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Abstract: In the context of global warming, timely and accurate drought monitoring is of great
importance to ensure regional ecological security and guide agricultural production. This study
established the Drought Severity Index (DSI), based on the potential evapotranspiration (PET),
evapotranspiration (ET) and normalized difference vegetation index (NDVI) data from 2001 to 2020,
to compensate for the low accuracy of drought spatial and temporal evolution due to the uneven
distribution of stations. The DSI index was established to reveal the spatial and temporal variation of
droughts in Inner Mongolia in the past 20 years, using trend analysis, gravity shift and geographic
probes, and to explore the influence of different factors on the DSI. The results were as follows. (1) The
results showed that the spatial distribution of DSI in Inner Mongolia during 2001–2020 had strong
spatial heterogeneity, and generally showed distribution characteristics of drought in the west and
wet in the east. In addition, the changes in DSI all exhibited a rising tendency, with the highest
tendency in deciduous broadleaf forests (DBF) and the lowest tendency in grassland (GRA). (2) The
center of gravity of wet, normal and arid areas showed a migration trend from northeast to southwest,
with migration distances of 209 km, 462 km and 826 km, respectively. (3) The four combinations of
temperature and elevation, temperature and slope, temperature and land use, and temperature and
rainfall contributed the most. The results obtained in this study are important for the scheduling of
ecological early warnings and drought prevention and control.

Keywords: drought; drought severity index (DSI); trend analysis; geodetector; influencing factors

1. Introduction

With rapid socio-economic development and a growing population, the problem
of water shortages is becoming progressively severe, bringing about the expansion of
dry areas and deepening aridity, which has become a hot issue of global concern [1–3].
Decreasing precipitation and increasing temperature are the dominating elements resulting
in a drought occurring [4]. Droughts are characterized by a wide range of impacts and
great difficulty in management and have serious impacts on agricultural production and
human life [5–7]. Therefore, information on how to monitor and predict drought occurrence
and its development pattern on a large scale and in a timely and accurate manner will be
crucial guidance for agricultural production and ecological environment management in
Inner Mongolia.

Drought assessment and monitoring are often evaluated quantitatively through
drought indices [8–10]. In previous studies, for example, Ji et al. (2022) [11] and
Pei et al. (2020) [12], the standardized precipitation evapotranspiration index (SPEI) and
standardized precipitation index (SPI) have been used to describe drought conditions in
Inner Mongolia. Drought indices were mostly calculated based on meteorological data
observed at stations, which were limited by the number of monitoring stations, coverage,
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and the spatial and temporal distribution and density of monitoring data, making it difficult
to meet the needs of drought monitoring in large regions [13]. Recently, as remote sensing
technology and data are promoted by the advantage of easy access, wide coverage and spa-
tial continuity have compensated for the lack of station observation figures. Additionally,
continuity is widely used in drought monitoring [14–16]. However, there are often prob-
lems with using drought indices for the remote sensing monitoring of vegetation conditions,
such as an obvious lag effect of the vegetation growth status on precipitation, the possible
production of a large bias when using such indices to monitor drought [17–20], and the
difficulty of eliminating drought caused by seasonal stresses when using drought indices
for the remote sensing monitoring of temperature categories, although they can describe
vegetation drought caused by high temperatures and moisture stresses [21–23]. Therefore,
the use of drought indices that combine surface temperature and vegetation indices can
better monitor changes in soil moisture [24–26]. For example, Carlson et al. [27] proposed
the Vegetation Water Supply Index (VSWI), a simpler vegetation–temperature crop drought
composite index that provides a better response to drought conditions throughout the
growing season. Zormand et al. [28] evaluated the application of remote sensing indices
such as the perpendicular drought index (PDI) and the modified perpendicular drought
index (MPDI) used in drought monitoring in Northeast Iran and concluded that the dif-
ferent aridity indices have different accuracies at different time scales. Yao et al. [29] used
the temperature vegetation drought index (TVDI) to analyze the characteristics of drought
changes in Inner Mongolia and proved that TVDI has good applicability in drought moni-
toring in arid and semi-arid regions, concluding that the frequency of drought events in
four typical grassland-type regions in Inner Mongolia, namely Duolun, Xilinhot, Hailaer
and Siziwangqi, increased significantly after the year 2000. The Vegetation Health Index
(VHI) takes into account the local biophysical (soil and slope) and climatic conditions and
can be used for practical drought monitoring in various agro-meteorological zones [30].
Jackson et al. [31] proposed the Crop Water Scarcity Index (CWSI), based on the principle of
heat balance, which can reflect a certain vegetation soil moisture condition and thus obtain
crop water scarcity information. The Drought Severity Index (DSI) is based on the surface
energy equilibrium and has an elevated gauge accuracy and a specific physical definition,
which is a vital element making it superior to the other drought indicators, and provides a
potential means for global assessment and the potential monitoring of drought occurrence,
severity and duration at relatively fine (1 km resolution) spatial scales.

Therefore, this study uses the DSI to make up for the low accuracy of the spatio-
temporal evolution of drought caused by the uneven distribution of sites and studies the
spatio-temporal evolution of drought. The main purpose of this study is (1) to analyze
the spatio-temporal variation of drought using trend analysis; (2) to reveal the moving
direction and distance of the barycenter locus of wetting, normal and drought changes; and
(3) to explore and reveal the driving factors of drought occurrence, and clarify the response
mechanism of the DSI to climate, topographic factors and land use types with the aim of
clarifying the driving mechanism of drought changes in Inner Mongolia and providing
scientific reference for regional disaster prevention and mitigation.

2. Materials and Methods
2.1. Study Area

Inner Mongolia lies in the northern frontier region of China, with an area of
1.183 million km2. The topography of Inner Mongolia is complex, with a variety of geo-
morphological units and an average altitude of 1000 m. The topography decreases from
west to east and from south to north (Figure 1a). Inner Mongolia is inland, in the middle
of the northern hemisphere and with high latitudes, and belongs to the transition area
from semi-arid climate in the northwest to semi-humid and humid monsoon climates
on the southeast coast. The average annual temperature is between −4.65 and 9.14 ◦C,
characteristic of a hot and short summer, a long and cold winter, a windy spring with little
rain, a dramatic temperature drop in autumn, a big temperature difference between days
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and nights, and sufficient sunshine time. The precipitation is low and uneven, with an
average of 375 mm across the region, decreasing from northeast to southwest.
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Figure 1. Geographical location of the study area: (a) digital elevation model, (b) distribution of
vegetation categories and meteorological stations.

2.2. Data Sources and Preprocessing
2.2.1. Remote Sensing Data

MOD16A2, MOD13A3 and MCD12Q1 for 2001–2020 all originated from the National
Aeronautics and Space Administration (NASA). MOD16A2 covers 8 days’ potential evap-
otranspiration (PET) and synthetic actual evapotranspiration (ET) with a resolution of
0.5 km; MOD13A3 is the monthly synthetic NDVI with a resolution of 1 km. Land cover
products with a spatial resolution of 0.5 km were converted from HDF format to Geo-Tiff
by means of HEG software (v 2.15) offered by NASA. The SIN projection was converted to
a WGS~1984/Geographic latitude and longitude coordinate system, and mosaic and crop.
The ET, PET, NDVI and land cover product datasets for the study area were obtained by
removing invalid values from figures and restoring true values according to the instructions
for using the data provided on the website, and unifying them to 1 km resolution.

2.2.2. Vegetation Cover Data

With a view to lessening the errors of classification and the potential outcomes of
land cover variations, only the image elements whose land cover categories remained
unchanged between 2001 and 2020 were preserved in this article. The percentages of major
vegetation types were: Deciduous Needleleaf Forests (0.66%), Deciduous Broadleaf Forests
(1.30%), Mised Forests (1.38%), Woody Savannas (0.26%), Croplands (4.65%), Savannas
(6.08%), Grasslands (49.99%), Change (10.25%), Other (25.43%).

2.2.3. Meteorological Data

The meteorological figures originated from the China Meteorological Data Network,
and the year-by-year average temperature and precipitation data were selected from a total
of 43 meteorological stations in and around Inner Mongolia from 2001 to 2020. Missing
or anomalous data of individual stations were excluded, and the Kriging approach was
employed to spatially inset meteorological figures and align their resolutions with ET, PET
and NDVI figures.
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2.3. Methodology
2.3.1. DSI

The DSI integrates the NDVI and ET to PET ratio [32], which can invert the water
deficit of vegetation and crops. The calculation equation is:

ZNDVI =
NDVI − NDVI

δNDVI
(1)

ZET/PET =
ET/PET − ET/PET

δET/PET
(2)

Z = ZNDVI + ZET/PET (3)

DSI =
Z− Z

δZ
(4)

In which NDVI and ET/PET are the values of NDVI and ET/PET for a certain period
within the study period, respectively; NDVI and δNDVI refer to the average and standard
deviation of NDVI, separately; ET/PET and δET/PET refer to the average and standard
deviation of ET/PET, separately; Z and δZ are the mean and standard deviation of Z,
separately; and a larger value of the DSI indicates humidity for drought, and vice versa. In
this study, the drought level of the study area was divided by reference to the literature [33]
(Table 1).

Table 1. The categories for drought circumstances for the DSIs all over the world.

Category Grade DSI

1 Extreme drought <−1.5
2 Severe drought −1.49 to −1.2
3 Moderate drought −1.19 to −0.9
4 Mild drought −0.89 to −0.6
5 Incipient drought −0.59 to −0.3
6 Near normal −0.29 to 0.29
7 Incipient wet 0.3 to 0.59
8 Slightly wet 0.6 to 0.89
9 Moderately wet 0.9 to 1.19
10 Very wet 1.2 to 1.5
11 Extremely wet >1.5

2.3.2. Sen + Mann–Kendall Trend Estimation

Trends in ET, PET, NDVI and DSI time series from 2001 to 2020 were analyzed using
trend analysis to study the characteristics of the change trends [34]. At the same time, the
Mann–Kendall method was used to test the significance of the change trend, calculated as
below [35]:

β = Median
( xj − xi

j− i

)
, ∀j > i (5)

where β is the variation trend of pixel ET, PET, NDVI and DSI; i and j are time series; and xi
and xj represent the pixel ET, PET, NDVI and DSI values of time i and time j, respectively.
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2.3.3. Weight Transfer Model

The weight migration model is capable of reflecting the spatial aggregation and
migration characteristics of drought in spatial and temporal variation [36], using the
following equation [37]:

X =

n
∑

i=1
PiXi

n
∑

i=1
Pi

, Y =

n
∑

i=1
PiYi

n
∑

i=1
Pi

(6)

In which X and Y are the latitude and longitude coordinates of the center of gravity of
the drought distribution; Pi is the DSI value of the ith image factor; and Xi and Yi are the
latitude and longitude coordinates of the center of the ith image factor, separately.

2.3.4. Correlation Analysis

To study the impact of climate elements on drought, correlation coefficients between
climate elements and DSI were calculated image by image [38] using the following equa-
tion [39]:

R =

n
∑

i=0
(xi − x)(y− y)√

n
∑

i=0
(xi − x)2

√
n
∑

i=0
(y− y)2

(7)

where xi denotes the climate element value in year i, x denotes the mean value of the
climate element in the calendar year, yi denotes the yearly mean DSI value in year i, and
additionally y denotes the mean DSI value in the calendar year.

2.3.5. Geographic Probe Model

Factor and interaction detectors were adopted to investigate the influence of the
drought index (DSI). The q value (value range of 0 to 1) within the factor detector was
adopted to gauge the explanatory power from the independent variable to the spatial
heterogeneity concerning the dependent variable. When q reaches 0, it means that the inde-
pendent variable factor does not depend upon the dependent variable; when q reaches 1 it
means that the independent variable fully masters the spatial distribution of the dependent
variable [40]. If the q value is larger, the explanatory power from the independent variable
to the dependent variable will be stronger. This formula is as follows [41]:

q = 1− 1
Nσ2

L

∑
h=1

Nhσ2
h (8)

where L refers to the stratification of variable Y or factor X; N and σ2 are the whole
quantity of all examples within the study field, as well as the discrete variance of the whole
area, separately; Nh and σ2

h are the number of examples and discrete variance of area h,
respectively, and h = 1,2,3,. . .,n. The interaction detector is mainly employed for the purpose
of identifying interactions between disparate influencing elements, i.e., to assess whether
the driving factors, when acting together, strengthen or de-escalate the explanatory power
when the driving factors act together, or whether these factors have an independent effect
on the dependent variable.

3. Results
3.1. Spatial Distribution Characteristics and Drought Trends

The distribution of multi-year average ET, PET, NDVI and DSI between 2001 and
2020 showed obvious spatial heterogeneity (Figure 2), with the ET and NDVI exhibiting
a spatial mode of low values in the southwest and high in the northeast, PET showing a
spatial mode of high values in the southwest and low in the northeast, and DSI showing a
distribution characteristic of aridity in the west and wetness in the east. The multi-year
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average ET fluctuated from 11.99 to 659.06 mm, PET fluctuated from 106.82 to 1947.88
mm, NDVI fluctuated from 0 to 0.92, and DSI fluctuated from −0.24 to 0.27. Specifically,
the drought was mainly located at the southern end of the Xilinguole grassland in the
Hunsandake Sands; the drought-free area with high ET and low PET values accounted for
36.32% of the whole area, and was largely located in eastern Inner Mongolia, along the
Daxinganling Mountains and in the forest–steppe interlacing area; the areas with much
vegetation were largely located in the forest zone in the northeast and in the agricultural
area of the Hetao Plain.
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According to Figure 3, the ET, PET, NDVI and DSI in Inner Mongolia showed little
interannual fluctuation during the study period, and from 2001 to 2020 the ET and NDVI
in Inner Mongolia exhibited an obvious rising tendency (p < 0.05), with a rising ratio of
ET (4.514 mm/a) and NDVI (0.003) in order of magnitude. The PET showed a significant
decreasing tendency (p < 0.05); additionally, the decreasing ratio was ET (−3.439 mm/a)
and NDVI in order of magnitude. The rate of decrease was ET (−3.439 mm/a), and the
magnitudes of R2 were ET (0.781), PET (0.451) and NDVI (0.376), indicating that the fitted
lines of ET, PET and NDVI trends were highly reliable. The annual average value of DSI
from 2001 to 2020 varied between −0.235 and 0.268, and the overall interannual variation
showed a significant upward tendency with a rate of change of 0.06 and an R2 of 0.499,
indicating that the fitted line of the trend was more reliable. A higher DSI value indicates
increased wetness, thus indicating that the drought situation was alleviated within the
study period.
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Figure 3. Annual average parameters of interannual (a) ET, (b) PET, (c) NDVI and (d) DSI (the
time series in the figure have all passed the MK test, where p < 0.01 means passing the test very
significantly and p < 0.05 means passing the test significantly).

The spatial variability of the ET varied from −9.998 to 23.581 mm·a−1 (Figure 4a)
within the region exhibiting a rising tendency reaching 75.42% of the vegetation cover
within the study region, and most of the regions (73%) smashed the significance trial
(p < 0.05) (Figure 5a); just 24.58% of those regions exhibited a lowering tendency, mainly
distributed close to the forest in the northeast and near the Erlianhaote desert. The spatial
change rate of the PET varied between −92.398 and 74.668 mm·a−1 (Figure 4b), within
which the region exhibited a rising tendency reaching 42.36% of the vegetation cover within
the study region, and a small part of the region (17.9%) smashed the significance trial
(p < 0.05) (Figure 5b); up to 57.64% of the region showed a lowering tendency, mainly in the
study region (Figure 5b), and mainly distributed near the Maowusu Sands in the western
study region. The spatial variation rate of the NDVI varied from −0.042 to 0.051 mm·a−1

(Figure 4c), and the increase in NDVI was mainly in the eastern part of Inner Mongolia
(eastern Xilinguole League, western Hulunbeier City, eastern Xing’an League, Tongliao
City and Chifeng City); the decrease was mainly in the central and western part (western
Xilinguole League to eastern Bayannur City and northern Chifeng City). A small proportion
(36.9%) of the areas smashed the significance trial (p < 0.05) (Figure 5c). The spatial variation
rate of DSI varied from −0.162 to 0.171 (Figure 4d), in which 84.36% of the vegetation cover
over the study region exhibited a rising tendency; in addition, most of the areas (72.7%)
passed the significance trial (p < 0.05) (Figure 5d), and just 15.64% of the regions exhibited
a lowering tendency, mainly in the southwest of the Mawusu Sands, the central grasslands
and near the forests in the northeast.
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3.2. Effect of Different Vegetation Types on DSI

Different vegetation types directly affect the growth status of vegetation, and similarly
different vegetation cover also affects changes in evapotranspiration. We can analyze the
effects of the different vegetation utilization types on the changes in the NDVI and ET,
which can effectively reveal their effects on DSI, and we can thus analyze their resilience
to drought. Among different vegetation utilization types, DBF had the highest NDVI
value, 0.869, and GRA had the lowest value, 0.782. GRA had the lowest NDVI value
because of the restricted vegetation growth due to the disturbance of human activities;
the highest mean ET value was DBF with 482.278 mm, and the lowest was GRA with
244.104 mm. The ET value was higher in broadleaf forests because of the larger leaf area
and stronger transpiration (Table 2), while the ET value was lower in GRA because of
the sparse vegetation cover and weaker evapotranspiration, coupled with the blocked
evapotranspiration from the surface deadfall cover.

Table 2. Statistical table of the mean values of ET and NDVI of different vegetation types.

Type ET/mm PET/mm NDVI TMP/◦C PRE/mm Drought
Frequency/%

DNF 362.348 749.737 0.869 −3.611 453.338 0.337
DBF 482.278 921.254 0.892 −1.398 455.787 0.332
MF 400.104 829.242 0.885 −2.842 482.112 0.338

WSA 409.665 839.459 0.864 −2.419 478.662 0.354
SA 478.252 932.348 0.868 −0.355 471.404 0.358

GRA 244.104 1288.229 0.482 4.245 304.907 0.372
CRO 370.647 1149.135 0.793 3.411 403.829 0.363

Combining the NDVI, ET and drought frequency, DBF had higher NDVI and ET
values than other land types and the lowest drought frequency, and therefore broadleaf
forest is wetter than other land types; GRA had low vegetation cover and lower NDVI and
ET values, and therefore the highest drought frequency, i.e., it is more prone to drought.
The ranking of the drought frequency of different land types in the southwest karst region
from largest to smallest during the study period was DBF > DNF > MF > WSA > SA > CRO
> GRA. In addition, the changes in the DSI all exhibited a rising tendency, with the largest
tendency in DBF and the smallest tendency in GRA (Figure 6).
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3.3. Area Change in Drought Classification

The consequences of the area variation of the graded drought degree (Figure 7) show
that different degrees of drought occurred in Inner Mongolia in the last 20 years, within
which the dry region exhibited a lowering tendency (the most obvious year was 2001,
reaching 93.23%), the normal area exhibited a lowering tendency (the most obvious year
was 2011, reaching 34.95%), and the wet region exhibited a rising tendency (the most
obvious year was 2013, with a proportion of 85.57%). In addition, before 2009, Inner
Mongolia mainly had drought conditions, after 2009 it was mainly wet, in 2017 the drought
and normal area reached the maximum, and after 2017 the whole dry and normal area
decreased slightly.
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Figure 7. Percentage variation of wet, near-normal and dry area between 2001 and 2020.

3.4. Drought Center of Gravity Shift Distribution Characteristics

Figure 8 shows the annual average DSI of drought-prone areas in the study area from
2001 to 2020 as weights to calculate the interannual drought center of gravity distribution in
Inner Mongolia over the past 20 years. From Figure 8, it can be seen that the drought center
of gravity within the study region has changed relatively little in the last 20 years, and
the wet center of gravity of the DSI in 2001–2020 mainly moved from position 115.926◦ N,
45.364◦ E to 114.567◦ N, 43.711◦ E, with a distance of 209.22 km. The center of gravity of
the normal DSI mainly shifted from position 120.012◦ N, 47.473◦ E to 116.036◦ N, 44.373◦ E
with a distance of 462.248 km in 2001–2020, and 47.764◦ E to 112.521◦ N, 42.894◦ E, with a
distance of 826.812 km.
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Figure 8. Characteristics of wet, normal and drought weight shift distribution in Inner Mongolia:
(a–c) is the spatial distribution of wetness, normal gravity shift and drought gravity shift during
different time periods during 2001–2005, 2005–2010, 2010–2015 and 2015–2020. (Black triangles
represent the direction of the transfer, and green triangles represent the year).
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3.5. Drought Driving Force Analysis

Considering the effects of image element spatial resolution and topographic vertical
zoning features, and combining them with previous, related studies, the average annual
temperature, average annual rainfall, land use type, population density, elevation, slope
and slope direction from 2001 to 2020 were selected as independent variables to analyze the
drivers of aridification in Inner Mongolia. The independent variables were classified and
visualized using ArcGIS10.6, and then the sampling values of dependent and independent
variables within each grid were extracted with each factor for geographic probe analysis,
and the degree of explanatory power from each element to the spatial change of aridity in
Inner Mongolia was obtained.

As can be seen from Table 3, the aspect and population density did not beat the
significance trial (p > 0.05), while all other detection factors passed the significance trial
(p < 0.05) and could be used as influencing factors for analyzing the spatial heterogeneity
of drought (Table 3). Larger q-values indicated a greater degree of influence on the DSI,
and vice versa for smaller ones. The explanatory power from the affecting factors could
be ranked as follows: temperature, elevation, slope, rainfall and land use type. Among
these, temperature and DEM were the major factors affecting the differences in the spatial
distribution of the DSI during the last 20 years (all q-values were greater than 0.45), and the
degree of influence of other factors on the DSI was varied. On the basis of comparing the
results of one-way detection, the dependent variable DSI of the study area was analyzed
using interactive detection with five independent variables that passed the significance test.
As can be seen from Table 3, the degree of influence under the two-factor interaction was
both bivariate and nonlinearly enhanced, and the strongest interaction of each interaction
was with temperature. The interaction mainly revealed that the degree of the influencing
factors affecting the drought across Inner Mongolia in the last 20 years was greater than
that of any single factor when they acted together. The interaction of temperature and
elevation (q value 0.815) had the strongest effect on the DSI, while the interaction of slope
and land use category (q value 0.372) had the weakest effect on the DSI. This indicates that
each factor directly or indirectly influenced the differences in the spatial distribution of
drought under the joint action.

Table 3. Single factor and multi-factor interactive detection results.

Impact Factors Temperature Precipitation Slope Elevation Land Use Type

Temperature 0.612 0.684 0.736 0.815 0.687
Precipitation - 0.273 0.398 0.573 0.463

Slope - - 0.283 0.502 0.372
Elevation - - - 0.494 0.598

Land use type - - - - 0.059

Note: Bold is the g-value of each factor; additionally, the rest are g-values of interactions between factors.

With the aim of further investigating the influence of meteorological factors on the
DSI, the relationship between annual average temperature and annual average rainfall
and the DSI in the study area from 2001 to 2020 was analyzed. The correlation analysis
and significance test results of the DSI and annual precipitation (Figure 9) showed that the
DSI was actively linked to the precipitation in most regions during the study period, but
a large negative correlation was observed in its northeastern part. The reason for this is
that drought is influenced not only by precipitation, but also by topography, vegetation
type, human activities and other factors. The statistical consequences illustrated that
the area of active correlation between the DSI and precipitation occupied 79.26% of the
whole region, while the region of passive relationship was 20.74%. The DSI was mainly
positively correlated with temperature, but a large area was passively linked to the north-
central area of Inner Mongolia. In insufficiently moist areas, the PET value increased
when the temperature rose and there was not enough moisture to give it evaporation,
which led to a greater PET–ET spacing and a lower DSI value, i.e., it became dryer earlier.



Forests 2023, 14, 1679 12 of 17

Statistically, the DSI was actively linked to the temperature in 63.25% of the total region,
and negatively correlated in 36.75% of the whole region. The percentage of areas that beat
the 0.05 significance level test was only 0.2%.

Forests 2023, 14, x FOR PEER REVIEW 12 of 17 
 

 

region, while the region of passive relationship was 20.74%. The DSI was mainly positively 
correlated with temperature, but a large area was passively linked to the north-central 
area of Inner Mongolia. In insufficiently moist areas, the PET value increased when the 
temperature rose and there was not enough moisture to give it evaporation, which led to 
a greater PET–ET spacing and a lower DSI value, i.e., it became dryer earlier. Statistically, 
the DSI was actively linked to the temperature in 63.25% of the total region, and negatively 
correlated in 36.75% of the whole region. The percentage of areas that beat the 0.05 signif-
icance level test was only 0.2%. 

 
Figure 9. Correlations of DSI with climate factors: (a) correlation of DSI with precipitation, (b) cor-
relation of DSI with temperature, (c) significance of DSI with precipitation and (d) significance of 
DSI with temperature. 

4. Discussion 
Due to global warming and enhanced evapotranspiration, the aridification of Inner 

Mongolia has attracted widespread attention [42–45]. Since 1998, the ecological environ-
ment of Inner Mongolia has been significantly improved, especially by alleviating the de-
gree of summer drought, in order to curb its destruction [46–52]. However, at the begin-
ning of the implementation of water conservancy projects and the policy of changing 
farmland to grass, natural elements like the climate and hydrology of the region were not 
taken into consideration. The drastic change in the land use of the area increased the evap-
oration of soil in some parts of Inner Mongolia, thus causing an increase in the degree of 
drought in the land, with the phenomenon of soil desiccation becoming a common con-
cern [53–55]. In this paper, by studying the drought, we discovered that the overall per-

Figure 9. Correlations of DSI with climate factors: (a) correlation of DSI with precipitation, (b) corre-
lation of DSI with temperature, (c) significance of DSI with precipitation and (d) significance of DSI
with temperature.

4. Discussion

Due to global warming and enhanced evapotranspiration, the aridification of Inner
Mongolia has attracted widespread attention [42–45]. Since 1998, the ecological environ-
ment of Inner Mongolia has been significantly improved, especially by alleviating the
degree of summer drought, in order to curb its destruction [46–52]. However, at the be-
ginning of the implementation of water conservancy projects and the policy of changing
farmland to grass, natural elements like the climate and hydrology of the region were
not taken into consideration. The drastic change in the land use of the area increased the
evaporation of soil in some parts of Inner Mongolia, thus causing an increase in the degree
of drought in the land, with the phenomenon of soil desiccation becoming a common
concern [53–55]. In this paper, by studying the drought, we discovered that the overall
performance of the last 20 years tended to show drought mitigation, mainly showing an
increasing trend in the west (mainly in the central part of Alashan Union) and a decreasing
rate of the DSI in the east, a conclusion in line with the discoveries by Shen et al. [56] but
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contradictory to the conclusion of Wei et al. [57], who found an increasing drought in the
eastern and central parts and a decreasing drought in the west based on the SPI index.
Some researchers have focused on the temporal and spatial distribution of drought in China
based on weather station data or remote sensing drought indices. According to the Palmer
Drought Severity Index, Yan et al. [58] found that an extreme drought event occurred in
2001, and a relatively severe drought also occurred in Inner Mongolia, which was similar
to the result shown in Figure 8. The main reason was that the strong La Niña phenomenon
occurred in 2000–2001, resulting in abundant precipitation in the south and drought in the
north [59]. In addition, Li et al. [60] reported a weakening drought trend in northwestern
China based on the increasing trends of the SPI series, and Huang et al. [61] found that the
drought in western Inner Mongolia was more severe than that in eastern Inner Mongolia,
which was consistent with the results shown in Figure 2. Zhou et al. [62] found that the
drought trend in northeast China from 2001 to 2013 showed a downward trend, which was
consistent with the results shown in Figure 4. In summary, the spatio-temporal distribution
and variation trends of drought in Inner Mongolia are generally consistent with previous
national or regional drought monitoring studies, but there may be slight differences in
details due to different selections of drought indices.

The reason for this may be, on the one hand, that the use of different drought evaluation
indicators, the basis of drought classification of the same indicator and the time period of
the study could lead to opposite conclusions. Most of the SPEI indices chosen to dissect
spatial and temporal characteristics based on meteorological station information can have
difficulty in accurately describing the drought situation on a large regional scale or in areas
with few meteorological stations [63,64], while the DSI indices used in this research for
the assessment of the drought degree were based upon the indicators established using
ET, PET and NDVI, thus making the results different. Therefore, there were differences in
the results of different evaluation indicators for monitoring drought in Inner Mongolia. In
addition, the study found that the drought levels in the coniferous and mixed coniferous
forest cover areas in northern Hulunbeier, Inner Mongolia during 2001–2020 were low;
additionally, the extensive conduction of ecological restoration steps may have played
an important role. Since the study time period, Inner Mongolia has begun to implement
state-owned afforestation, encourage artificial afforestation, return farming and grazing
land to forest and grass, close mountains for forestry, and implement the new closure of
non-forested and sparsely forested land, and the drought situation of forest and grassland
has been alleviated, with the improvement of forest land being particularly obvious [65].

Some scholars have studied the correlation between soil moisture and climate factors
and found that an increase in temperature and precipitation promoted an increase in the ET,
which led to an increase in the DSI, showing that rising temperature and precipitation had
an active effect on drought mitigation, within which the temperature change had a greater
impact on the change in drought levels in Inner Mongolia, which was consistent with the
conclusion of Wang, Kotani, Tanaka and Ohta [38]. In the context of the development
of the climate from warm–dry to warm–wet in Inner Mongolia, the dependence of soil
moisture on precipitation decreases. Compared with precipitation, air temperature is more
important for soil conditions in the wet zone, and the level of air temperature directly
determines the evaporation of water from the soil and the transpiration of plants.

In addition, there is also a close relationship between the degree of drought and
extreme weather in Inner Mongolia. Du et al. [66] found that after 2000, the frequency of
drought events in four regions of Inner Mongolia, namely Duolun, Xilinhot, Hailar and
Shiziwangqi, increased significantly under the condition that the frequency of extreme
heat events increased significantly. Those findings demonstrate that the adoption of active
and effective ecological protection measures not only possesses some reference worth for
controlling and mitigating drought and reducing the risk of natural disaster occurrence in
the future, but also has an important scientific significance and strategic value for enhancing
the response to ecological risks and geopolitical security in Inner Mongolia in the context
of global warming [53]. In this paper, we used the DSI model to monitor the spatial and
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temporal distribution of drought in Inner Mongolia and compared it with the results of
existing studies, which confirmed that the model can achieve good and reliable results.
These results can be used as a basis for formulating an ecosystem construction program
in Inner Mongolia. However, there are also some limitations. Follow-up studies can
use various vegetation drought index models to find the optimal method to analyze the
feasibility of the spatial distribution of drought in Inner Mongolia. The use of long-time
series remote sensing data for large-scale drought monitoring is characterized by a large
volume of data, a large number of repeated calculations and a large number of human
factors, which are prone to errors. Future work should be combined with other indicators
of drought influencing factors (atmospheric circulation, sea temperature, solar activity, CO2
emissions, etc.) to develop a real-time drought monitoring system based on a variety of
drought indices, so as to carry out drought monitoring and early warning in a more rational
and dynamic way.

5. Conclusions

On the basis of MODIS data produced between 2001 and 2020, the spatial and temporal
variations and features of drought were dissected by calculating the DSI of different
time scales and spatial variations. The seven influencing factors of the DSI (temperature,
average annual rainfall, land use type, population density, elevation, slope and aspect)
were analyzed, and the following conclusions were drawn:

(1) From 2001 to 2020, the spatial distribution of the DSI in Inner Mongolia was generally
characterized by a dry west and a wet east. In addition, the changes in the DSI showed
an upward trend.

(2) Inner Mongolia’s wet, normal and dry centers of gravity showed a migration trend
from northeast to southwest, and the migration distances were all over 200 km.

(3) Temperature and elevation were the main influences driving the formation of arid-
ification in the study area. In addition, four pairs of temperature and elevation,
temperature and slope, temperature and land use, and temperature and rainfall
combined to drive the formation of aridification in Inner Mongolia.

Since drought is affected by a variety of factors, the establishment of an integrated
drought monitoring model should be considered and will become an important direc-
tion and development path for solving the complex problems of drought monitoring in
the future.
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