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Abstract: Comparing algorithms are crucial for enhancing the accuracy of remote sensing estimations
of forest biomass in regions with high heterogeneity. Herein, Sentinel 2A, Sentinel 1A, Landsat
8 OLI, and Digital Elevation Model (DEM) were selected as data sources. A total of 12 algorithms,
including 7 types of learners, were utilized for estimating the aboveground biomass (AGB) of
Pinus yunnanensis forest. The results showed that: (1) The optimal algorithm (Extreme Gradient
Boosting, XGBoost) was selected as the meta-model (referred to as XGBoost-stacking) of the stacking
ensemble algorithm, which integrated 11 other algorithms. The R2 value was improved by 0.12 up to
0.61, and RMSE was decreased by 4.53 Mg/ha down to 39.34 Mg/ha compared to the XGBoost. All
algorithms consistently showed severe underestimation of AGB in the Pinus yunnanensis forest of
Yunnan Province when AGB exceeded 100 Mg/ha. (2) XGBoost-Stacking, XGBoost, BRNN (Bayesian
Regularized Neural Network), RF (Random Forest), and QRF (Quantile Random Forest) have good
sensitivity to forest AGB. QRNN (Quantile Regression Neural Network), GP (Gaussian Process), and
EN (Elastic Network) have more outlier data and their robustness was poor. SVM-RBF (Radial Basis
Function Kernel Support Vector Machine), k-NN (K Nearest Neighbors), and SGB (Stochastic Gradient
Boosting) algorithms have good robustness, but their sensitivity was poor, and QRF algorithms and
BRNN algorithm can estimate low values with higher accuracy. In conclusion, the XGBoost-stacking,
XGBoost, and BRNN algorithms have shown promising application prospects in remote sensing
estimation of forest biomass. This study could provide a reference for selecting the suitable algorithm
for forest AGB estimation.

Keywords: forest aboveground biomass; machine learning algorithm; remote sensing; Pinus yunnanensis
forest; stacking ensemble; Yunnan Province; China

1. Introduction

As a crucial quantitative and qualitative indicator of forest ecosystems, forest biomass
holds great importance in swiftly acquiring information on the quantity of biomass within
forests [1,2]. Nevertheless, traditional remote sensing methods for estimating forest biomass
suffer from disadvantages, such as low efficiency, high cost, and ecological damage. As a
result, there is a growing interest in biomass estimation based on remote sensing methods
to overcome the shortage above. Meanwhile, to enhance the accuracy of remote sensing
estimation of forest aboveground biomass (AGB), researchers have conducted extensive
studies utilizing diverse image data sources and algorithms [3,4].
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In AGB estimation of remote sensing, the data sources typically include lidar data,
multispectral data, synthetic aperture radar (SAR), hyperspectral data, and others. While
lidar data is not affected by data saturation effects and exhibits high estimation accuracy,
its widespread application is limited due to its high cost [4]. For free data source images,
Landsat 8 OLI and Sentinel 2A multispectral images have been widely used in forest AGB
remote sensing estimation due to their advantages, such as wide coverage, free acquisition,
high spatial-temporal resolution, mature technology, sensitivity to SWIR band, and red-
edge bands, etc., which help to monitor vegetation leaf characteristics [5–9]. In addition,
the free open-access Sentinel 1A SAR, a long-wave active sensor with the advantages of
day and night operation, no rain and cloud interference, senses forest geometry better than
passive optical sensors and provides valuable data for mapping forest AGB [10]. Numerous
studies have also shown that collaborative estimation of forest AGB using multi-source
remote sensing imagery could improve estimation accuracy, especially in regions with high
heterogeneity [11,12].

AGB estimation of remote sensing had many uncertainties caused by remote sensing
data sources, prediction models, forest physical environment, mixed pixel, sample biomass
calculation error, sampling error, image time mismatch, and other influencing factors, which
limited the accuracy of remote sensing estimation of AGB [13,14]. Among these, the model
plays a crucial role in the AGB estimation of remote sensing, and the selection and performance
of the model directly affect the accuracy and reliability of the AGB estimate [4,15], so it was
important to select a suitable algorithm for the AGB model to improve the accuracy of
remote sensing estimation of AGB. Machine learning algorithms have been widely used in
the estimation of forest AGB by Remote Sensing because they can capture complex non-
linear relationships between variables in multiple data sources and have high estimation
accuracy [16,17]. Simultaneously, the seven types of learners algorithms, such as Bagging
Learners, Boosting Learners, neural networks, linear-based learners, kernel-based learners,
K-nearest neighbor learners, and stacking ensemble algorithms, have been gradually used for
the estimation of forest AGB by Remote Sensing.

Review of the application of seven types of learners algorithms mentioned above that
are used in AGB estimation of remote sensing, the commonly used kNN algorithm has been
widely applied due to its simplicity and good estimation performance [18,19]. The Random
Forest (RF) algorithm has been generally recognized as an excellent choice for bagging learn-
ers due to its robustness and high accuracy, establishing it as the most commonly employed
algorithm [20]. However, it is important to note that the utilization of Quantile Random
Forest (QRF), an enhanced variant of the Random Forest algorithm, has relatively few
applications in estimating forest AGB by remote sensing [21,22]. Extreme gradient boosting
(XGBoost), an advanced tree boosting system and an enhancement of gradient boosting
based on Boosting Learners, has demonstrated outstanding performance in estimating
AGB from remote sensing data [23–25]. Furthermore, Guneralp et al. (2014) [26] have
shown that Stochastic Gradient Boosting (SGB) outperforms other algorithms, including
MARS (Multivariate Adaptive Regression Splines) and Cubist (Cubist), in the forest AGB
estimation of remote sensing within the context of Boosting Learners. The Quasi-Recurrent
Neural Network (QRNN) algorithm, as a part of Neural Networks Learners, has started to
gain attention in the field of estimation of forest AGB by Remote Sensing. Li et al. (2023) [27]
have demonstrated the capability of QRNN to effectively enhance forest AGB estimation
using remote sensing data. Furthermore, Bayesian Regularized Neural Networks (BRNN)
have addressed the challenges of overfitting and robustness that are commonly associated
with artificial neural networks. Although BRNN has attracted considerable interest in other
domains, its application in remote sensing for forest AGB estimation remains relatively
unexplored [28,29]. Among linear-based learners, Alvarez-Mendoza et al. (2022) [30] have
demonstrated the favorable estimation performance of Bayesian Ridge Regression (BRR)
in estimating grassland forest AGB through remote sensing. Moreover, the Elastic Net-
work Program (EN) represents a regularized version of linear regression that combines the
characteristics of Tikhonov Regularization (ridge) regression and Least Absolute Shrinkage
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and Selection Operator (LASSO) regression [31]. By incorporating the properties of both
algorithms, it produces estimates that can be interpreted as Bayesian posterior modes under
a prior distribution implied by the elastic network form. Despite the potential benefits,
there have been limited studies employing remote sensing for AGB using the EN [31].
Kernel-based learners referred to a family of algorithms that utilized kernel functions to
project low-dimensional data into a higher-dimensional space, enabling linear separability.
These algorithms were capable of handling nonlinear problems while still relying on linear
algebra [32]. Ghosh et al. (2023) [33] demonstrated that the Gaussian Process algorithm, as
a kernel-based learner, enhanced the accuracy of the estimation of forest AGB by remote
sensing. Additionally, Support Vector Machine (SVM), a popular machine learning tech-
nique, was found to have widespread application in the estimation of forest AGB using
remote sensing resources [4]. SVM employed a kernel function, such as the radial basis
function (RBF), to process nonlinear data by mapping it into a higher-dimensional feature
space. The SVM with RBF Kernel algorithm (SVM–RBF) excelled at modeling nonlinear
relationships between input and output variables and exhibited robustness against noise
and outliers [34,35].

Moreover, integration algorithms have been shown to exhibit higher estimation accu-
racy compared to single algorithms, such as the Stacking ensemble algorithm, as one of
the classic integration algorithms, combines the strengths of various models and has been
increasingly applied in the estimation of AGB using remote sensing resources [36,37]. In
Stacking ensemble models, the diversification of the base models plays a vital role in en-
hancing the integrated model [38]. Additionally, selecting models with high generalization
capability in the second layer as meta-models can effectively address and rectify any bias
present in the first-layer base learners towards the training data. The data generated in
the first layer for secondary prediction can further enhance the performance of the first
layer. Therefore, the model selection in the second layer holds significant importance
status [39]. By comparing multiple algorithms, selecting the optimal algorithm for remote
sensing estimation of AGB became an important pathway to improve the accuracy of AGB
estimation of remote sensing [16,38,40].

Although most of the different algorithms have been used in AGB estimation by remote
sensing, there are still incomplete comparisons of algorithms for different learners, and
some algorithms have not been investigated in forest AGB estimation, especially in highly
heterogeneous landscapes. Yunnan Province is located in a longitudinal ridge and valley
area with complex geological conditions and a special geographical location, resulting in
high forest heterogeneity [41–43]. Accurately estimating forest AGB using remote sensing in
such areas is undoubtedly a challenge [17]. For this reason, this study selected Sentinel 2A,
Sentinel 1A, Landsat 8 OLI, and Digital Elevation Model (DEM) as data sources and selected
12 algorithms that pairs of bagging learners, boosting learners, neural networks, linear-
based learners, kernel-based learners, KNN and stacking ensemble learners to explore the
remote sensing estimation of Pinus yunnanensis forests in Yunnan Province.

The aims of this study were: Comparing the performance of 12 algorithms from 7 types of
learners on AGB estimation of Pinus yunnanensis forests in highly heterogeneous landscapes.

2. Study Area and Materials
2.1. Study Area

Yunnan Province is located between 97◦31′–106◦11′ E and 21◦8′–29◦15′ N, on the
Yunnan-Guizhou Plateau, predominantly mountainous and highland, with a total area of
approximately 394,000 square kilometers in southwestern China, bordering the southeast-
ern edge of the Tibetan Plateau [41,44]. The terrain slopes from northwest to southeast, with
an altitude of 74–6457 m. Yunnan has a highland tropical monsoon climate with average
summer and winter temperatures of 19–22 ◦C and 6–8 ◦C, respectively. Pinus yunnanensis
is an endemic species of southwestern China. It generally grows in the plateau mountains
and medium-high valleys at an altitude of 250–3500 m and was concentrated at an altitude
of 1600–2900 m. The main dominant tree species in Yunnan Province are Pinus Yunnanensis,
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Pinus kesiya, Pinus armindii, oaks, Alnus nepalensis and other tree species. The Pinus yun-
nanensis was the forest type with the largest distribution area in Yunnan Province, and
its horizontal distribution extended to 28◦23′33′′ N in the north, 23◦01′20′′ N in the south,
97◦46′39′′ E in the east and 105◦54′05′′ E in the west [45]. Pinus yunnanensis not only plays
an important role in the ecological benefits of soil and water conservation in plateau areas
but also brings high economic and social benefits [45]. Figure 1 shows the location of the
study area.

Figure 1. Location of the study area: (a) the location of Yunnan province in China, (b) sample plots of
Pinus yunnanensis in Yunnan province, (c) the Landsat 8 OLI image.

2.2. AGB Calculation of Pinus yunnanensis Sample Plots

The ground data were derived from the 2021 survey of 210 Pinus yunnanensis forest
plots in the Continuous Forest Inventory (CFI) of Yunnan Province, and the distribution of
sample plots is shown in Figure 1. The basic information, such as the dominant species,
the diameter at breast height (DBH) of individual trees, tree height, average height and the
coordinate, and plot coordinates, was recorded by terrestrial RTK. The survey accuracy
met the requirements of the Technical Regulations for Continuous Inventory of Forest
Resources. Calculation of the aboveground biomass of individual Pinus yunnanensis trees is
based on Liu et al. (2015), and the R2 was 0.99 in equation [46], the equation was:

M = 0.048×DBH1.9276 × H0.9638 (1)

where DBH (cm) is the average diameter at breast height (1.3 m), H (m) is the average tree
height, and M is the aboveground biomass of a single standing tree (kg).

To obtain the AGB of the sample plot, the unit was converted into the value per
hectare using Equation (2). The final AGB statistical data of the Pinus yunnanensis forests
are shown in

AGB =
n×M

25.8× 25.8
× 10, 000

1000
(2)

where M was the aboveground biomass of a single standing tree (kg), n was the number of
trees in the sample plot, and AGB was the AGB of the sample plot (Mg/ha). Seventy percent
modeling and 30 percent model evaluation were adopted. The sample basic information is
shown in Figure 2. The 147 plots were used for model construction, and 63 plots were used
for model evaluation, and there was little difference between the model sample and the
test sample (p = 0.94 for Wilcoxon test).
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Figure 2. Basic overview of the samples.

2.3. Remote Sensing Data Acquisition and Variable Extraction

The DEM data was from the Geospatial Data Cloud (http://www.gscloud.cn/ ac-
cessed on 9 July 2023) at a spatial resolution of 30× 30 m (obtained by space-borne sensors).
Sentinel 1A, Sentinel 2A, and Landsat 8 OLI were downloaded from Google Earth Engine
(https://code.earthengine.google.com/ accessed on 9 July 2023) to match the survey data.
Sentinel 2A and Landsat 8 OLI data were surface reflectance products that selected less
than 3% cloud shadow and 5% cloud to synthesize from median values of the Yunnan area
in 2021 January–December. The Landsat 8 OLI was from “LANDSAT/LC08/C01/T1_SR”,
and Sentinel 2A was from “COPERNICUS/S2_SR” in Google Earth Engines. Sentinel 1A
was from “COPERNICUS/S1_GRD” in Google Earth Engines. The Sentinel-1 mission pro-
vides data from a dual-polarization C-band Synthetic Aperture Radar (SAR) instrument at
5.405 GHz (C band). This collection includes the S1 Ground Range Detected (GRD) scenes,
processed using the Sentinel-1 Toolbox to generate a calibrated, ortho-corrected product.
Besides, the image synthesis time was on 20 January 2023 and resampled by 30 × 30 m.
Subsequently, a 30 m resolution DEM was used for the terrain correction of Sentinel 2A,
Landsat 8 OLI, and Sentinel 1A. The vegetation indices, single band, and texture features of
Sentinel 2A and Landsat 8 OLI were calculated in ENVI 5.3 [47,48]. Landsat 8 OLI included
7 spectral bands, 17 vegetation indices, and 168 texture variables (3 × 3, 5 × 5, 7 × 7 were
from the gray-level co-occurrence matrix GLCM). Sentinel 2A included 12 spectral bands,
18 vegetation indices, and 168 texture variables (3 × 3, 5 × 5, 7 × 7 grey-scale co-occurrence
matrix feature GLCM). The spectral variables are shown in Table 1.

Table 1. Spectral variables.

Image Source Index Abbreviation Formula

Sentinel 1A
vertical transmit-vertical channel VV -

vertical transmit-horizontal channel VH -

http://www.gscloud.cn/
https://code.earthengine.google.com/
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Table 1. Cont.

Image Source Index Abbreviation Formula

Sentinel 2A

B2-Blue, B3-Green, B4-Ged,
B5-Gegetation red edge, B6-Vegetation

red edge, B7-Vegetation red edge,
B8-NIR, B9-Water vapour,

B10-SWIR-Cirrus, B11-SWIR,

B2, B3, B4, B5, B6,
B7, B8, B9, B10 -

ratio vegetation index RVI B8/B4

difference vegetation index DVI B8 − B4

weighted difference vegetation index WDVI B8 − 0.5 × B4

infrared vegetation index IPVI B8/(B8 + B4)

perpendicular vegetation index PVI sin(45) × B8 − cos(45) × B4

normalized difference vegetation index NDVI (B8 − B4)/(B8 + B4)

NDVI with band4 and band5 NDVI45 (B5 − B4)/(B5 + B4)

NDVI of green band GNDVI (B7 − B3)/(B7 + B3)

inverted red edge chlorophyll index IRECI (B7 − B4)/(B5/B6)

soil adjusted vegetation index SAVI 1.5 × (B8 − B4)/
8 × (B8 + B4 + 0.5)

transformed soil-adjusted
vegetation index TSAVI 0.5 × (B8 − 0.5 × B4 −

0.5)/(0.5 × B8 + B4 − 0.15)

modified soil-adjusted vegetation index MSAVI
(2 − NDVI ×WDVI) ×

(B8 − B4)/8 × (B8 + B4 +
1 − NDVI ×WDVI)

sentinel-2 red edge position index S2REP 705 + 35 × [(B4 + B7)/
2 − B5] × (B6 − B5)

red edge infection point index REIP 700 + 40 × [(B4 + B7)/
2 − B5]/(B6 − B5)

atmospherically resistant
vegetation index ARVI B8 − (2 × B4 − B2)/

B8 + (2 × B4 − B2)

pigment-specific simple ratio
chlorophyll index PSSRa B7/B4

meris terrestrial chlorophyll index MTCI (B6 − B5)/(B5 − B4)

modified chlorophyll absorption
ratio index MCARI [(B5 − B4) − 0.2 ×

(B5 − B3)] × (B5 − B4)

Landsat 8 OLI

band1—coastal aerosol, band2—blue
(BLU), band3—green (GRN),

band4—red (RED),
band5—near-infrared (NIR),

band6—shortwave infrared 1 (SWIR1),
and band7—shortwave infrared

2 (SWIR2).

B1, B2, B3, B4, B5,
B6, B7 -

normalized difference vegetation index NDVI (B5 − B4)/(B5 + B4)

NDVI with band3 and band4 ND43 (B4 − B3)/(B4 + B3)

NDVI with band6 and band7 ND67 (B6 − B7)/(B6 + B7)

NDVI with band3 and band5 with band6 ND563 ((B5 + B6) − B3)/
(B5 + B6 + B3)
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Table 1. Cont.

Image Source Index Abbreviation Formula

difference vegetation index DVI B5 − B4

soil-adjusted vegetation index SAVI ((1 + 0.5) × (B5 − B4))/
(0.5 + B5 + B4)

ratio vegetation index RVI B4/B3

brightness vegetation Index B
0.2909 × B2 + 0.2493 × B3 +
0.4806 × B4 + 0.5568 × B5 +
0.4438 × B6 + 0.1706 × B7

greenness vegetation Index G
−0.2728 × B2 − 0.2174 × B3
− 0.5508 × B4 + 0.7221 × B5
+ 0.0733 × B6 − 0.1648 × B7

temperature vegetation index W
0.1446 × B2 + 0.1761 × B3 +
0.3322 × B4 + 0.3396 × B5 −
0.6210 × B6 − 0.4186 × B7

atmospherically resistant
vegetation index ARVI (B5 − (2 × B4 − B2))/

(B5 + (2 × B4 − B2))

mid-infrared temperature
vegetation index MV17 (B5 − B7)/(B5 + B7)

modified soil adjusted vegetation index MSAVI (2 × B5 + 0.25 − ((2 × B5 +
0.25)2 − 8 × (B5 − B4))0.5)/2

multiband Linear combination of band2
with band3 and band4 VIS234 B2 + B3 + B4

multiband Linear combination ALBEDO B2 + B3 + B4 + B5 + B6 + B7

Simple Ratio Index SR B5/B4

improved vegetation index SAV12 B5 + 0.5 − (( B5 + 0.5)2 −
2 × (B5 − B4))0.5

optimized Simple Ratio vegetation Index MSR (B5/B4 − 1)/(B5/B4 + 1)0.5

karst terrain factor 1 KT1
0.304 × B2 + 0.279 × B3 +
0.474 × B4 + 0.559 × B5 +
0.508 × B6 + 0.186 × B7

principal component 1—factor A PC1-A
0.054 × B2 + 0.130 × B3+
0.143 × B4 + 0.595 × B5 +
0.709 × B6 + 0.321 × B7

principal component 1—factor B PC1-B
0.140 × B2 + 0.242 × B3 +
0.313 × B4 + 0.262 × B5 +
0.739 × B6 + 0.457 × B7

principal component 1—factor P PC1-P
0.056 × B2 + 0.079 × B3 +

0.127 × B4 − 0.845 × B5 −
0.490 × B6 − 0.143 × B7

3. Research Method

In this study, Sentinel 1A, Sentinel 2A, Landsat 8 OLI, and DEM were utilized as
data sources. The research was conducted based on 210 FCI Pinus yunnanensis forest plots
in Yunnan Province. A total of 12 algorithms from 7 types, including Bagging learners,
Boosting learners, neural network, linear-based learners, kernel-based learners, kNN, and
Stacking ensemble, were constructed for the study. Among these algorithms, the Stacking
ensemble algorithm integrates 11 algorithms, namely Bagging learner, Boosting learner,



Forests 2023, 14, 1742 8 of 17

neural network, linear learner, kernel function learner, and kNN, from 6 types of learners.
The Stacking ensemble then selected the optimal algorithm from these 6 types of learners
as its meta-model. The research workflow is illustrated in Figure 3.

Figure 3. Research technical route.

3.1. Variable Selection

Linear stepwise regression (LSR) is a commonly employed variable selection method
in remote sensing-based estimation of forest AGB [20,48]. It aims to identify useful variables
from a pool of redundant data. LSR introduces characteristic variables into the model and
conducts significance tests one by one to identify statistically significant variables that fall
within a specified range (p < 0.05). These selected variables form the final combination
in LSR [48]. To ensure the accuracy of the estimation model, collinearity between the
selected trait variables is assessed for each variable combination. Collinearity refers to the
presence of strong correlations between predictor variables, which can introduce bias in the
model estimation. In this context, the variance inflation factor (VIF) is used as a measure
of collinearity between the trait variables. A VIF threshold of 10 is commonly applied to
detect and address collinearity issues [38,49]. Variables with VIF values exceeding this
threshold are considered to have high collinearity and may be excluded from the model to
mitigate bias.

3.2. Model Construction

Grid search is a common tuning method that optimizes model performance by
searching for the best combination of hyperparameters in a predefined hyperparame-
ter grid [50]. This research adopts 5 cross-validation search algorithms to find the op-
timal combination of parameters, parameters CARET used to wrap the default value
(https://topepo.github.io/caret/ accessed on 9 July 2023). The hyperparameters of the
algorithm are shown in Table 2.

https://topepo.github.io/caret/
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Table 2. Algorithms for tuning hyperparameters.

Algorithm R Packages Hyperparameters Tuned

Random Forest Random Forest mtry (Randomly Selected Predictors)

Quantile Random Forest Quantreg Forest mtry (Randomly Selected Predictors)

Gaussian Process kernlab none

Stochastic Gradient Boosting gbm, plyr

n.trees (Boosting Iterations),
interaction.depth (Max Tree Depth),

shrinkage (Shrinkage), n.minobsinnode (Min.
Terminal Node Size)

Support Vector Machines with Radial
Basis Function Kernel kernlab Sigma (Sigma), C (Cost)

Bayesian Regularized Neural Networks brnn neurons

Quantile Regression Neural Network qrnn n.hidden (Hidden Units), penalty (Weight
Decay), bag (Bagged Models)

Bayesian Ridge Regression monomvn None

Gaussian Process kernlab None

Elasticnet elasticnet fraction (Fraction of Full Solution),
lambda (Weight Decay)

K-nearest neighbor none k (Neighbors)

Extreme gradient boosting xgboost, plyr
nrounds, max_depth, eta, gamma,

subsample, colsample_bytree, rate_drop,
skip_drop, min_child_weight

Stacking ensemble caretEnsemble, mlbench, caret -

notes: “-”, the hyperparameters are determined by the meta-model of Stacking ensemble algorithm.

3.3. Model Evaluation

Using the sample independence test to calculate its coefficient of determination (R2)
and root mean square error (RMSE) metrics for model evaluation.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (3)

RMSE =

√
∑n

i=1(ŷi − yi)2

n
(4)

where n is the number of sample observations, and yi is the actual value; ŷi is the estimated
value, and yi is the mean of the observed sample.

4. Results
4.1. Variable Selection

A total of 224 feature variables (35 vegetation indices, 19 single bands, 168 texture
features, VV, VH) were selected using the LSR method. Figure 4 shows the selection results,
and it can be seen that there was no strong multi-collinearity between variables. Eight
variables were selected to participate in the model construction, including three vegeta-
tion indices (S2PSSRa, S2NDVI45, S2REP), four texture features (L8_b7_EN7, L8_b5_CR7,
L8_b6_SM5, L8_b3_CR5) and one terrain factor (Slop). The results showed S2PSSRa had
the highest correlation with forest AGB. The figure also showed that the biomass samples
were skewed to the right.
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Figure 4. Correlation of variables (the blue diagonal line is the data distribution frequency map,
the lower left corner is the scatterplot relationship between the two variables, and the upper right
corner is the Pearson correlation coefficient between the two variables. Note: “*” stands for p ≤ 0.05,
“**” stands for p ≤ 0.01, “***” stands for p ≤ 0.001).

4.2. Model Evaluation

Figures 5 and 6 were the fitting diagrams and AGB maps of the models, respectively.
Figure 5 shows that the goodness of fit at a single algorithm level was XGBoost > BRNN
> EN > GP > RF > QRF > BR > QRNN > SGB > SVM-RBF > kNN. In addition, it can be
seen from the AGB maps that the distribution of high and low AGB values was almost
consistent across all algorithms. XGBoost, BRNN, RF, and QRF had good sensitivity and
the range of AGB estimates was reasonable with good robustness, among which QRNN,
GP, and EN had more outliers and poor robustness. The SVM-RBF, k-NN, and SGB also had
good robustness, but their sensitivity was less than that of XGBoot, BRNN, RF, and QRF
algorithms, and high-value underestimation was evident. For this purpose, the XGBoot
algorithm was chosen as a meta-model of the Stacking ensemble to integrate 11 algorithms.
It can be seen that the stacking integrated algorithm has the highest estimation accuracy
(R2 = 0.61, RMSE = 39.34 Mg/ha). Based on the XGBoost-stacking algorithm integrated
with 11 algorithms, R2 increased by 0.12 and RMSE decreased by 4.53 Mg/ha compared to
the single optimal algorithm, XGBoost algorithm. Good sensitivity and robustness were
also reflected in the AGB maps of the XGBoost-stacking algorithm. However, it can be
seen from Figure 5 that although the integrated stacking algorithm mitigated high-value
underestimation to some extent, all algorithms showed high-value underestimation in
forest AGB at around 100 Mg/ha, especially the SVM-RBF algorithm. However, for low
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values, the BRNN algorithm was more practical and could estimate low AGB values. In
conclusion, XGBoost, BRNN, and XGBoost-stacking algorithms have a good application
prospect in AGB estimation of remote sensing, and high-value underestimation was still an
important factor affecting the accuracy of AGB estimation.

Figure 5. AGB fitting scatter diagram of 12 algorithms.
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Figure 6. AGB maps of 12 algorithms in study areas.
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5. Discussion

Theoretically, Sentinel 1A data have a strong ability to penetrate forest stands and
may well reflect the vertical structure of forest stands, which correlates well with AGB [4].
However, in this study, the backscattering coefficient of Sentinel 1A was not selected by
LSR variables to participate in the model construction. This may be because the correlation
between the backscatter coefficient of SAR and the AGB of the forest is easily affected by
complex terrain. High-precision terrain correction for SAR images can improve image
quality, and the accuracy of the DEM greatly affects image quality [51–54]. For example, in
Vatandaşlar’s research, 1-m resolution data from the Shuttle Radar Topography Mission
(SRTM) was used to perform terrain correction on SAR data, and a good estimation effect
was obtained in mountainous landscapes [55]. However, Pinus yunnanensis in Yunnan
Province generally grows in plateau mountains and mid-altitude valleys at an elevation of
250–3500 m, and the terrain is relatively complex. In this study, 30 m DEM was used to
perform terrain correction on Sentinel 1A data. The DEM data are rough, which may be
the reason for the correlation between Sentinel 1A and AGB. Besides, this study employed
the LSR variable selection method to identify variables with high linear correlation to
forest AGB. To control collinearity between variables and mitigate estimation instability,
a VIF threshold of <10 was applied. Additionally, variable selection methods, such as
LASSO [56] and Boruta [17] may help prevent the exclusion of SAR data with low linear
correlation coefficients from the analysis. If the variable selection process is avoided,
directly combining SAR and optical variables to build a model can improve the accuracy of
AGB estimation. Moreover, existing studies have demonstrated that integrating texture
measurements from SAR images with forest auxiliary information can further enhance the
AGB estimation in mountainous forest remote sensing [57,58], which should be improved
in future research. Furthermore, from the perspective of the importance of the variables,
the correlation of the vegetation index was higher than that of the texture features, and the
forest structure of coniferous forests was simpler than that of deciduous forests, reflecting
the higher correlation of the vegetation index in forests with simpler forest structure [4,13].

The XGBoost algorithm demonstrated excellent fitting and robustness in this study,
primarily due to its inclusion of regularization techniques and pruning strategies. These
components play a crucial role in controlling the complexity of the model and mitigating
the risk of overfitting [59]. XGBoost has integrated the prediction results of all the basic
learners. Furthermore, during the learning and storage process, XGBoost has utilized
various methods to address the challenge of missing values encountered at different nodes.
Additionally, XGBoost has provided support for custom loss functions and incorporated
regular terms into the objective function to simplify the learning model and improve the
overall learning effectiveness. As a result, the XGBoost-based algorithm has proven to be
effective for estimating forest AGB. BRNN were more robust than QRNN because they can
control the number of effective parameters for training through a Bayesian criterion and are
insensitive to the architecture of the network [60]. It has been observed that the algorithm
employing the regularization techniques had promising prospects for the estimation of
forest AGB through remote sensing. Particularly in the areas characterized by high forest
heterogeneity, the algorithm exhibited better robustness and superior fitting performance.
In addition, the Stacking integrated algorithm had the highest estimation accuracy in this
study, the R2 was 0.61, and the RMSE was 39.34 Mg/ha. The estimation performance
of the Stacking algorithm was largely dependent on the performance of the meta-model.
This research compared the performance of 11 machine learning algorithms and selected
the optimal algorithm of XGBoost as the meta-model for the Stacking ensemble. The
XGBoost-stacking algorithm not only combined the excellent performance of the XGBoost
algorithm and Stacking algorithm but also integrated the excellent performance of six
kinds of learning algorithms of the basic model. Therefore, the XGBoost-stacking algorithm
could significantly improve the remote sensing estimation performance of forest AGB
by improving the generalization ability of the model [36]. Although the accuracy was
improved, the increase was not large. Besides, if we can screen from the model level,
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eliminate redundant model variables, and select truly useful model variables for Stacking
ensemble, the estimation accuracy may be better improved. Furthermore, only the fusion
strategy of stacking algorithms was considered in this study. The fusion strategies of other
algorithms, such as blending ensemble learning [61] and averaging algorithms, can be
explored in future research. The saturation effect was a common phenomenon in AGB
estimation based on optical remote sensing [4]. The saturation phenomenon was serious
according to the scatter distribution of predicted and observed values, and there was a
serious underestimation for higher AGB values.

Compared with similar studies, it can be seen that the AGB of Pinus yunnanensis was
underestimated when AGB was greater than 100 Mg/ha, which led to a lower accuracy
of estimation in this study. The saturation effect threshold of the data in this study was
lower than the AGB saturation of pine forests in Zhejiang Province of 159 Mg/ha, as
reported by Zhao et al. (2016) [62]. This may be due to the AGB samples showing a
right-skewed distribution that most of the values clustered in the low-value and fewer AGB
samples with a high value, indicating a certain degree of forest heterogeneity, which was
also an important reason for the serious underestimation of the higher values (Figure 4).
At the same time, the structure and habitat of the forest were more complex in Yunnan
Province compare to Zhejiang Province. Compared to Tang et al. (2022) and Chen et al.
(2022) [41,44] remote sensing assessment of forest AGB in Yunnan Province, the remote
sensing estimation accuracy of AGB in this study was still lower. If the hierarchical
estimation of Pinus yunnanensis forest could be implemented according to the characteristics
of topography and phenology, the data saturation phenomenon could be reduced, and the
estimation accuracy would be improved. Due to the limitation of the sample size, stratified
estimation was not possible in this study, but it could be supplemented in future studies. In
addition, LiDAR and high-resolution optical remote sensing data can provide the vertical
distribution information of vegetation and richer spectral characteristics, and introducing
them into the remote sensing estimation of Pinus yunnanensis AGB may overcome and
reduce the data saturation effect and improve the estimation accuracy [63,64]. Some
studies showed that temperature factors had a significant influence on coniferous forests
in Yunnan Province. Thus, adding environmental factors, such as temperature, would
reduce the phenomenon of underestimation and overestimation [17,65,66]. In addition,
the combination of geostatistical methods could be used for the next step study, as it can
also reduce the spatial heterogeneity of forest images, as well as the data saturation effect,
which may further improve the estimation accuracy [67].

6. Conclusions

Research shows that among the 12 algorithms, the fitting performance rank was
XGBoost-Stacking > XGBoost > BRNN > EN > GP > RF > QRF > BR > QRNN > SGB >
SVM-RBF > kNN. The stacking ensemble, with XGBoost as the meta-model, achieved
the highest estimation accuracy, with an R2 value of 0.61 and an RMSE of 39.34 Mg/ha.
When compared to the single optimal XGBoost algorithm, the stacking ensemble showed
an improvement of 0.12 in R2 and a reduction of 4.53 Mg/ha in RMSE. The Stacking,
XGBoost, BRNN, RF, and QRF models had a good sensitivity to AGB, which obtained a
reasonable AGB estimation range and good robustness. On the contrary, the QRNN, GP,
and EN models had more outlier data and poor robustness. SVM-RBF, k-NN, and SGB
algorithms also had good robustness, but their sensitivity was worse than that of XGBoot,
BRNN, RF, and QRF algorithms, and many of larger values were underestimated. All
algorithms underestimated the values when the forest AGB > 100 Mg/ha, especially the
SVM-RBF algorithm. However, for lower values, the BRNN algorithm was more practical
and could estimate lower AGB with more accuracy. In conclusion, XGBoost, BRNN, and
XGBoot-Stacking had a good application prospect in AGB estimation of remote sensing,
and high-value underestimation was still an important factor affecting the accuracy of
AGB estimation.



Forests 2023, 14, 1742 15 of 17

In the optical remote sensing-based estimation of Pinus yunnanensis forest AGB in
highly heterogeneous areas of Yunnan Province, the saturation effect was still an important
factor affecting the accuracy. XGBoot-Stacking could improve the estimation accuracy and
selecting an appropriate algorithm to participate in the AGB remote sensing estimation is
the key step to reducing the estimation errors. This study could provide a reference for
selecting suitable algorithms and data sources in AGB estimation.
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