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Abstract: This study explores the potential of RGB image data for forest fire detection using deep
learning models, evaluating their advantages and limitations, and discussing potential integration
within a multi-modal data context. The research introduces a uniquely comprehensive wildfire
dataset, capturing a broad array of environmental conditions, forest types, geographical regions,
and confounding elements, aiming to reduce high false alarm rates in fire detection systems. To
ensure integrity, only public domain images were included, and a detailed description of the dataset’s
attributes, URL sources, and image resolutions is provided. The study also introduces a novel
multi-task learning approach, integrating multi-class confounding elements within the framework.
A pioneering strategy in the field of forest fire detection, this method aims to enhance the model’s
discriminatory ability and decrease false positives. When tested against the wildfire dataset, the
multi-task learning approach demonstrated significantly superior performance in key metrics and
lower false alarm rates compared to traditional binary classification methods. This emphasizes
the effectiveness of the proposed methodology and the potential to address confounding elements.
Recognizing the need for practical solutions, the study stresses the importance of future work to
increase the representativeness of training and testing datasets. The evolving and publicly available
wildfire dataset is anticipated to inspire innovative solutions, marking a substantial contribution to
the field.

Keywords: forest fire detection; remote sensing forest monitoring; deep learning; dataset represen-
tativeness; practical implementation; false positives; multi-task learning; multi-class classification;
benchmark dataset; open source

1. Introduction

As the impact of climate change continues to intensify worldwide, the frequency and
severity of wildfires have noticeably increased, posing substantial risks to ecosystems and
human communities alike [1]. Efficient and effective early detection systems are vital for
mitigating the destructive consequences of such events. Aligning with the United Nations’
Sustainable Development Goals (SDGs)—specifically SDG 13, targeting urgent action to
combat climate change and its impacts, and SDG 15, focusing on the sustainable use of
terrestrial ecosystems and halting deforestation—these systems represent an essential move
towards a resilient future.

Forest fires are multifaceted phenomena, influenced by various environmental and
contextual factors. Designing accurate detection systems thus presents substantial chal-
lenges. The integration of deep learning (DL) techniques, especially within the field of
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computer vision, has yielded impressive state-of-the-art results in addressing these com-
plexities [2]. These models, primarily convolutional neural networks (CNNs), are capable
of distinguishing between normal forest conditions and different stages of forest fires,
and even recognizing the early indicators of wildfires [3,4]. However, their efficacy is
heavily reliant on the quality, diversity, and relevance of the training data. Substandard
or insufficiently diverse data can notably hinder these advanced algorithms’ performance,
possibly leading to increased false alarms or missed detections [5].

Once trained and evaluated, these models can be incorporated into various surveil-
lance systems, such as satellites, drones, or ground-based platforms, for real-time image
analysis [4]. When they detect visual features indicative of potential forest fires, they can
promptly alert authorities, significantly enhancing response times and reducing wildfire’s
destructive effects. The continual improvement of these algorithms, facilitated by new data,
ensures adaptability to shifting conditions and evolving wildfire patterns in the context of
global climate change.

From a practical implementation standpoint, adopting a multi-modal data approach
stands out as a highly robust solution for forest fire detection using DL [4]. This strategy
leverages the inherent strengths of various data types, such as red-green-blue (RGB) data,
thermal data, hyperspectral data, laser infrared technology, and meteorological data. Each
of these offers unique insights and complementary information about the environment
under observation. By combining these data types, the system can counterbalance the
individual limitations of each, yielding a more accurate and comprehensive detection
solution [6].

In the specific context of RGB data, relying exclusively on them can lead to a higher
incidence of both false positives and negatives [4]. This phenomenon stems from the
inherent limitations in RGB data’s ability to consistently identify features indicative of
forest fires. Characteristics such as color, shape, and texture can vary significantly across
different fire scenes, leading to a lack of standardized identification markers and thereby
complicating detection [7]. Additionally, confounding environmental factors such as clouds,
fog, sunlight reflection, and low-altitude cloud cover can imitate visual features of fire or
smoke, further affecting machine learning (ML) model performance [4] (see Figure 1).
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Figure 1. Images from the introduced dataset depicting visual features that may be misinterpreted by
the model as a forest fire scene.

However, despite these challenges, RGB data remain vital to the development of
DL-based forest fire early warning systems. Its broad availability, high resolution, and ease
of human interpretation render them an indispensable element [5]. The widespread use
of RGB imaging devices and their potential for frequent data collection ensure extensive
spatial and temporal coverage. Consequently, RGB data stand as a robust primary source
that, when thoughtfully combined with other data types, can markedly improve the fire
detection system’s overall performance. The strategic utilization of RGB data within a
multi-modal data fusion framework presents a particularly promising approach to forest
fire detection. While RGB data have their limitations, the unique attributes they possess
make them a key component in the data fusion puzzle.
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Maximizing the utilization of RGB data is appealing due to their near-ubiquitous
availability and relative affordability. The high-frequency capture of RGB data allows for
timely response to potential fire events, and the immediate mobilization of firefighting
resources, a crucial factor in minimizing the devastating impact of forest fires. Moreover,
RGB images offer a human-readable format that facilitates communication and coordina-
tion among various stakeholders, including decision-makers, firefighting teams, and the
public [3]. Additionally, most state-of-the-art CNNs are pre-trained on RGB data, enabling
transfer learning to reduce processing cost and training time, both of which are important
aspects for the use of edge devices with limited capacity [8]. While the robustness of a
multi-modal system is enhanced through the inclusion of other data types such as thermal,
hyperspectral, laser infrared technology, and weather data to cite a few, the centrality of
RGB data in this fusion approach is key.

Building on the integral role of RGB data in forest fire detection context, numerous
strategies have been proposed to enhance the performance of DL models specifically trained
on this data type. Addressing the unique challenges associated with forest fire detection
in RGB images, these approaches span a broad spectrum of techniques. Data augmenta-
tion strategies have been deployed to enrich the diversity and representation of training
data, bolstering the model’s capacity to generalize across varying conditions [9]. Further
improvements have been attained through transfer learning. This approach repurposes
models pre-trained on large, diverse datasets for the specific task of forest fire detection,
thus harnessing their robustness in handling confounding elements [10]. To refine the
differentiation between fire and non-fire phenomena, multi-class classification schemes
have been introduced. Preprocessing techniques play a vital role as well. Techniques such
as image enhancement, background subtraction, and color space transformations have
been employed to accentuate smoke and fire features in the images, thereby boosting the
model’s capacity to distinguish these phenomena. Researchers have also ventured into
more advanced DL architectures, including recurrent neural networks (RNNs), transformer
models, and attention mechanisms [11]. These methodologies have been proven to be
valuable in prioritizing more relevant and distinctive regions within images, thus enhanc-
ing the overall model performance. On the other hand, saliency detection has shown
promise for DL-based wildfire identification [7]. By directing the model’s focus towards the
most relevant and distinctive regions within images, this approach mitigates the impact of
confounding elements on classification accuracy, and further improves model performance.

The development of algorithms for forest fire detection requires the efficient extraction
of intricate visual features from varied data sources. However, an equally vital, yet often
overlooked aspect, is the quality and representativeness of the data used [12]. While the
drive to improve algorithmic performance continues, the necessity of capturing the complex
and dynamic environmental conditions of real-world forests in training datasets cannot be
understated. Unfortunately, this essential component has not received substantial attention
in the existing research, leading to a critical gap in the field.

Detecting forest fires, whether from aerial sources or ground-based platforms, is a
complicated process. It is fraught with variability due to environmental factors such as
weather conditions, terrain, and vegetation, as well as caption-related aspects such as
image resolution and angle of capture [4]. Datasets that fail to encompass this wide array of
variables may inadvertently lead to models that cannot generalize to new, unseen scenarios.
The consequences of this shortfall can be severe, culminating in suboptimal performance
when applied to real-world situations, and possibly failing to detect or falsely detecting
fire events.

Furthermore, a thorough review of existing literature on forest fire detection using RGB
images uncovers a noticeable deficiency in understanding the confounding elements and
challenges that contribute to high false alarm rates [13]. Although many studies acknowl-
edge the connection between these factors and false alarms, they tend to explore the issue
through a restricted set of examples. An in-depth examination that fully comprehends the
nuances of these contributing elements is conspicuously absent. This lack of comprehensive
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exploration leaves a significant opportunity for future research to bridge this knowledge
gap, enhancing our ability to develop more precise and reliable fire detection systems.

Despite the significant strides made in the realm of ML-based forest fire detection,
certain practical challenges remain unaddressed. The availability of publicly accessible
datasets for developing and testing models is notably limited [12]. This assertion is further
corroborated by recent review articles in the field [3,5,13]. This deficit impedes the estab-
lishment of a well-grounded benchmark, critical for enabling consistent evaluation and
comparison of different forest fire detection models [5]. The absence of such standardized
benchmarks hinders progress and validation of innovative techniques in this field [12].
A major contributing factor to this issue is the scarcity and limited accessibility of RGB
wildfire data [5]. Predominantly sourced from fire surveillance cameras and drones, these
images are often subject to permissions from local authorities. Moreover, capturing images
of forest fires is not only hazardous for personnel involved but also difficult due to the
unpredictable nature of wildfires. Coupled with the fact that forest fires are less common
than other types of fires, acquiring adequate samples for research purposes becomes a
fundamental task [3].

While there is a growing interest in leveraging RGB images for wildfire detection, the
reality is that most studies either do not share their datasets or rely on private datasets,
often fraught with various data-related issues [5]. Some research efforts, as documented
in [14], have tried to tackle the problem by collecting images with visual elements similar to
wildfires, such as fog, clouds, sunlight reflections, and sunsets, from non-specific wildfire
datasets to reduce false positive rates. In another instance, researchers [9] made use of
publicly accessible images from the Portuguese Firefighters Portal Database, a dedicated
media outlet supporting Portuguese firefighters [15]. While this source provides a wealth of
images from various fire incidents throughout Portugal, accessing these images for research
is a laborious process. Each image must be downloaded individually, and media outlet
logos need to be cropped before use. These hurdles underline the lack of standardized,
diverse datasets in the field, complicating the task of comparing the efficacy of different
methodologies and building on the reported results in the literature. In the same sense, it
is notable that some studies have utilized video datasets for flame detection, though only
a handful have been specifically curated for forest fires. Early wildfire warning systems
necessitate datasets that encapsulate not just the flames, but also the smoke characteris-
tics [14]. Predominantly, these training datasets consist of video frames, which are often
plagued by an abundance of duplicate images. Such redundancy potentially undermines
the generalizability of the models trained on these datasets [9]. Seeking alternatives to
these constraints, researchers have ventured into the realm of synthetic data generation
using generative adversarial networks (GANs) [14]. These networks can create additional
training samples, infuse diversity, and facilitate training under controlled conditions. On
the other hand, reference [16] exemplifies an alternative approach that targets some of the
noted constraints by employing a multi-task learning (MTL)-based forest fire detection
model (MTL-FFDet). The model was developed with three distinct tasks: the detection
task, the segmentation task, and the classification task. This innovative approach shares
the feature extraction module across all tasks, thereby enhancing feature extraction ability
and reducing the number of false and missed detections. Furthermore, the introduction of
a novel joint multi-task non-maximum suppression (NMS) processing algorithm seeks to
leverage the benefits of each task to maximize detection accuracy.

Finally, when considering the practical applications of fire detection models in real-
world forest environments, a comprehensive approach is warranted. This approach would
ideally integrate video and image datasets with synthetic data generated by GANs. Video
datasets bring to the table valuable temporal information, facilitating the monitoring of
fires over time and encapsulating the dynamic nature of wildfires. On the other hand,
image datasets collected from the Internet contribute a diverse set of samples, originating
from varied sources and depicting fires under a wide spectrum of conditions and contexts.
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The incorporation of synthetic data enhances the breadth of the training set, potentially
improving the robustness and generalizability of the models.

In this study, we present a meticulously curated and diverse image dataset contain-
ing 2700 RGB instances, designed to serve as a benchmark for future forest fire detection
research. The dataset is structured into two main categories (fire vs. nofire) and further
divided into five subclasses, introducing a novel and comprehensive scope. It encompasses
a wide array of environmental conditions, forest types, geographical regions, and con-
founding elements, all aimed at addressing the pervasive issue of high false alarm rates in
DL-based fire detection systems.

Considering the notable scarcity of inclusive RGB datasets in this area, our contribution
represents a valuable resource for the research community. To ensure the dataset’s integrity,
we adhered strictly to legal compliance, including only images that belong to the public
domain, and providing a detailed description of the dataset’s characteristics. This approach
offers researchers a complete understanding of its diversity and depth.

Our goal is to spur innovation and facilitate progress in forest fire detection; thus, the
dataset will be made publicly available. Accompanying the dataset, a CSV document will
also be released to the public. In this document, each image will be linked to its respective
download URL for reference and will include details such as its resolution. Through these
efforts, the study aims to fill current knowledge gaps and foster the development of more
precise and reliable solutions in this vital field.

In addition to providing the dataset, our work includes a thorough examination
of potential confounding elements that could challenge the performance of DL models.
By exploring these factors (see Figure 1), we aim to deepen the understanding of the
complexities involved in forest fire detection, further enhancing the applicability and
efficacy of our research.

Through a meticulous examination of the dataset, and by compiling a list of chal-
lenging factors identified through both a comprehensive literature review and a visual
inspection of the images, this study emphasizes the depth and relevance of the proposed
dataset. The effectiveness of the new dataset, referred to as “wildfire”, will be assessed by
leveraging a combined dataset. This combined collection comprises several relevant, previ-
ously published datasets, amounting to a total of 36,775 images. More detailed information
on the datasets included can be found in Table 1.

Subsequently, a DL model trained on the combined dataset will be evaluated using
the wildfire dataset. This approach not only helps to confirm whether the initial list of
confounding elements covers most of the challenges faced by a DL model in current
literature but also assesses the model’s performance on specific types of images not covered
by the list. If the model performs poorly on certain image categories, it may be necessary to
update the list to include additional confounding elements. Moreover, this method serves
as a means to evaluate the quality and relevance of the collected dataset and demonstrates
its potential to enhance the diverse set of confounding elements in forest fire detection.
This analysis will help justify the need for such a dataset in the research community and
establish the significance of the study’s contribution to the field.

Table 1. Overview of the diverse sources from which images were procured to construct the
combined dataset.

Set Class

The DeepFire dataset [17]

The DeepFire dataset contains images with a uniform resolution of 250 × 250 pixels,
sourced from various websites from the Internet. The dataset includes a total of
1900 images, neatly balanced between two categories: 950 images depicting fire
incidents and the remaining 950 representing nofire scenarios.
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Table 1. Cont.

Set Class

The FLAME dataset [18]

The FLAME (Fire Luminosity Airborne-Based Machine Learning Evaluation) dataset
is a collection of aerial imagery gathered through visible spectrum sensors mounted
on two types of drones, the Phantom 3 Professional and Matrice 200 [13]. For
wildfire classification, it includes 48,010 RGB aerial images with a resolution of
254 × 254 pixels. These images are categorized into two classes: 17,855 images
without fire and 30,155 images containing fire.

HPWREN/AI for Mankind [19]

A dataset curated by AI for Mankind using public domain images that are publicly
accessible from the High Performance Wireless Research and Education Network
(HPWREN). These visual data, once downloaded, underwent a careful annotation
process aimed at classification. A total of 1340 images were bifurcated into two
distinct categories, namely “smoke” with 717 instances and “no smoke” with
623 instances.

M. S. Prasad, “Forest Fire Images”, Kaggle, 2022 [20]

The dataset was formed by consolidating and merging multiple smaller datasets
found on the Internet. However, specific references or sources for these constituent
datasets were not provided. This resulted in two main categories, ‘Test Data’ and
‘Train Data’. ‘Test Data’ includes a total of 50 images, divided equally into fire and
nofire subfolders, each containing 25 images. The training set is composed of
5000 images, with fire and nofire subfolders each containing 2500 images.

The High Performance Wireless Research and Education
Network dataset [21]

The database consists of a collection of non-segmented wildfire smoke images. These
photographs were captured from both ground and aerial perspectives. The database
houses a total of 98 original images, all featuring wildfire smoke.

Furthermore, the study proposes a novel approach centered on a multi-task learn-
ing [22] framework. In this method, a single base model is simultaneously trained to carry
out two related tasks—binary classification (fire/smoke vs. no fire/smoke) and multi-class
classification (different types of fire and confounding elements). The uniqueness of this
approach lies in the concurrent consideration of auxiliary task classes of confounding ele-
ments during both processes. To the best of the authors’ knowledge, this unique approach
of integrating multi-class confounding elements in a multi-task learning framework is a
first in the field of forest fire detection. This innovative dual-task training could poten-
tially enhance the model’s ability to distinguish between subtle differences among classes,
thereby reducing the false positive rate.

The study also addresses the data imbalance problem evident in the proposed wildfire
dataset, where 1047 instances form the fire class against 1653 instances in the nofire class.
Care was taken to retain the inherent characteristics of the fire class, and the natural
occurrence bias was preserved in the validation and test sets. Utilizing both the original
and augmented training sets, the study implemented classical one-step and two-step MTL
multi-class classification methods. These explored the subtle yet discernible influence of
data balancing on key performance metrics such as accuracy, precision, recall, F1-score,
and ROC-AUC score.

Section 2 will detail the key stages of the methodology and describe the materials
utilized in this study.

2. Materials and Methods
2.1. Dataset Collection and Curation

There is an evident need in the literature for enhanced datasets that address the existing
limitations and gaps in the field of forest fire detection. Many RGB datasets often lack the
required variety and representation of real-world conditions, hindering the development
and evaluation of robust detection models [13]. The novel wildfire dataset introduced
in this study aims to tackle this issue by purposefully increasing the variability between
samples and integrating confounding elements. This increased variability facilitates a
more comprehensive evaluation of detection approaches across various real scenarios,
contributing to the enhancement of DL-based forest fire detection methods and their
practical implementation.
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2.1.1. Image Collection and Dataset Structure Formation

A dataset of 2700 RGB aerial and ground-based images of forested areas was gathered
from multiple online sources, including government agencies, Flickr, and Unsplash. This
diverse dataset encompasses a broad spectrum of environmental conditions, forest types,
geographical regions, and the highly dynamic characteristics of forest ecosystems and fire
events. The image resolutions within the dataset are varied, as indicated by the following
key statistics:

• Average resolution: 4057 × 3155 pixels
• Minimum resolution: 153 × 206 pixels
• Maximum resolution: 19,699 × 8974 pixels
• Standard deviation of resolution (width): 1867.47 pixels
• Standard deviation of resolution (height): 1388.60 pixels

These metrics highlight high-resolution imagery that captures detailed information
favorable for precise analysis in deep learning applications for forest fire detection.

The dataset’s images represent different real-world scales, mirroring the varied sources
and contexts from which they were collected. This diversity in scale was carefully consid-
ered in the design of the deep learning experiments, with images resized to a consistent
scale as detailed in Section 2.3. No preprocessing steps were applied to the images to
ensure their versatility and usability in different contexts. However, preprocessing tailored
to this study’s objectives was applied in the context of the experiments, as explained in
Section 2.3. This approach maintains the native resolution and natural variability of the
images, enabling targeted adjustments that enrich each potential analysis.

Though the collection process may not be exhaustive, it supports the robustness and
generalizability of the findings derived from the dataset’s analysis to some degree. The
authors acknowledge the need for continuous development and expansion of this image
collection and have chosen to maintain the dataset as a dynamic entity. This evolving
approach signifies that additional images, videos, and other relevant data types will be
incrementally included, based on feedback and requirements from the dataset’s users. Such
adaptiveness not only broadens the dataset’s scope and richness but ensures that it remains
a relevant and comprehensive tool for current and future research.

The dataset was carefully divided into training (70%), validation (15%), and testing
subsets (15%), with further categorization within the primary classes of fire and nofire. The
training set, containing 1888 images, forms the foundation for model learning. It consists of
1157 nofire images and 731 fire images. These images are further divided into subclasses
representing different aspects of wildfires and potential confounders. The validation
directory, holding 402 images, is used to fine-tune model parameters and avoid overfitting,
while the test directory contains 410 images for the final evaluation. The structure of these
directories is consistent, ensuring an authentic assessment of predictive capabilities.

Finally, the images within each directory were randomized, enhancing a diverse
representation across the dataset. (Refer to Table 2 for more details on the datasets’ classes
and subclasses instances distribution).

Table 2. Data distribution across dataset’s subclasses.

Set Class Subclass Instances

Training

Nofire Forested areas without confounding elements 591
Nofire Fire confounding elements 254
Nofire Smoke confounding elements 330

Fire Smoke from fires 463
Fire Both smoke and fire 286

Validation

Nofire Forested areas without confounding elements 127
Nofire Fire confounding elements 50
Nofire Smoke confounding elements 69

Fire Smoke from fires 99
Fire Both smoke and fire 57
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Table 2. Cont.

Set Class Subclass Instances

Test

Nofire Forested areas without confounding elements 128
Nofire Fire confounding elements 52
Nofire Smoke confounding elements 71

Fire Smoke from fires 100
Fire Both smoke and fire 59

2.1.2. Capturing General Variability in the Dataset

To strengthen the representativeness and generalizability of the dataset, the image col-
lection process aimed to capture a comprehensive range of variability from environmental
and caption-related sources. The following parameters were meticulously considered:

Environmental Variability:

1. Topography: Varied terrain features, including hills, valleys, slopes, and plateaus.
2. Canopy Density and Structure: Distinct differences in tree density, height, branching

patterns, and forest stratification.
3. Forest Types and Species Composition: A variety of forest ecosystems encompassing

diverse species, plant communities, and successional stages.
4. Ground Cover: A wide range of ground cover types, such as grass, bare soil, water,

rocks, and leaf litter.
5. Natural Components: The presence of rivers, lakes, wetlands, and other natural

landscape elements.
6. Human-made Objects: Infrastructure, including roads, bridges, buildings, vehicles,

power lines, and other anthropogenic features.
7. Weather Conditions: Various atmospheric phenomena, such as fog, rain, snow, dust,

and wind.
8. Foliage: Seasonal and phenological changes in foliage, including leaves, flowers,

fruits, and seed dispersal.
9. Sunlight: Diverse sunlight exposure, shading patterns, and solar angles.
10. Fire Characteristics: Variability in fire size, shape, color, intensity, progression, and

smoke plume dynamics.
11. Smoke Dispersion: The variability in smoke plume patterns due to wind speed, wind

direction, and atmospheric stability.

Caption-related Variability:

1. Lighting Conditions: Fluctuations in light and shadows resulting from clouds, time
of day, and sun angle [9].

2. Image Resolution: Varied levels of image detail, sharpness, and pixel density.
3. Altitude and Distance: Diverse flying heights and distances from the forest or fire

event, affecting image scale and detail [14].
4. Camera Angle and Orientation: Variations in the camera angle relative to the subject,

its orientation, and field of view.
5. Perspective: A mix of top-down, oblique, and side-view angles in the images.
6. Platform Type: Heterogeneous image sources, such as drones, planes, and helicopters.
7. Obstructions and Reflections: The presence of objects or atmospheric conditions that

may cast shadows, cause reflections, or influence image quality.
8. Image Compression: The type and degree of image compression applied, which can

potentially introduce artifacts or degrade image quality.
9. Camera Motion Blur: The effect of camera motion or platform vibrations on image

sharpness, which can occur during flights in turbulent conditions or at high speeds.
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2.1.3. Rigorous Data Curation and Deduplication Process

Throughout the collection process, a meticulous approach was used to optimize the
quality of the dataset, ensuring it provides valuable insights for the practical implementa-
tion of the models.

The dataset features fewer images of forested areas covered with snow, as these
environments are less prone to forest fires.

In assembling the dataset, the authors placed particular emphasis on images that
captured human interaction with forests. This approach included incorporating images of
forested areas containing buildings, human settlements, roads, bridges, and other structures
associated with human activities. This consideration is crucial, as the majority of forest
fires are attributed to human actions.

To address potential duplication issues in the dataset, a deduplication method was
employed. This process involved comparing the perceptual hashes of the images to elim-
inate instances of double counting caused by duplicates gathered from multiple data
sources. To detect similar images with only slight, non-significant differences, several
image comparison algorithms were implemented.

2.1.4. Data Sources, Licensing, and Permissions

The images for the wildfire dataset were collected from multiple online sources, in-
cluding government agencies, Flickr, and Unsplash. To ensure compliance with intellectual
property rights and usage permissions, the licensing and permissions for each source were
meticulously verified before incorporating the images into the dataset. The sole licensing
associated with the images within the dataset is the public domain dedication. This selec-
tion ensures legal compliance, precludes issues with incompatible licenses, and allows for
the dataset to be freely shared within the research community. In addition, the dataset will
be complemented by a Supplementary File. This file will serve as a reference guide, linking
each image to its corresponding download URL. This approach ensures transparency and
allows users to trace each image back to its original source, if needed.

2.2. Model Selection: MobileNetV3

Striking a balance between model performance and efficiency is a fundamental consid-
eration in this study, given the significant computational demand and complexity involved
in processing large-scale image datasets for forest fire detection. In this sense, to carry out
the study effectively, the researchers chose MobileNetV3 [23] as a representative model for
their study’s experiments. Thanks to its compact and efficient design as a CNN, the model
is ideal for image classification tasks. MobileNetV3 is a variant in the MobileNet series, com-
bining the strengths of its predecessors, MobileNetV1 and V2, while integrating additional
enhancements for improved performance. MobileNetV3′s architecture is notably character-
ized by its use of depthwise separable convolutions, designed to minimize computational
costs without significantly compromising model performance. This technique dissects the
standard convolution operation into two separate layers: a depthwise convolution and
a pointwise convolution. This separation effectively attenuates the computational load
while preserving most of the network’s representational power. Moreover, MobileNetV3
incorporates inverted residual blocks with linear bottlenecks, a technique that bolsters
model capacity. These blocks, drawing inspiration from ResNet’s architecture, consist of
a series of layers where the input and output share the same dimensions, fostering easy
information flow.

MobileNetV3, with its focus on efficient computation and enhanced accuracy com-
pared to previous versions, emerges as an ideal model choice [23]. Its smaller parameter
count facilitates more efficient training and deployment of the model, which proves ad-
vantageous in the practical implementation of forest fire detection systems. By using
MobileNetV3 for their experiments, the researchers aim to show that promising perfor-
mance can be attained without sacrificing efficiency. This balance is a critical factor in the
development of practical and scalable forest fire detection solutions that rely on DL.
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2.3. Training the MobileNetV3

The Keras framework with a TensorFlow backend and GPU support were used to
compile the experiments. Training images are normalized to values between 0 and 1
by dividing each pixel by 255 and resized to the default size of MobileNetV3, which is
224 × 224 pixels. This resizing step ensures that the images are treated at a consistent scale,
a key factor in the model’s ability to detect forest fire conditions across the diverse dataset.
To optimize the performance of the input pipeline for the training, validation, and test
splits, the prefetch method was employed. This approach ensures that the processing unit
is not waiting for data to be loaded while training or evaluating the model, leading to
faster training times and improved overall performance. By using the prefetch method,
the optimal buffer size for prefetching is automatically determined, greatly enhancing the
efficiency of the data pipeline during both training and evaluation stages.

Stochastic optimization methods, including Stochastic Gradient Descent (SGD), Root
Mean Square Propagation (RMSProp), and Adaptive Moment Estimation (Adam), are
applied with a maximum of 100 epochs. Early stopping is configured with a patience of
5 and a minimum change in the loss of 1e-3. We determine the optimal Learning Rate
by testing four different rates (10−2, 10−3, 10−4, 10−5). A global average pooling layer is
integrated to reduce the dimensionality of the output matrix from the convolutional layers,
which is then flattened into a vector. This vector serves as an input for the fully connected
prediction layer. A dropout regularization technique with a dropout rate of 0.2 is employed
to enhance the model’s generalization capability.

The model’s performance is evaluated using a held-out validation dataset, and the
combination of learning rate and optimizer that yields the highest accuracy is selected for
testing on the test dataset.

2.4. Enhanced Detection with Multi-Task Learning Approach

This study introduces a novel approach, which includes the formulation of five distinct
subclasses of the wildfire dataset based on the curated list of confounding elements. These
classes are intended to ensure a balanced distribution of images depicting fire/smoke
events and those not. The classes are as follows:

1. Smoke from fires (subclass 1): This class encompasses images that illustrate smoke
emissions from fires, without the apparent presence of flames.

2. Both smoke and fire (subclass 2): This class includes images that exhibit both flames
and smoke emissions from fires.

3. Forested areas without confounding elements (subclass 3): Images devoid of any
confounding elements, as per the defined list, are categorized under this class. They
mainly represent typical forested areas.

4. Fire confounding elements (subclass 4): This class comprises images that contain
elements easily misconstrued as fire.

5. Smoke confounding elements (subclass 5): Images that feature elements that may
be misinterpreted as smoke fall under this class.

In the proposed approach, an auxiliary task of five-class classification is established
alongside the primary task of binary classification (fire/smoke vs. nofire/nosmoke) within
a MTL framework. A single base model is trained to handle both tasks concurrently. This
strategy takes advantage of shared features between tasks, enhancing the model’s ability to
generalize and improve overall performance.

The efficacy of the hierarchical multi-class classification strategy will be assessed. This
assessment involves comparison with a traditional one-step binary classification approach.
In the one-step approach, a single model is directly trained to classify images into two
categories: those showing a fire event (subclasses 1 and 2) and those not (subclasses 3, 4, and
5). This comparative analysis helps evaluate the potential benefits of implementing multi-
class MTL-based classification and the importance of addressing confounding elements
within the method.
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Another significant aspect of the analysis is to gain insight into identifying common
visual elements in the images that could resemble fire or smoke, such as sun glare, clouds,
fog, or specific vegetation types. Training the model to recognize these elements could help
reduce false positives, as the model learns to differentiate between actual fires/smokes and
visually similar elements [22].

Finally, feature visualization techniques, specifically Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) [24], are proposed. This approach helps understand which parts
of the input images contribute the most to the model’s predictions. Such understanding
can assist in identifying the visual features shared by confounding elements and actual
fires or smoke.

2.5. Addressing Confounding Elements

In assessing any alarm system, it is crucial to consider the presence of potential con-
founding elements that could lead to false alarms. The visual characteristics of certain
elements may resemble those of smoke and forest fires, posing challenges in accurately
distinguishing between images containing fire and those without. It is essential to under-
stand and address these confounding factors in order to develop more accurate and reliable
forest fire detection systems, minimizing the occurrence of false alarms and enhancing
overall performance.

The process of addressing confounding elements starts by creating an initial list of
challenging factors based on a comprehensive literature review. This review focuses on
studies that have emphasized the connection between confounding elements and high false
alarm rates in DL models trained on RGB forest fire detection. In addition to the literature
review, an analysis of the initial wildfire dataset is conducted to identify any potentially
relevant factors that may not have been addressed in existing research. Then, the list will
be used to form five subclasses of nofire images that will be included for the multi-class
classification problem for the remaining steps of the experimental setup.

The considered confounding elements are divided into specific subcategories, each
presenting its unique set of challenges to DL models. The compiled list with descriptions is
detailed below:

1. Atmospheric Phenomena: (a) Fog or mist: These can produce illusions of smoke
due to their translucent and diffused appearances, leading to potential misclassi-
fications [25]. (b) Low-altitude clouds: Their visual similarities to smoke plumes,
particularly the gray or white clouds, pose challenges for models in distinguishing
between them and smoke [7,19]. (c) Sunset: The angle and intensity of sunlight dur-
ing sunset can produce shadows and bright spots, complicating the differentiation
between fire and nofire elements.

2. Vegetation and Seasonal Changes: (a) Reddish/orange foliage: Some tree species
display red and orange hues during specific seasons, which can be misconstrued as
fire or embers in aerial images.

3. Lighting and Reflections: (a) Sunlight reflection on trees and water: Bright spots that
mimic fire or smoke features can be produced when sunlight reflects off wet surfaces
or water bodies [7]. (b) Shadow and lighting variations: Shadows that can be mistaken
for smoke or fire may be created by changes in lighting conditions, such as those
induced by clouds, time of day, or topography [9].

4. Camera-Related Artifacts: (a) Camera motion blur: Motion blur resulting from cam-
era movement or platform vibrations can lead to the introduction of visual artifacts
resembling smoke or fire.

5. Visually Similar Objects [26] and Phenomena [14]: This category encompasses any
other objects or phenomena that visually resemble fire or smoke, presenting additional
challenges for accurate classification.

As highlighted in Section 2.4, the focus of the study will include a multi-classification
problem comprising five distinct classes. Two of these classes are specifically dedicated to
confounding elements: one class embodies elements that mimic fire, while the other encom-
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passes elements that imitate smoke. Following an analysis of the model’s misclassifications,
a deliberate emphasis will be placed on elements that are more frequently misclassified
from the initial list. The goal of incorporating these classes dedicated to confounding
elements is to augment the model’s ability to distinguish between genuine fire and smoke
characteristics and those that merely bear similarities. This, in turn, should enhance the
precision and dependability of the forest fire detection system.

2.6. The Data Balancing Problem

In the realm of machine learning and data-driven models, dealing with an imbalanced
dataset represents a sophisticated challenge. Balancing a dataset can mitigate biases and
enhance model performance, particularly in cases where class distributions are inherently
unequal, such as the observed imbalance between the fire and nofire classes in the present
wildfire dataset [27]. With 1047 instances in the fire class against 1653 in the nofire class,
this disparity in the collection process is not merely a statistical artifact; it reflects the
actual occurrence bias existing in nature. The decision to employ data balancing techniques
must therefore be handled with meticulous care. This includes maintaining the essential
characteristics of each class without over-representation or artificial inflation that could
distort the model’s real-world applicability [28]. The choice of whether or not to balance,
and how to do so, becomes a nuanced task that requires an intricate understanding of
the data’s structure, the model’s purpose, and the underlying real-world dynamics of
each forest. Since the main goal of the rest of the study is to assess the impact of novel
strategies, such as the consideration of confounding element classes, the authors believed
that failure to balance the classes might bias the model towards the majority class, limiting
the robustness of the experiment’s results. In the following sections, the specific approach
to this multifaceted issue will be detailed, elucidating the careful considerations and
methodologies employed to strike a delicate balance that, to a certain extent, preserves an
authentic reflection of real-world scenarios.

To reduce the bias in the training process, the fire class in the training set was aug-
mented to match the nofire class in terms of representation. Augmentation was propor-
tionally distributed among the subclasses of the fire class, ensuring that each source image
was utilized only once. This method minimized the risk of the model internalizing noise or
peculiarities from augmented samples, allowing it to focus on the underlying patterns. As
a result, 268 images were incorporated into the Smoke from fires subclass (subclass 1), and
158 into the Both smoke and fire subclass (subclass 2). Specific augmentation techniques
were applied, including random rotations within a range of 40 degrees, width and height
shifts of 20%, a shear range of 20%, zooming within a range of 20%, horizontal flipping,
and using the ‘nearest’ method for filling in newly created pixels [29].

The process of balancing the classes within the training set was carefully designed to
reduce the model’s tendency to favor the majority class, potentially improving the ability to
identify the minority class. By maintaining an even distribution, the training set aided the
model in avoiding an overfit to specific categories, thus enhancing its ability to generalize.

In contrast, the authors decided to retain the natural distribution within the validation
and test sets. The considerations guiding this decision included avoiding overfitting,
preserving natural distribution in validation and test sets, and preventing data leakage.
(Refer to Table 3 for more details on the datasets included).

The empirical comparison of the original and augmented training sets offered valuable
insights into the influence of data balancing on model performance. These experiments
underscored the importance of a nuanced approach to class balancing, reaffirming the
methodology’s alignment with best practices and its potential to support nuanced pre-
dictions in fire classification. As the primary objective of this empirical comparison is to
evaluate the effect of data balancing on model performance, the same hyperparameters
were maintained during the training of the models. This approach was taken with the
intention of creating a more controlled comparison, where the only differing variable was
the data itself.
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Table 3. Distribution of original and augmented instances across the five subclasses before and after
balancing the training set.

Class Subclass Original Instances Augmented Instances

Nofire
Forested areas without confounding elements 846 847

Fire confounding elements 338 336
Smoke confounding elements 470 471

Fire
Smoke from fires 662 930

Both smoke and fire 384 542

Total 2700 3126

Beyond this assessment, all other experiments within the study utilized the augmented
dataset, aligning with the broader methodology.

The augmentation process was designed to equalize the number of instances between
the fire and nofire training set classes. By adding 268 images to the Smoke from fires
subclass and 158 to the Both smoke and fire subclass through techniques such as random
rotations, zooming, and flipping, both classes in the training set were brought to an equal
count of 1157 instances each.

In the process of evaluating the impact of data balancing on model performance, it
was observed that the differences in key performance metrics between models trained
on the original and balanced datasets were not obviously substantial. Such variations
raised questions concerning the stability of the observed differences, as minor fluctuations
might result from random variations or noise inherent in the training process. Given these
relatively narrow margins, a more nuanced and robust analysis was recognized as necessary.
To this end, the model, for each method, was trained multiple times, utilizing both datasets,
for a total of five iterations. The objective was to assess the stability and reliability of the
results rather than to conduct formal statistical significance testing. Confidence intervals
for the differences in performance metrics between the two methods were calculated
using bootstrapping, a resampling technique that allows for robust statistical inference,
particularly when dealing with small sample sizes (here, 5 runs). These intervals offer
a range within which the true differences in the models’ performances are likely to lie,
providing insights into the statistical significance of the differences and contributing to a
more comprehensive understanding of how the balancing through the augmentation of
positive instances (fire images) affects various aspects of the models’ behavior.

Further details of these experiments are provided in the results sections.

2.7. Weighting of Confounding Elements Subclasses in Model Training

In the multifaceted task of fire detection, the influence of confounding elements is
a critical consideration. These factors, which differ in complexity and ambiguity, may
have varied impacts on the model’s performance. A specific class might be more prone to
confusion with an actual fire or smoke event, thus requiring particular attention during
the training phase. Additionally, the disparate real-world effects of these elements further
justify differential weighting in their consideration. Imbalances within the dataset could
also be tackled by varying weights to cultivate a more balanced learning environment.

To investigate these aspects, a systematic approach is deployed in the training process,
where the weights of two subclasses, namely Fire confounding elements (subclass 4)
and Smoke confounding elements (subclass 5), are manipulated. Starting with equal
weights for both subclasses, the weights are methodically adjusted from 1 to 3, and specific
combinations are tested to gauge the model’s performance under different confounding
circumstances. This strategy also sheds light on how the model’s sensitivity to these
elements can shape its overall efficacy.

After determining the optimal weights, a detailed examination is conducted to com-
prehend why this specific weighting is effective. This includes probing how these optimal
weights sway the entire model performance and identifying the underlying mechanisms
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that render them effective. By doing so, the study seeks to offer nuanced insights into the
complex interplay of confounding factors in the realm of fire detection.

2.8. Transfer Learning

Different transfer learning [8] scenarios are evaluated, including training from scratch,
fine-tuning, and feature extraction, to identify the most effective strategy for enhancing the
model’s classification.

2.9. Performance Metrics

The performance of the model is gauged using the four key elements of the confu-
sion matrix: True Positives (TP), True Negatives (TN), False Negatives (FN), and False
Positives (FP). TP and TN represent the accurate predictions of fire and nofire images,
respectively, while FN and FP denote the instances where fire images and nofire images are
incorrectly identified.

Accuracy is a measure of how often the model predicts correctly and is given by the
ratio of correct predictions to total predictions.

Accuracy = (TN + TP)
/

(TN + FN + FP + TP)

Precision quantifies the model’s reliability when making positive predictions, defined
as the ratio of correctly identified fire instances to all instances that the model labels as fire.

Precision = TP
/

(FP + TP)

Recall (or sensitivity) expresses the proportion of actual fire images that are correctly
identified by the model out of all actual fire images.

Recall = (TN + TP)
/

(FN + TP)

The F1-score is a combined measure that reflects both precision and recall in a single
metric, thus allowing for an overall evaluation of a model’s predictive performance. This is
in contrast to accuracy, which measures the overall rate of correct predictions, encompassing
both fire and nofire predictions.

F1_score = 2× (Precision× Recall)
/

(Precision + Recall)

The ROC-AUC (Receiver Operating Characteristic—Area Under Curve) score is a
comprehensive metric that evaluates a model’s ability to distinguish between classes.
Unlike individual metrics such as accuracy, precision, or recall, ROC-AUC considers both
the true positive rate (sensitivity) and the false positive rate (1-specificity) across different
thresholds. It plots a curve (ROC curve) that represents these rates across all thresholds, and
the AUC value calculates the area under this curve. A perfect classifier would have an ROC-
AUC score of 1, while a completely random classifier would score 0.5. The ROC-AUC score
provides insights into the model’s discriminatory power, regardless of the specific threshold,
making it a valuable metric for assessing a model’s overall classification effectiveness.
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3. Results

Upon applying the MobileNetV3 model to the wildfire dataset, we observed significant
potential for enhancements in the model’s capacity to detect forest fires. This included the
skilled handling of complex variables known as confounding elements within the images.

This improvement was realized through a novel two-step multi-class classification
strategy. The application of this approach strengthened the model’s robustness, reduced
false alarms, and increased its ability to adapt to different and often challenging situations
specific to RGB forest fire detection.

As exposed previously, two distinct methods were investigated in this study: a one-
step classification (referred to as Method 1) and a two-step MTL multi-class classifica-
tion (referred to as Method 2). The experiments were conducted using both original
and augmented training sets to thoroughly evaluate the impact of data balancing on the
model’s performance.

To facilitate a clear comparison between these two methods, their performance metrics
were meticulously analyzed. The average values of these metrics after five independent
runs, which gauge essential qualities such as accuracy and precision, are detailed in Table 4.
The following provides an in-depth view of the comparative merits and limitations of each
method, helping to illuminate their respective roles and potentials in wildfire detection.

Table 4. Model performance means metrics for Method 1 and Method 2 using the original and the
balanced wildfire datasets.

Method Dataset Accuracy Precision Recall F1-Score ROC-AUC

Method 1 Original 0.8405 0.8324 0.7799 0.8049 0.8397

Method 1 Balanced
(Augmented) 0.8156 0.7187 0.8667 0.7857 0.8258

Method 2 Original 0.9073 0.8832 0.8855 0.8839 0.9053

Method 2 Balanced
(Augmented) 0.8766 0.7974 0.9171 0.8526 0.8842

The average values of key metrics after five independent runs.

3.1. Method 1: One-Step Classification

The one-step classification approach categorizes images directly into two distinct
classes: fire and nofire events. Table 5 outlines the optimized hyperparameters for Method
1, with configurations derived from the validation dataset. Meanwhile, Table 6 presents the
average values and standard deviation after five runs of performance metrics for Method 1,
utilizing both the augmented and original wildfire datasets.

Table 5. Hyperparameter configuration for Method 1.

Hyperparameter Value

Learning Rate 1 × 10−4

Optimizer Adam

Batch Size 32

Epochs 50

Fine tune at the layer number 80
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Table 6. Performance metrics means for Method 1 using augmented and original wildfire datasets.

Metrics Augmented Wildfire Dataset Original Wildfire Dataset

Primary Accuracy Mean = 0.8156, Std = 0.0152 Mean = 0.8405, Std = 0.0103

Precision Mean = 0.7187, Std = 0.0143 Mean = 0.8324, Std = 0.0367

Recall Mean = 0.8667, Std = 0.0108 Mean = 0.7799, Std = 0.0178

F1-Score Mean = 0.7857, Std = 0.0103 Mean = 0.8049, Std = 0.0176

ROC-AUC Mean = 0.8258, Std = 0.0083 Mean = 0.8397, Std = 0.0151
These results are based on five runs for each model, with bootstrapping used to calculate 95% confidence intervals
for the differences in performance metrics between the two models.

Data Balancing Assessment for Method 1

The comparison between Method 1 trained on the original wildfire dataset and the
augmented training dataset uncovers differences in performance across various metrics.
The mean primary accuracy for the augmented dataset is 0.8156 (Std = 0.0142), whereas the
original dataset results in a somewhat higher mean accuracy of 0.8405 (Std = 0.0094), with a
significant difference detected within a 95% confidence interval of [−0.03758,−0.01418]. As
expected, the augmented method exhibits significantly lower precision but a higher recall.
Considering the potential bias in the original dataset related to the imbalance, the superior
precision and overall accuracy might stem from this inherent data skewness. Conversely,
the augmented dataset method, with its increased recall, seems to provide a more balanced
perspective, enhancing sensitivity to fire instances.

The contrasts between these two methods also encompass the F1-Score, with the origi-
nal method showing a marginally better performance, and the ROC-AUC metrics, where
no significant difference was detected. These observations underline the complex interplay
between different evaluation metrics and the necessity to ensure harmony between the
model’s goals and its assessment standards. Specifically, while the augmentation of positive
fire instances improves sensitivity (recall), it seems to compromise precision and accuracy,
though not significantly impacting the F1-Score and ROC-AUC. This intricate balance
accentuates the significance of a well-thought-out data balance and augmentation scheme,
demanding rigorous analysis and planning to attain the targeted model efficiency in forest
fire detection.

The preference for one method over the other might thus hinge on particular goals
and necessities in wildfire detection. The original dataset method might yield slightly
superior overall results but could be influenced by bias due to the skewness in the training
data. On the other hand, the augmented dataset method could grant benefits in areas
such as sensitivity to fire occurrences, mirroring a more even-handed comprehension
of the underlying data dynamics. This understanding emphasizes the imperative for
an all-encompassing strategy in choosing and fine-tuning models, contemplating not
merely performance indicators but also the innate attributes and conceivable biases of the
datasets employed.

3.2. Method 2: Two-Step MTL Multi-Class Classification

In contrast to the first method, the second approach employs a hierarchical structure.
Table 7 outlines the optimized hyperparameters for Method 2, with configurations derived
from the validation dataset. Meanwhile, Table 8 presents the average values and stan-
dard deviation after five runs of performance metrics of the approach, utilizing both the
augmented and original wildfire datasets.
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Table 7. Hyperparameter configuration for Method 2.

Hyperparameter Value

Learning Rate 1 × 10−2

Optimizer Adam

Batch Size 32

Epochs 30

Fine tune at the layer number 1

Table 8. Performance metrics for Method 2 using augmented and original wildfire datasets.

Metrics Augmented Wildfire Dataset Original Wildfire Dataset

Primary Accuracy Mean = 0.8766, Std = 0.0147 Mean = 0.9073, Std = 0.0077

Precision Mean = 0.7974, Std = 0.0206 Mean = 0.8832, Std = 0.0263

Recall Mean = 0.9171, Std = 0.0273 Mean = 0.8855, Std = 0.0247

F1-Score Mean = 0.8526, Std = 0.0146 Mean = 0.8839, Std = 0.0201

ROC-AUC Mean = 0.8842, Std = 0.0127 Mean = 0.9053, Std = 0.0164
These results are based on five runs for each model, with bootstrapping used to calculate 95% confidence intervals
for the differences in performance metrics between the two models.

Data Balancing Assessment for Method 2

The comparison between Method 2 trained on the original wildfire dataset and the
augmented dataset reveals nuanced differences in performance across various metrics. The
mean primary accuracy for the augmented dataset is 0.8766 (Std = 0.0147), whereas the
original dataset yields a slightly higher mean accuracy of 0.9073 (Std = 0.0077), with a
significant difference detected within a 95% confidence interval of [0.04396, 0.0166]. Similar
to Method 1, the augmented method shows significantly lower precision but higher recall.
Again, given the higher number of nofire instances in the test set, the original dataset’s
performance, particularly its higher precision and overall accuracy, may be attributed to a
bias arising from the training data imbalance. In contrast, the augmented dataset method,
with its higher recall, appears to offer advantages in sensitivity to fire instances, potentially
providing more robustness to class imbalance.

The trade-offs between these two methods extend to the F1-Score and ROC-AUC
metrics, with the augmented method generally underperforming. These findings highlight
the delicate balance between various evaluation metrics and the importance of alignment
between the model’s objectives and its evaluation criteria. Specifically, while augmenting
positive fire instances enhances sensitivity (recall), it appears to do so at the cost of precision,
accuracy, F1-Score, and ROC-AUC. This trade-off underscores the importance of data
balance and augmentation strategy and calls for meticulous evaluation and design to
achieve the desired model performance in forest fire detection.

Again, these insights stress the need for a comprehensive approach in selecting and
fine-tuning models, taking into account not only performance metrics but also the inherent
characteristics and potential biases of the datasets being used.

3.3. Comparison between Method 1 and Method 2

The comparative analysis of Method 1, a conventional one-step binary classification
approach, and Method 2, a hierarchical multi-class classification strategy within a multi-
task learning framework, provides an insightful exploration of the strengths and trade-offs
between the two approaches in the context of wildfire detection. Refer to Table 9 for a
comparison of the two methods.
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Table 9. Performance metrics for Method 1 and 2 using the augmented wildfire datasets.

Metric Method 1 Method 2

Primary Accuracy Mean = 0.8156, Std = 0.0152 Mean = 0.8766, Std = 0.0147

Precision Mean = 0.7187, Std = 0.0143 Mean = 0.7974, Std = 0.0206

Recall Mean = 0.8667, Std = 0.0108 Mean = 0.9171, Std = 0.0273

F1-Score Mean = 0.7857, Std = 0.0103 Mean = 0.8526, Std = 0.0146

ROC-AUC Mean = 0.8258, Std = 0.0083 Mean = 0.8842, Std = 0.0127
These results are based on five runs for each model, with bootstrapping used to calculate 95% confidence intervals
for the differences in performance metrics between the two methods.

Primary Accuracy:

• Method 1: Achieves a mean accuracy of 0.8156 with a standard deviation of 0.0142.
• Method 2: Surpasses Method 1 with a mean accuracy of 0.8766 and a standard devia-

tion of 0.0130.
• 95% confidence interval for the difference: [0.05270, 0.06926].
• Discussion: Method 2′s approach, which incorporates the simultaneous classification

into five distinct subclasses, appears to enhance overall accuracy. This significant
improvement may be attributed to the model’s refined ability to discriminate between
different visual aspects of fire events, such as separating smoke from flames.

Precision:

• Method 1: Records a mean precision of 0.7187 with a standard deviation of 0.0140.
• Method 2: Outperforms with a mean precision of 0.7974 and a standard deviation

of 0.0207.
• 95% confidence interval for the difference: [0.05814, 0.09942].
• Discussion: Higher precision in Method 2 suggests that the multi-classification strategy

is more effective at correctly identifying true fire instances. The significant differenti-
ation between fire confounding/smoke confounding elements and fire/smoke may
contribute to this improvement.

Recall:

• Method 1: Registers a mean recall of 0.8667 with a standard deviation of 0.0128.
• Method 2: Further improves recall with a mean of 0.9170 and a standard deviation

of 0.0268.
• 95% confidence interval for the difference: [0.02390, 0.07301].
• Discussion: The significant increase in recall for Method 2 underscores its sensitivity

in detecting fire instances. This demonstrates the robustness of the MTL approach.

F1-Score:

• Method 1: Achieves a mean F1-Score of 0.7857 with a standard deviation of 0.0095.
• Method 2: Excels with a mean F1-Score of 0.8526 and a standard deviation of 0.0147.
• 95% confidence interval for the difference: [0.05810, 0.07556].
• Discussion: The higher and significant F1-Score in Method 2 reflects a balanced

performance in terms of precision and recall. This confirms that the multi-class MTL-
based classification approach is more harmonious in balancing false positives and
false negatives.

ROC-AUC:

• Method 1: Records a mean ROC-AUC of 0.8258 with a standard deviation of 0.0086.
• Method 2: Outperforms with a mean ROC-AUC of 0.8844 and a standard deviation

of 0.0128.
• 95% confidence interval for the difference: [0.05094, 0.06582].
• Discussion: The significant and superior ROC-AUC score in Method 2 indicates that it

performs better in ranking predictions and maintaining a favorable trade-off between
the true positive rate and false positive rate.
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Conclusion: The results highlight the efficacy of Method 2′s hierarchical multi-class
classification strategy. By simultaneously handling multiple classification tasks and consid-
ering the nuances of various fire and nofire-related elements, it demonstrates statistically
significant improvements across all the considered metrics compared to the traditional
one-step approach of Method 1. The integration of confounding elements within the MTL
framework appears to offer a more robust modeling of wildfire events.

3.4. The Evaluation on the Wildfire Dataset

The evaluation of the newly introduced wildfire dataset, conducted against a combined
set of previously published datasets totaling 36,775 images, provides critical insights into
the performance and adaptability of our model. Despite the comprehensive nature and
extensive range of the combined dataset, the model’s accuracy on the wildfire dataset
reached 0.7936.

3.5. Analysis of Weight Sensitivity on Confounding Elements Subclasses

The analysis of weight sensitivity on confounding elements subclasses is conducted to
assess how varying weights influence the model’s performance metrics. This investigation
provides insights into the model’s responsiveness to the considered distinct characteristics
of fire and nofire instances. Table 10 shows the results of model performance with varying
weights through multiple combinations in the range of {1, 2, 3} × {1, 2, 3} for the two
subclasses related to the confounding elements (subclass 4 and 5). Each value represents
the computed mean after five runs.

Table 10. Results of model performance metrics means after five independents runs with varying
weights for confounding elements subclasses.

Weight Combination (Subclass 1, Subclass 2,
Subclass 3, Subclass 4, Subclass 5) Primary Accuracy Precision Recall F1-Score ROC-AUC

(1.0, 1.0, 1.0, 0.2, 0.3) 0.9098 0.8115 0.9748 0.8857 0.9157

(1.0, 1.0, 1.0, 0.2, 0.2) 0.8716 0.7804 0.9392 0.8524 0.8859

(1.0, 1.0, 1.0, 0.1, 0.3) 0.9015 0.8348 0.9207 0.8756 0.9026

(1.0, 1.0, 1.0, 0.3, 0.1) 0.8683 0.8212 0.9245 0.8698 0.8985

(1.0, 1.0, 1.0, 0.3, 0.2) 0.8878 0.8212 0.9245 0.8698 0.8985

(1.0, 1.0, 1.0, 0.2, 0.1) 0.8829 0.7937 0.9434 0.8621 0.8940

(1.0, 1.0, 1.0, 0.1, 0.2) 0.9024 0.8599 0.8491 0.8544 0.8807

(1.0, 1.0, 1.0, 0.3, 0.3) 0.9024 0.7979 0.9686 0.8750 0.9066

The weight combination (subclass 1, subclass 2, subclass 3, subclass 4, subclass 5) corresponding to (1.0, 1.0, 1.0,
0.2, 0.3) signifies that all the first three subclasses are assigned a weight of one, while the 4th and 5th subclasses,
which represent the fire confounding elements and the smoke confounding elements, are given respective weights
of 2 and 3.

3.5.1. Sensitivity to Fire Confounding Elements

Increasing the weight of fire confounding elements (e.g., the weight combination [1.0,
1.0, 1.0, 0.3, 0.1]) generally leads to higher precision and a slight decrease in recall. This
trend indicates that the model becomes more selective in identifying true fire instances,
potentially missing some challenging cases related to smoke instances (subclasses 1 and 5).
This pattern may underscore the relatively greater importance of smoke-related instances
as opposed to fire ones (subclasses 2 and 4), possibly reflecting the higher number of smoke-
related instances in the test dataset. This trend might be observable in other combinations,
though the specific combination (1.0, 1.0, 1.0, 0.2, 0.1) appears to be an exception and might
not fully align with this general observation.

3.5.2. Sensitivity to Smoke-Confounding Elements

The weighting of smoke confounding elements demonstrates noticeable effects on the
model’s performance. Specifically, reducing the weight on these elements (e.g., [1.0, 1.0,
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1.0, 0.1, 0.2]) leads to higher precision and lower recall. This reflects a more conservative
classification approach towards smoke detection, suggesting a nuanced sensitivity to these
elements. Again, this pattern may underscore the relatively greater importance of smoke-
related instances as opposed to fire ones (subclasses 2 and 4), possibly reflecting the higher
number of smoke-related instances in the test dataset.

3.5.3. Equal Weights and Balanced Performance

When equal weights are assigned to both fire confounding elements and smoke
confounding elements (e.g., [1.0, 1.0, 1.0, 0.3, 0.3]), the model produces relatively balanced
performance across all key metrics. This observation highlights the model’s well-rounded
responsiveness to various confounding elements, fostering balanced detection.

3.5.4. Stability in Primary Accuracy

A noteworthy consistency is found in primary accuracy, ranging from 0.8683 to 0.9098
across different weight combinations. This stability indicates that the model maintains its
overall classification ability while fine-tuning its sensitivity to the confounding elements.

3.5.5. Influence of Instances Distribution

The distribution of instances, particularly the fewer instances of fire confounding
elements, underscores the value of weighting. By compensating for this disparity, the
approach may show some potential combinations that learn more robustly from this
subclass, illustrating the importance of weighting in achieving balanced learning and the
potential that offers the wildfire’s dataset unique structure.

3.5.6. Conclusion

Overall, the analysis reveals intricate tendencies in the model’s response to varying
weights for confounding elements. The trade-off between precision and recall, the stability
in primary accuracy, and the influence of instances distribution reflect a multifaceted
interaction. The results imply that there may not be a one-size-fits-all approach to weighting,
but a systematic exploration can guide the identification of an optimal balance. Such
balance aligns with the specific goals and constraints of fire/smoke detection applications,
contributing to a more versatile model.

4. Discussion

Upon an in-depth analysis of deep learning forest fire models using RGB images, the
existing body of literature reveals a noticeable gap—a comprehensive scrutiny of data
representativeness and challenging factors that can induce high false alarm rates. While
several studies do acknowledge the correlation between these confounding elements and
false alarms, their treatment of the subject often lacks the breadth and depth necessary for
a complete understanding.

This research endeavor addresses this specific gap in several ways. First, it crafts a
more exhaustive enumeration of these confounding elements. Second, and more impor-
tantly, it introduces the wildfire dataset, a significant contribution that effectively considers
these confounding elements. This dataset offers researchers a valuable tool for data collec-
tion, annotation, and model performance evaluation, thereby aiding in a more nuanced
understanding and effective management of the factors that lead to false alarms in forest
fire detection.

The evaluation of the newly introduced wildfire dataset, conducted against a com-
bined set of previously published datasets totaling 36,775 images, yields critical insights.
Despite the comprehensive nature and extensive range of the combined dataset, the model’s
accuracy on the wildfire dataset reached 0.7936. Given the considerable size of the training
set, this accuracy might appear moderate. A subjective error analysis further bolstered
indicates that the wildfire dataset introduces a unique set of challenges and confounding
elements that may not have been sufficiently represented in the previously used datasets.
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Moreover, in the context of forest fire detection, it is vital to highlight that the task at hand
is fundamentally a binary classification problem, distinguishing between fire and nofire
events. The ostensibly straightforward nature of the problem might suggest that achieving
high accuracy should be less challenging. However, when the model was exposed to the
wildfire dataset, an accuracy of 0.7936 was obtained, despite the substantial volume of
the combined dataset used for training. This underscores the complexity of the task and
the importance of carefully considering the confounding elements specific to forest fire
detection and in general, data representativeness.

This performance, while respectable in some contexts, bears significant implications
when translated into real-world, practical applications of forest fire detection. Given the
high stakes associated with accurate and timely forest fire detection, where errors could
result in substantial environmental damage and potential loss of life, an accuracy rate
below 100% is of critical concern. This underscores the complexity of real-world forest fire
detection tasks, which must contend with an array of confounding elements not adequately
represented in existing datasets. The results also emphasize the importance of our endeavor
in creating the wildfire dataset, which introduces new challenging elements, making it
a valuable tool in the development of more robust and reliable DL models for forest fire
detection. The results, therefore, validate the significance of our study’s contribution in
this field.

Further, the present work delves into the intricate issue of data balancing, especially
pertinent in the context of wildfire detection, where imbalances between fire and nofire
classes are intrinsic. An augmented dataset was meticulously crafted by employing a
nuanced method to equalize the fire training class with the nofire class, leaving the vali-
dation and test datasets untouched. The empirical comparison between the original and
augmented training sets unveiled subtle yet essential insights into the influence of data
balancing on model performance. While the original dataset resulted in higher accuracy,
precision, recall, F1-score, and ROC-AUC, this study’s comprehensive exploration reveals
that these metrics, in isolation, may not sufficiently capture the model’s effectiveness,
particularly in the complex context of imbalanced data. The greater accuracy in the original
dataset could be misleading, as a model may overly favor the majority class. A judicious
examination of this pattern has led to a broader understanding of the delicate interplay
between statistical representation, real-world occurrence, and the model’s intended role.
By adopting a thoughtful and strategic approach to data balancing, this study accentuates
the necessity of a measured approach that transcends mere numerical evaluation, contem-
plating the underlying data dynamics, the practical complexity of wildfire detection, and
the overarching goal of crafting models attuned to sophisticated, real-world applications.

Another significant facet of this study is the introduction of an innovative multi-task
learning approach for forest fire detection. This approach introduces an auxiliary task
of five-class classification trained simultaneously with the primary binary classification
task (fire vs. nofire). A single base model is employed to manage both tasks concurrently,
exploiting the shared features between tasks to enhance the model’s ability to generalize
and improve its overall performance. The study undertakes a comparative assessment
between this hierarchical multi-class classification strategy (Method 2) and a traditional
one-step binary classification approach (Method 1). In the one-step approach, the same
model is trained directly to categorize images into two general classes: images showcasing
a fire event (classes 1 and 2) and those that do not (classes 3, 4, and 5). The intention
behind this analysis is to shed light on the potential benefits of the multi-class, MTL-based
classification strategy and underline the potential of addressing confounding elements
within the method as independent subclasses (classes 4 and 5).

When evaluated on the augmented wildfire dataset, the two-step multi-class classifica-
tion approach (Method 2) showcased a significant suitability over the one-step classification
approach (Method 1). The results consistently favor the latter across all key metrics in-
cluding accuracy, precision, recall, F1-Score, and ROC-AUC. Method 2 demonstrates a
mean accuracy of 0.8766 and an F1-Score of 0.8526, reflecting a refined ability to distinguish
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different visual aspects of fire events, such as smoke from flames, and excels in ranking
predictions. The significant increases in these metrics and the corresponding 95% confi-
dence intervals ([0.05270, 0.06926] for accuracy, [0.05814, 0.09942] for precision, [0.02390,
0.07301] for recall, [0.05810, 0.07556] for F1-Score, and [0.05094, 0.06582] for ROC-AUC)
underline the robustness and nuanced modeling of wildfire events through Method 2. This
comparison emphasizes the efficacy of a novel methodological design, with the integration
of confounding elements within the multi-task learning framework, to attain significant
improvements in wildfire detection performance.

A subjective error analysis using feature visualization techniques, such as Grad-CAM,
further bolstered the superiority of Method 2, pointing out its advantage not only in terms
of standard performance metrics, but also in its ability to more accurately discern the
subtleties of the images within the dataset.

In moving forward, the uniquely structured wildfire dataset introduced in this study
presents promising opportunities for further research in wildfire detection. Its distinct
subclasses and the careful consideration of environmental and caption-related variability
provide a multifaceted platform that may contribute to the refinement of detection algo-
rithms and the advancement of image processing techniques. Building upon the insights
gathered from this study, the wildfire dataset, with its nuanced structure and five distinct
subclasses, offers promising avenues for further research and practical applications. The
inclusion of diverse categories such as smoke from fires, both smoke and fire, forested areas,
and confounding elements adds layers of complexity that can facilitate more targeted and
nuanced analyses.

The specific subclass categorization may provide researchers with a platform to in-
vestigate specialized aspects of wildfire detection, such as distinguishing smoke from
fire, recognizing elements that can be misidentified as fire or smoke, or understanding
the interplay between flames and smoke. This can lead to more refined algorithm devel-
opment, though further validation and experimentation would be necessary to confirm
these possibilities.

Furthermore, the dataset’s attention to environmental variability, including aspects
such as topography, forest types, weather conditions, and fire characteristics, opens up
opportunities for modeling different wildfire scenarios. This could aid in creating more
adaptable detection models, enhancing their relevance to diverse real-world contexts,
without asserting that it can completely overcome all challenges.

In terms of image processing, the caption-related variability captured in the dataset
presents a valuable resource for researchers. Factors such as lighting conditions, image
resolution, altitude, and angle offer a range of challenges that may contribute to the develop-
ment of techniques for improving image quality and robustness under various conditions.

Additionally, the dataset may serve as a potential benchmark for evaluating and
comparing different wildfire detection models. Its rich structure and variety could provide
a basis for assessing algorithm performance, though it would need to be utilized within a
controlled experimental setup to ensure fair comparisons.

Furthermore, the wildfire dataset distinct structure, especially the inclusion of sub-
classes representing various confounding elements, allows for the utilization of advanced
feature visualization techniques, such as Grad-CAM. By offering these insights, researchers
may gain a more detailed understanding of how specific regions of the images influence
the model’s predictions. This has the potential to uncover hidden patterns and dynamics
that models trained on conventional datasets might overlook. Furthermore, the subclasses
can enable a more granular examination of feature maps within visually similar images
that have contrasting classification outcomes. Identifying connections between particular
visual elements and instances of confusion in the predictions becomes an attainable goal.
Though promising, the realization of this potential may require careful handling, as the
complexity of the confounding elements may present unforeseen challenges.

An ablation study may be another avenue of exploration, wherein the removal of
specific features or sections of the model can help assess their impact on performance. The
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systematic analysis might unveil areas causing confusion and provide data-driven insights
to guide further data collection or architecture adjustments. This can be a vital step towards
more accurate forest fire detection, though it must be undertaken with due consideration
to the multifaceted nature of the data and models.

By taking advantage of the wildfire dataset structure, it provides a scaffold for innova-
tion that might lead to the development of thoughtful and methodical implementation, rec-
ognizing that the intricate dynamics of the data can offer both opportunities and challenges.
In this context, one promising avenue is the possibility to permit a novel methodological
design, such as for example, the integration of confounding elements within the multi-task
learning framework. This approach (Method 2) showed significant improvements by lever-
aging the diverse characteristics found within the dataset, utilizing the nuances in image
categorization to create more responsive models. In that sense, varying the weights of these
subclasses showed potential avenues of improvement as reported in Section 3.5.

In summary, the dataset’s careful attention to detail and classification offers fertile
grounds for ongoing innovation in wildfire detection. Whether through advanced visual-
ization, novel methodological designs, or nuanced weighting strategies, the possibilities are
vast and compelling. However, each step forward also demands a measured understanding
of the underlying dynamics and a willingness to adapt and refine methods as new insights
emerge. The ultimate goal remains clear: to foster models capable of sophisticated, real-
world applications, making strides towards a more effective and comprehensive approach
to wildfire detection and management.

Study Limitations

One notable limitation of the present study is the absence of external validation using
a completely independent dataset, not involved in any phase of the model development
process. While the design and execution of the experiments were meticulous, they were
conducted exclusively on the curated dataset. This focus could potentially constrain the
generalizability of the findings, limiting their applicability to other regions or different wild-
fire scenarios. External validation with diverse and unrelated data would have provided a
more rigorous test of the model’s robustness and its ability to adapt to variations beyond
the characteristics captured in the training and validation sets. Future research efforts
that include such external validation can further substantiate the approaches’s efficacy
and contribute to a more comprehensive understanding of its performance in real-world
wildfire detection and management.

Another limitation of the study is the lack of consideration for the essential factors of
time and computational resources in the methodology. While these aspects were considered
in the choice of the model, they were not explicitly integrated into the evaluation of the
dataset’s structure or the effects of various methodological approaches. The time required
for training, validating, and testing the models, as well as the computational resources
necessary for these processes, plays a vital role in the practical applicability of the findings.
Ignoring these aspects may lead to an incomplete understanding of the model’s efficiency
and feasibility in real-world scenarios.

These limitations do not diminish the value of the study but rather highlight areas for
further refinement and exploration. Future research should aim to address these issues by
developing more objective and standardized classification criteria for the subclasses, as well
as by incorporating a more comprehensive assessment of time and computational demands
in the methodology. By acknowledging and addressing these limitations, subsequent
studies can build upon the current findings, contributing to a more robust and nuanced
understanding of wildfire detection and the effective utilization of the novel dataset.

5. Conclusions

The potential to bridge the existing divide between the theoretical algorithms dis-
cussed in the literature and their practical applications becomes a paramount objective
for future research endeavors. Prioritizing the enhancement of the representativeness
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in training and testing datasets emerges as a vital step in this direction. By doing so, it
becomes feasible to develop more accurate and robust forest fire detection systems capable
of effectively handling the diverse complexities encountered in real-world scenarios. This
focus serves not only as the next logical step in this line of research but also as a crucial
contribution towards the broader goal of creating more reliable and efficient solutions for
forest fire detection.
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the-wildfire-dataset. Researchers are encouraged to use this resource for their studies and to cite
appropriately when used.
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