−1) 14.32 ± 4.78 a 2.20 ± 1.78 b 15.56 ± 4.97 x 3.31 ± 1.03 y

Total P (g kg−1) 0.18 ± 0.09 0.15 ± 0.05 0.09 ± 0.04 0.11 ± 0.07
Available P (mg kg−1) 2.90 ± 0.52 a 1.29 ± 0.30 b 3.09 ± 0.37 x 1.48 ± 0.32 y

C/N 26.80 ± 4.31 a 19.65 ± 3.31 b 25.81 ± 4.26 x 16.94 ± 2.50 y

C/P 431.62 ± 176.81 157.89 ± 73.24 823.20 ± 450.86 x 266.93 ± 245.90 y

N/P 16.10 ± 7.06 8.04 ± 3.95 31.90 ± 13.30 x 15.76 ± 4.28 y

Moisture content (%) 49.19 ± 0.03 a 30.73 ± 0.02 b 53.74 ± 0.06 x 36.20 ± 0.11 y

2.4. DNA Extraction and Metagenomic Sequencing

Total genomic DNA was extracted from ~0.5 g of fresh soil using the E.Z.N.A.®

Soil DNA Kit (Omega Bio-tek, Norcross, GA, USA). Metagenomic libraries were size-
selected to fragment lengths of about 400 bp using Covaris M220 (Gene Company Limited,
Shanghai, China) and NEXTFLEX® Rapid DNA-Seq (Bioo Scientific, Austin, TX, USA). In
total, 16 metagenomic DNA libraries were constructed. The size-selected libraries were
sequenced on the Illumina NovaSeq platform (Illumina Inc., San Diego, CA, USA) with
paired-end mode (2 × 150 bp).

2.5. Metagenomics Analysis

The adaptors of sequenced reads were trimmed. Reads with lengths shorter
than 50 bp or quality value lower than 20 or containing N bases were removed us-
ing fastp software (v0.20.0) [22]. Metagenomics data were assembled by MEGAHIT
software (v1.1.2) [23] using succinct de Bruijn graphs. The final assembled contigs with
lengths ≥300 bp were selected, and their open reading frames were predicted by Meta-
Gene [24]. The predicted open reading frames with lengths of 100 bp or more were
retrieved and translated into amino acid sequences through NCBI. A non-redundant
gene catalogue was constructed using CD-HIT [25] with 90% sequence identity and 90%
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coverage. After quality control, reads were mapped to the non-redundant gene catalog
with 95% identity using SOAP aligner [26], and gene abundance was evaluated for each
sample. Overall, a total of ~0.77 billion high-quality reads were produced, ranging from
41.24 to 55.99 million reads per sample.

Representative sequences of the non-redundant gene catalogue were aligned to the
NCBI NR database with an e-value cutoff of 1 × 10–5 using Diamond [27] for taxonomic
annotations. The KEGG annotation was conducted using Diamond against the Kyoto
Encyclopedia of Genes and Genomes database with an e-value cutoff of 1 × 10–5. The
abundance of a taxonomic group was calculated by summing the abundance of genes
annotated to a feature. Relative gene abundances (%) were normalized to the annotated
read number across all samples for subsequent analysis. In this study, 27 functional genes
(Table S2) related to organic P mineralization, inorganic P solubilization, and P starvation
response regulation were selected for further investigation.

2.6. Statistical Analysis

The statistical analyses were conducted by R software (version 4.2.2) and on the
Majorbio Cloud Platform. The variations in the gene composition and associated micro-
bial taxa for P transformation between samples were evaluated by ANOSIM with the
“vegan” R package [28], and then displayed by nonmetric multidimensional scaling plots
(NMDS) via the Bray–Curtis dissimilarity matrix. Significant differences in the relative
abundance of P cycling genes between organic and mineral soil were quantified by one-
way analysis of variance (ANOVA). Circus has developed to quantify the corresponding
relationships between soil microbial taxonomic groups involved in P cycling and samples
using Circos-0.67-7 software (http://circos.ca/), and phyla with an abundance of <0.01
were merged with others. Species and functional contribution analysis were performed
for the major phyla of archaea (Candidatus_Bathyarchaeota, Candidatus_Thermoplasmatota,
Euryarchaeota, Thaumarchaeota), bacteria (Acidobacteria, Actinobacteria, Bacteroidetes, Can-
didatus_Eremiobacteraeota, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria,
Verrucomicrobia), and fungi (Ascomycota, Basidiomycota). The key genes associated with
soil P cycling to determine the available soil P were identified using random forest
analysis [29].

3. Results
3.1. Differences in Relative Abundance of P Cycling Genes across Soil Depths

The composition of P cycling genes varied significantly between organic and mineral
soil (p = 0.005), whereas the differences in forest types were insignificant (Figure S1a).
There were substantial differences among the total relative abundance of genes that
function for inorganic P solubilizing, organic P mineralizing, and P starvation response
regulating (Figure 1). With individual genes functioning for organic P mineralizing, only
the appA gene coding for phytase was more abundant in surface organic soil than in
deeper mineral soil. As for inorganic P solubilizing genes, the ppa gene in PLF and LGF,
as well as ppx in LGF, were more abundant in surface organic soil than in deeper mineral
soil, whereas the gcd gene in PLF and LGF, as well as the pqqC gene in PLF, were lower
in organic soil. The genes functioning for P starvation response regulating, including
phoB in LGF and phoR in PLF and LGF, were more abundant in deeper mineral soil than
in surface organic soil (Figure 1).

http://circos.ca/
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was higher in the latter than in the former (Figure 2b). The phyla Proteobacteria, Acidobac-
teria, and Actinobacteria were the dominant soil bacterial communities (Figure 2a), which 
were the most crucial taxonomic groups associated with soil P cycling (Figure 3 and Table 
S3). Organic soil has a higher abundance of the phyla Actinobacteria, Bacteroidetes, and Can-
didatus_Eremiobacteraeota than mineral soil, whereas Acidobacteria, Verrucomicrobia, and 
Chloroflexi were higher in mineral soil (Figure 2b). 

Figure 1. Differences in the relative abundance of microbial genes related to P cycling between
organic and mineral soil in PLF (a) and LGF (b). PLF represents the Pinus massoniana—Lithocarpus
glaber coniferous and evergreen broadleaved mixed forest, LGF represents the L. glaber—Quercus
glauca evergreen broadleaved forest. The red stars * represent significant differences between different
soil depths for a given gene. The black stars * and *** represent significant differences between
the total relative abundance of microbial genes involved in P-mineralization, P-solubilization, and
P-starvation response regulation.

3.2. Differences in Taxonomic Assignments of P Cycling Genes across Soil Depths

The soil microbial taxa associated with P cycling genes varied significantly between
organic and mineral soil (p = 0.002), whereas the differences in forest types were insignificant
(Figure S1b). In the similarities analysis via the NCBI-NR database, 99.86% of sequences that
were associated with P cycling genes were matched as bacteria, 0.13% as archaea, and 0.01%
as fungi in organic soil, whereas in mineral soil, 99.68% were compared as bacteria, 0.31%
as archaea, and 0.01% as fungi. Although the total abundance of these three taxa varied
insignificantly among organic and mineral soil, archaea abundance was higher in the latter
than in the former (Figure 2b). The phyla Proteobacteria, Acidobacteria, and Actinobacteria
were the dominant soil bacterial communities (Figure 2a), which were the most crucial
taxonomic groups associated with soil P cycling (Figure 3 and Table S3). Organic soil has a
higher abundance of the phyla Actinobacteria, Bacteroidetes, and Candidatus_Eremiobacteraeota
than mineral soil, whereas Acidobacteria, Verrucomicrobia, and Chloroflexi were higher in
mineral soil (Figure 2b).

Except for the phoA and phoD genes found in bacterial and fungi communities and
phnL located in bacterial and archaea communities, all the organic P mineralization genes
were present in bacteria (Figure 3). The genes functioning for inorganic P solubilizing and P
starvation response regulating were present in bacteria and archaea. A significant positive
relationship was shown between the beta (β) diversity of genes and the microbial taxa that
are associated with soil P cycling (Figure 4), and mineral soil has a higher β diversity of
both phyla and genes than organic soil.
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Figure 2. Co-occurrence diagrams of the abundance correspondence between samples and species as-
sociated with P cycling genes (a) and the proportion of P cycling genes–harboring species distributed
in different samples (b). First and second colored circles from outside to inside: the left half of the
circle represents the species (phyla taxa) composition corresponding to different samples; different
colors represent different species, and the length represents the proportion of abundance of a species
in the sample (with the percentage displayed in the second circles). The right half of the circles shows
the proportion of different samples in the dominant species; the different colors represent separate
samples, and the length shows the proportion of a certain species in the sample (with the percentage
displayed in the second circle). The letters a and b indicate significant differences between organic
and mineral soil in PLF, as do x and y in LGF. PLF represents the Pinus massoniana—Lithocarpus glaber
coniferous and evergreen broadleaved mixed forest, LGF represents the L. glaber—Quercus glauca
evergreen broadleaved forest.
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the average of organic and mineral soil. Detailed data are shown in Table S3.
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Figure 4. Regression analysis of species [α diversity (a) and β diversity (b)] and functional (KEGG
gene) in soil P cycling-related microbes. The α diversity and β diversity of species was calculated
at the phyla taxa level. The coefficient of determination (R2) and significance level (p) of the fitted
curves are shown.

3.3. Linkages between P Cycling Genes and Soil P Status

The relative abundance of P cycling genes positively and significantly correlated with
soil N:P ratio (p < 0.001; Figure 5a) and available soil P concentration (p < 0.05; Figure 5b).
A random forest analysis revealed that 7 of the 27 P cycling genes contributed to mediating
the concentration of available soil P (Figure 5c). A Pearson correlation analysis displayed
that the available soil P concentration significantly increased with gene abundances of appA,
3-phytase, and ppa (p < 0.01; Table S4), whereas decreased with that of genes pqqC, phoR,
phnP, and gcd (p < 0.05; Table S4).
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Figure 5. The relationships between soil microbial P cycling genes and soil P status. The relation-
ship between soil N:P ratio and the relative abundance of all genes involved in soil microbial P
cycling (a), and between the relative abundance of all genes involved in soil microbial P cycling and
available soil P concentration (b), are shown. Panel (c) shows the significant (p < 0.05) gene predictors
of available soil P, which were identified by random forest analysis. The data of organic and mineral
soil dates were analyzed together. Soil N:P ratio represents total soil nitrogen concentration divided
by total soil P concentration. PLF represents the Pinus massoniana—Lithocarpus glaber coniferous
and evergreen broadleaved mixed forest, LGF represents the L. glaber—Quercus glauca evergreen
broadleaved forest. R2 represents the coefficient of determination. * p < 0.05, *** p < 0.001.
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4. Discussion
4.1. Key Genes Associated with Soil P Cycling in Organic and Mineral Soil

The inorganic P solubilization genes were the most abundant in both organic and
mineral soil in subtropical forests (Figure 1), indicating that inorganic P solubilizing may
be the dominant resource for the supply of available soil P (soluble orthophosphate), which
contrasted with our hypothesis that surface soil has a higher potential to mineralize organic
P compared to deeper soil. Owing to subtropical forest soils being highly weathered and
acidified [30], P is often adsorbed or precipitated as inorganic forms (Fe-P and Al-P) [31]; as
a result, the available soil P pool is tiny [32], and the insoluble inorganic P pool is large [33].
In response to low soil P availability and a sizeable inorganic P pool, the inorganic P
solubilization genes will trigger to increase their abundance.

The inorganic P solubilizing genes, pqqC and gcd, were the key predictors of en-
hanced soil P cycling in mineral soil (Figure 6), which verified the previous results [8,9].
This result can be attributed to the following three aspects. First, the genes pqqC and
gcd were more abundant in mineral soil than in organic soil (Figure 1). The gcd gene
encodes the glucose dehydrogenase (GCD) and the pqqC gene codes the pyrroloquinoline
quinone synthase C (PqqC) that is involved in the synthesis pathway of pyrroloquinoline
quinone (PQQ) [34]. The compound forming with GCD and the redox cofactor PQQ is
essential to produce gluconic acid by microbial [35]. Gluconic acid is considered the
most important organic acid in the solubilization of the recalcitrant inorganic P [36].
Second, there was a negative relationship between the available soil P concentration
and the relative abundance of genes pqqC and gcd (Table S4). Consistent with a previous
study [37], we observed that the available soil P concentration was higher in surface
organic soil than in deeper mineral soil, which indicated that the pqqC and gcd genes
were more sensitive to a low soil P availability than other P cycling genes. Third, mineral
soil tends to increase inorganic P content in the forest ecosystem. Soil organic carbon
has been identified as a key driver of soil TP concentration and the distribution of its
forms [38]. In this study, the SOC concentration was significantly lower in deeper min-
eral soil than in surface organic soil (Table 1), indicating that more inorganic P existed in
the mineral soil. Therefore, the larger inorganic P pool would stimulate the inorganic P
solubilization genes, including pqqC and gcd.

The phoR gene (P starvation response regulation gene) may also be a key marker
of the soil microbial regulation capacity of P cycling in mineral soil [4,14]. In both
PLF and LGF, the phoR gene was more abundant in deeper mineral soil than in surface
organic soil (Figure 1), which agreed with previous studies, which showed that low
P conditions activate the phoR gene [39], and our hypothesis. The phosphate (Pho)
regulon is controlled by the genes phoB, phoR, and phoU which regulates soil inorganic P
transformation [40]. Thus, we inferred that the activated phoR gene might be necessary
for regulating the pqqC and gcd genes. This assumption was supported by the fact that
the genes phoR, pqqC, and gcd were considered as determinants of the concentration
of available soil P via the random forest analysis (Figure 5), and that these three gene
abundances significantly and negatively correlated with available soil P concentration
through the Pearson correlation analysis (Table S3). In addition, the genes phoB and
phoR were more abundant in deeper mineral soil than in the surface organic soil of LGF
with low soil TP. In contrast, there were no significant differences in the genes phoB
and phoU between the organic and mineral soil of PLF with high soil TP (Figure 1 and
Table 1). This result is explained by the fact that phoB is activated by phoR under P-low
environments, whereas phoB is triggered by phoU in P-rich environments [4].
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The key genes that functioned in P cycling differed between organic and mineral
soil (Figures 1 and 6). The ppa gene, which encodes an inorganic pyrophosphatase to
hydrolyze inorganic polyphosphate compounds, was the key inorganic P solubilization
gene in organic soil [41]. Inorganic polyphosphate, in chains of tens to hundreds of phos-
phate residues, is environmentally ubiquitous and abundant, such that it is found in
every cell in nature [42]. Accordingly, higher levels of inorganic polyphosphate are ac-
cumulated in surface organic soil than in deeper mineral soil, as it is derived from forest
floor litter decomposition and significant microbial population turnover [43]. Moreover,
the ppx gene was more abundant in the surface organic soil than in the deeper mineral
soil of LGF, whereas for PLF, that of ppx and ppk1 was slightly higher in the organic soil
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(Figure 1). Exopolyphosphatase—which releases orthophosphate anions from inorganic
polyphosphate—is encoded by the ppx gene [41], and polyphosphate kinase—which cat-
alyzes the formation of polyphosphate—is coded by the ppk1 gene [44]. Therefore, the high
levels of inorganic polyphosphate in organic soil may trigger inorganic P solubilization
genes, especially ppa.

Despite the total relative abundance of organic P mineralizing genes being the lowest
in subtropical forest soils (Figure 1), the appA and 3-phytase genes were found to have a vital
role in determining the available soil P concentration in organic soil (Figure 5 and Table S4).
The appA and 3-phytase genes encode phytases that hydrolyze the phytate [45]. Phytates
are the dominant organic P forms in soil [46]. Previous studies suggested that the 3-phytase
gene was abundant in P-deficient soil [47], which indicates that mineralizing phytate as
a P-source is critical in P-deficient soils [14]. Based on N:P stoichiometry, a high soil N:P
ratio implies a high N concentration and/or low P concentration, which may increase
the P-starvation of soil microorganisms [48]. Our results revealed that the total relative
abundance of P cycling genes significantly increased with the soil N:P ratio (Figure 5), and
the appA gene was more abundant in the surface organic soil (higher N:P ratio) than in
deeper mineral soil (lower N:P ratio), which was in line with a previous study [8]. We
concluded that the high soil N:P ratio in organic soil stimulated the appA and 3-phytase
genes to encode phytase, which improved the mineralization of phytate and then increased
the concentration of available soil P.

4.2. Phosphorus Cycling Genes Harboring Microbial Taxa Change with Soil Depths

Consistent with previous studies, P-cycling genes harboring microbial taxa distributed
among bacteria, fungi, and archaea [14]. As bacteria are better studied and understood in
soil P cycling [e.g., primers targeting key P cycling genes have been designed for bacteria,
numerous bacterial genomic data], this has resulted in most P-cycling genes being found in
soil bacteria [49]. Interestingly, several genes were also presented in fungi and archaea. For
example, the phoA and phoD genes presented in fungi agreed with previous studies showing
that phoD is widely distributed in different soil microbial taxa [50]. Genes associated with
inorganic P solubilizing and P starvation response regulating were also presented in
archaea, suggesting that archaea have a critical role in soil inorganic P solubilizing and P
starvation responding [14,51]. The species and functional regression analyses also denoted
that the soil microbial taxa harbor more distinct P cycling genes in mineral soil (Figure 4b),
indicating that more diverse soil microbial taxonomic groups have a higher potential to
mineralize and solubilize soil P in subtropical forests.

The bacteria phyla Actinobacteria, Bacteroidetes, and Candidatus_Eremiobacteraeota de-
creased in abundance with depth (Figure 2), which may be attributed to their copiotrophic
behavior [52,53]. The significant increases in the abundance of Acidobacteria, Verrucomicrobia,
and Chloroflexi with depth (Figure 2) have been previously evidenced by their tolerance for
nutrient-poor conditions [54,55]. The copiotrophic hypothesis states that copiotrophic taxa
seem to increase in nutrient-rich environments, whereas oligotrophic taxa would likely
decrease [56,57]. Furthermore, copiotrophic taxa exhibit fast growth rates with high soil
C availability, whereas oligotrophic taxa grow slowly by metabolizing recalcitrant C and
nutrient-poor substrates [57]. The variations in copiotrophic and oligotrophic taxa with
soil depth may be directly influenced by the decreases in the available soil P concentration,
N:P ratio, and SOC, or they are indirectly affected by the increase in soil pH in mineral
soil [6,53,58]. For example, the abundance of oligotrophic Acidobacteria significantly de-
creased with the soil N:P ratio (R2 = 0.35, p < 0.05) in this study. In contrast, it increased
with the soil pH (R2 = 0.42, p < 0.05), which is consistent with a previous study [8]. Con-
trary to the copiotrophic hypothesis, the abundance of copiotrophic proteobacteria did not
significantly differ between organic (43.45% in PLF, 43.17% in LGF) and mineral (40.24% in
PLF, 39.06% in LGF) soil (Figure 2), which suggested that proteobacteria is the predominant
contributor in soil P cycling in subtropical forests.
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According to previous studies [53,55], the archaea taxa associated with soil P cycling
was more abundant in deeper mineral soil than in surface organic soil (Figure 2). Sev-
eral reasons have been documented for the increasing abundance of archaea taxa with
soil depth, including their adaptation to nutrient-limited conditions as slow-growing
oligotrophs, adaption to chronic energy stress, preference as methanogens for anaerobic
conditions, and function as ammonia oxidizers to stimulate autotropic nitrification in
deeper soil [53,54,59,60]. In addition, the total relative abundance of fungi taxa that
harbored soil P cycling genes was lower than 0.01% (Figure 2). Compared to bacteria and
archaea, the potential of fungi associated with the underlying mechanisms stimulated
by changes in soil P availability seems to be more limited [14].

5. Conclusions

The key genes associated with soil P cycling in organic soil were ppa, appA, and
3-phytase, indicating that soil microorganisms had the potential to both mineralize organic
P and solubilize inorganic P in organic soil, whereas those in mineral soil were phoR, gcd, and
pqqC, suggesting that soil microbial P starvation response regulating genes were stimulated
to improve inorganic P solubilization in mineral soil. The P cycling genes not only contained
bacteria, but also harbored archaea and fungi. The bacteria that function in soil P cycling
were Proteobacteria, Actinobacteria, Bacteroidetes, and Candidatus_Eremiobacteraeota in organic
soil, and Proteobacteria, Acidobacteria, Verrucomicrobia, and Chloroflexi in mineral soil. The
relative abundance of archaea associated with soil P cycling was higher in mineral soil than
organic soil. These results showed that the distribution of P cycling genes and microbial
taxonomic groups significantly differed between the organic and mineral soil. Thus, a depth-
resolved scale investigation can deeply reveal the functions of the soil microorganisms and
the benefits to soil P nutrition management in P-deficient subtropical forests.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f14081665/s1, Figure S1: Nonmetric multidimensional scaling plots
(NMDS) of P cycling genes (a) and soil microbial taxa involved in P cycling (b) in soils. NMDS had a
good explanation of variation as stress < 0.1. ANOSIM showed significant differences in variables
between organic and mineral soil as p < 0.05. Table S1: Stand characteristics (mean ± SD) in the
Pinus massoniana—Lithocarpus glaber coniferous and evergreen broadleaved mixed forest (PLF)
and L. glaber—Quercus glauca evergreen broadleaved forest (LGF). DBH represents tree diameter
at breast height, H represents tree height. Table S2: Details on the 27 functional genes related to P
cycling studied in this study. Table S3: The abundance (RPKM) of species (phyla taxa) for a specific
functional (KEGG gene) in organic and mineral soils. Table S4: Pearson correlations between the
available soil P concentration and the relative abundance of the P cycling genes selected by Random
Forest analysis.
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