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Abstract: Forest fires pose severe risks, including habitat loss and air pollution. Accurate forest
flame segmentation is vital for effective fire management and protection of ecosystems. It improves
detection, response, and understanding of fire behavior. Due to the easy accessibility and rich
information content of forest remote sensing images, remote sensing techniques are frequently
applied in forest flame segmentation. With the advancement of deep learning, convolutional neural
network (CNN) techniques have been widely adopted for forest flame segmentation and have
achieved remarkable results. However, forest remote sensing images often have high resolutions,
and relative to the entire image, forest flame regions are relatively small, resulting in class imbalance
issues. Additionally, mainstream semantic segmentation methods are limited by the receptive
field of CNNs, making it challenging to effectively extract global features from the images and
leading to poor segmentation performance when relying solely on labeled datasets. To address
these issues, we propose a method based on the deeplabV3+ model, incorporating the following
design strategies: (1) an adaptive Copy-Paste data augmentation method is introduced to learn
from challenging samples (Images that cannot be adequately learned due to class imbalance and
other factors) effectively, (2) transformer modules are concatenated and parallelly integrated into the
encoder, while a CBAM attention mechanism is added to the decoder to fully extract image features,
and (3) a dice loss is introduced to mitigate the class imbalance problem. By conducting validation on
our self-constructed dataset, our approach has demonstrated superior performance across multiple
metrics compared to current state-of-the-art semantic segmentation methods. Specifically, in terms
of IoU (Intersection over Union), Precision, and Recall metrics for the flame category, our method
has exhibited notable enhancements of 4.09%, 3.48%, and 1.49%, respectively, when compared to the
best-performing UNet model. Moreover, our approach has achieved advancements of 11.03%, 9.10%,
and 4.77% in the same aforementioned metrics as compared to the baseline model.

Keywords: forest flame; CBAM; semantic segmentation; transformer; adaptive Copy-Paste

1. Introduction

The forest ecosystem plays a significant role in the global ecosystem and human
society. Forests provide habitat for numerous species and serve as the foundation of food
chains [1,2]. They also regulate climate, maintain water sources, and prevent soil erosion.
However, forest fires, as a severe ecological disturbance, have profound impacts on forest
ecosystems and human society [3]. Forest fires give rise to a range of issues. Firstly, they
disrupt the structure and functioning of forest ecosystems, leading to loss of biodiversity,
habitat degradation, and disruption of ecological processes [4]. Secondly, forest fires release
a substantial amount of carbon into the atmosphere, exacerbating global climate change [5].
Thirdly, fires trigger soil erosion and water source contamination, negatively affecting the
sustainable utilization of water resources and ecosystem health. Moreover, forest fires lead
to significant economic losses, safety risks, and health issues in human society. For instance,
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the recent Lahina Fire in the United States resulted in the highest death toll since 1900,
causing extensive casualties and property damage [6]. Therefore, accurate identification and
effective monitoring of forest fires are crucial. In this regard, the importance of forest flame
segmentation and recognition becomes evident. Accurate segmentation and recognition of
forest flames contribute to real-time monitoring of forest fires, providing crucial information
for emergency response and forest management decisions [7]. By applying advanced
computer vision and deep learning techniques such as convolutional neural networks
(CNNs) [8], the accuracy of forest flame recognition and segmentation can be enhanced,
offering robust support for fire management. This helps in early detection and control
of forest fires, minimizing damage to ecosystems and human society, and ensuring the
sustainability of forest resources [7].

With the rapid advancement of remote sensing technology [9], it plays a crucial role
in the segmentation of forest fires, offering significant advantages and significance [10,11].
Remote sensing technology provides high-resolution remote sensing images that capture
detailed information about the shape and boundaries of flames, enabling accurate seg-
mentation of fire regions [12,13]. This is of paramount importance for assessing the scale,
intensity, and impact of wildfires on forest ecosystems [13]. Furthermore, remote sensing
technology allows for the acquisition of multi-temporal image data, facilitating the obser-
vation and monitoring of fire dynamics. By analyzing the temporal changes in flames,
researchers can investigate fire propagation patterns, predict potential fire spread paths,
and provide more accurate guidance for wildfire suppression operations [14]. In addition,
remote sensing technology possesses extensive spatial coverage capabilities, enabling the
coverage of large forested areas [15]. It acquires images from different angles and heights,
providing comprehensive information for flame segmentation. Moreover, remote sensing
technology offers real-time capabilities, enabling the timely acquisition and rapid analysis
of fire images, thereby facilitating prompt response to fire incidents and the implementation
of effective firefighting and rescue measures. Given the various advantages offered by
remote sensing technology, researchers have endeavored to utilize forest remote sensing
images for forest flame segmentation [16,17].

Building upon the advantages of remote sensing technology in forest fire segmentation,
the application of Convolutional Neural Networks (CNNs) has exhibited remarkable
potential in enhancing the accuracy and efficiency of fire detection and segmentation [18].
CNNs, as a class of deep learning algorithms, have revolutionized computer vision tasks,
including object recognition, image classification, and semantic segmentation. Leveraging
the power of CNNs, researchers have made significant strides in effectively analyzing and
extracting features from remote sensing images, enabling more precise and automated
fire segmentation [17]. In their work, Eleni Tsalera et al. [19] propose a method that
utilizes lightweight CNNs, such as SqueezeNet, ShuffleNet, MobileNetv2, and ResNet50,
for wildfire identification. Performance evaluation is conducted on multiple datasets
with cross-dataset analysis, comparing computational resources and costs to ResNet-50.
For contextualization purposes, ResNet-18 is employed for image semantic segmentation.
The experimental results demonstrate a high accuracy of 96% and satisfactory performance
across datasets. Furthermore, five classes from the CamVid dataset are identified for
contextualizing wildfires. Zhihao Guan et al. [20] propose a novel approach for forest fire
detection and segmentation. They introduce a channel domain attention mechanism for
image classification, achieving an impressive classification accuracy of 93.65%. Additionally,
they develop MaskSU R-CNN, a novel instance segmentation method, which exhibits
a precision of 91.85%, recall of 88.81%, F1-score of 90.30%, and mean intersection over
union (mIoU) of 82.31%.

However, despite the good performance of convolutional neural network (CNN)-
based semantic segmentation techniques on forest remote sensing datasets for forest flame
applications, they have not considered some challenges inherent in remote sensing datasets
and limitations of CNNs themselves.
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Challenge 1: The limited receptive field of CNNs prevents the comprehensive extrac-
tion and utilization of information from the entire image, further exacerbating the neglect
of flame features [21].

Challenge 2: As shown in Figure 1, due to the high resolution of remote sensing
datasets, the flame region usually occupies a small proportion, resulting in insufficient at-
tention from the model towards the flame region and incomplete learning of flame features.

Challenge 3: The scarcity of flame instances and the extremely imbalanced class
distribution lead to long training time and elevated dataset requisites (encompassing
a larger number of training images or images with more pronounced flame characteristics).

Figure 1. Visualization of Forest Remote Sensing Dataset Images.

In response to these challenges, we propose corresponding designs to enhance the
performance of the model and fully leverage the training data. To address Challenge 1, we
incorporate a simple transformer architecture in the encoder part of the network to capture
global features in a parallel and serial manner, and introduce the CBAM(Convolutional
Block Attention Module) attention mechanism in the decoder part to enable comprehen-
sive learning of the image and improve segmentation accuracy and detail preservation.
For Challenge 2, we introduce an adaptive Copy-Paste data augmentation method to
increase the presence of poorly learned classes, allowing for sufficient learning of these
classes. For Challenge 3, we introduce the dice loss, which emphasizes the flame region
rather than the non-flame region, thereby improving model training speed.

As shown in Figure 2, our model is based on an encoder-decoder architecture, where
the encoder part considers both speed and performance, and we choose MobileNetV2, while
the decoder part adopts DeepLabV3+. Specifically, the approach involves initially selecting
the image with the minimum confidence score from the current batch. Subsequently, based
on the confidence scores transformed into probabilities for the images within the current
batch, another image is randomly chosen. All pixels belonging to the flame category in
the second image are then copied and pasted onto the first image. Subsequently, the batch
images are passed through the transformer and further feature extraction by the encoder,
where in the transformed features are concatenated with the features post transformer.
This step serves to enhance the feature richness and accuracy. The final stage encompasses
decoder operations for label prediction and incorporates the dice loss for facilitating the
backpropagation process.

In this research paper, we have developed a novel network model based on unmanned
aerial vehicle (UAV) remote sensing imagery, aimed at enhancing forest fire management
and assessment. This can be categorized into two specific aspects:
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• Accurate Flame Detection and Localization: Our approach enables the direct segmen-
tation of UAV-acquired remote sensing images, accurately identifying the presence
of flames within the images. Simultaneously, it provides information regarding the
shape and size of the flames. Even relatively small flames can be accurately recognized
using our method, facilitating early flame detection and timely firefighting measures.

• Fire Monitoring and Management: Managers can assess the fire situation and make
informed decisions by analyzing the images segmented by our model. This facilitates
the timely and accurate development of firefighting plans.

FlameTransNet, by integrating our approach with UAV technology, it provides managers
with a convenient and efficient means of obtaining insights into forest conditions, reducing
the labor costs associated with manual on-site inspections. Taking into account the forest
environment and the dataset we have utilized, we believe that our technology holds signifi-
cant potential for effective application in extensive forest regions such as Northern Arizona.

In the following section, we will introduce the work of previous researchers in Section 2
and compare our work with theirs. Then we provide a detailed description of our model
design and the methods employed in Section 3. We will specifically describe our self-
built dataset, the selected evaluation metrics, performance comparison with mainstream
semantic segmentation methods, and ablation experiments of each module in Section 4.
Finally, we will summarize our work and provide future research directions in Section 5.

Figure 2. Model Pipeline for Semantic Segmentation: MobileNetV2 Encoder and DeepLabV3+ Decoder.

2. Related Work
2.1. Forest Fire Segmentation

Currently, numerous researchers have conducted explorations in the field of forest
fire segmentation. For example, Rafik Ghali et al. [22] present a novel approach using
deep convolutional networks and customized loss functions to accurately segment for-
est fire pixels and detect fire areas. This method holds promise for enhancing forest fire
monitoring and response efforts. Lin Zhang et al. [23] proposed the FBC-ANet network,
combining boundary enhancement and context-aware modules in a lightweight structure.
This innovative approach achieved impressive results, with a segmentation accuracy of
92.19%, F1 score of 90.76%, and IoU of 83.08% on UAV images from the FLAME dataset.
The FBC-ANet effectively extracts fire-related features, enhancing forest fire area segmenta-
tion accuracy. Rafik Ghali et al. [24] introduces a novel forest fire monitoring framework
based on convolutional neural networks (CNNs). Their innovative approach effectively
detects early forest fires, as demonstrated through experiments on a self-generated dataset
and real monitoring videos. Although some studies have explored forest fire segmentation,
most researchers have focused on evaluating different semantic segmentation methods or
introducing new modules to enhance specific datasets or scenarios. However, these efforts
often fail to address the limitations of CNNs comprehensively. Moreover, their studies often
require a substantial amount of data. In contrast, our research delves into the limitations of
CNNs and better utilization of datasets, seeking to overcome these challenges.

2.2. Fire Detection Systems

Fire Detection Systems utilize advanced technologies, including AI algorithms, to iden-
tify and promptly alert about fires, enhancing early detection and response capabilities.
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Hamood Alqourabah et al. [25] proposed a smart fire detection system that integrates heat,
smoke, and flame sensors to detect fires and alert property owners, emergency services,
and police stations. The system minimizes false alarms, enhancing reliability, with positive
affordability and effectiveness results demonstrated in experiments using the Ubidots
platform. Giacomo Peruzzi et al. [26] developed a low-power Video Surveillance Unit
(VSU) with embedded Machine Learning (ML) algorithms to detect forest fires using audio
and image inputs. The combined ML approach achieved higher accuracy, precision, recall,
and F1 score (96.15%, 92.30%, 100.00%, and 96.00%). Remote signaling through LoRaWAN
protocol enables swift response to detected events. Diyana Kinaneva et al. [27] introduced
a platform using UAVs equipped with AI and onboard image processing for forest fire
detection. The approach involves continuous monitoring of fire-prone areas using drones
and computer vision techniques to detect smoke or fire from images or video captured by
the drones’ cameras. Zhentian Jiao et al. [7] proposed a forest fire detection algorithm using
UAV-based aerial images by utilizing YOLOv3. Their method achieved a recognition rate
of about 83% and a frame rate of over 3.2 fps, showcasing its effectiveness for real-time
forest fire detection using UAVs. In our research, we comprehensively considered both
performance and model size, and selected MobileNetV2 as the feature extraction network.
To enhance dataset utilization, we devised an adaptive Copy-Paste method, resulting in
significant performance improvements for our model trained on relatively limited datasets.
Our model demonstrates accurate segmentation even for smaller fire instances, providing
robust support for early fire detection. In the future, we aim to explore its deployment on
edge devices to realize the design of a fire monitoring system.

3. Method
3.1. Proposed Framework

As shown in Figure 3, our proposed network is built upon an encoder-decoder archi-
tecture. In the encoder part, we employ the MobileNetV2 network for feature extraction.
Prior to the MobileNetV2 network, we integrate a Transformer module to capture deep
image information, while simultaneously incorporating a parallel Transformer module to
preserve the spatial context of the image, thereby alleviating the limited receptive field issue
of CNNs. This approach maximizes the extraction of image features. Moreover, during the
fusion stage of low-level features in both the encoder and decoder parts, we utilize the
CBAM attention mechanism to further extract informative details from the lower-level
features, enabling the model to pay more attention to the flame region and further enhance
the model’s performance.

Figure 3. Architecture Design Diagram of the Proposed Model.
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3.1.1. Encoder (MobileNetV2 Based)

MobileNet, a pioneering lightweight deep neural network devised by Google, was
crafted to meet the demands of mobile and embedded devices. As illustrated in Figure 4,
MobileNetV2 [28] represents a refined iteration of MobileNet, introducing a pivotal en-
hancement known as the Inverted Residual Block. This distinctive feature anchors the
entirety of the MobileNetV2 architecture, facilitating its efficiency and effectiveness.

Figure 4. Architecture Diagram of MobileNetV2.

The Inverted Residual Block, a cornerstone of MobileNetV2, is carefully engineered
to strike a balance between robust feature extraction and model lightweightness. Com-
prising two interconnected components, this innovative design leverages the strengths
of MobileNetV2:

Main Branch (Left Side): This segment initiates with a 1 × 1 convolution, strategi-
cally employed to expand dimensionality without a significant surge in computational
complexity. Following this, a 3 × 3 depthwise separable convolution is deployed for cap-
turing intricate features, enhancing the network’s capacity to discern fine-grained patterns.
The sequence culminates with another 1 × 1 convolution, skillfully tailored to compress
dimensionality while retaining crucial information.

Residual Connection (Right Side): A defining aspect of the Inverted Residual Block,
this pathway establishes a direct connection between input and output, thereby fostering
information flow and facilitating gradient propagation. This architectural innovation
significantly contributes to both model performance and training efficiency.

Given our commitment to maintaining robust feature extraction capabilities while
minimizing model overhead, our selection of MobileNetV2 as the encoder aligns seam-
lessly with our objectives. By leveraging the strengths of the Inverted Residual Block,
we can harness the advantages of MobileNetV2’s efficient and lightweight design, en-
suring that our model strikes an optimal balance between computational efficiency and
representation power.



Forests 2023, 14, 1887 7 of 20

3.1.2. Enhancing Feature Extraction and Expanding Receptive Field Using Transformer

In the context of flame semantic segmentation, where the flame regions are typically
small and require accurate feature extraction, we propose a method that leverages the
Transformer architecture [29,30] to capture a broader range of contextual information and
enhance the representation of flame semantics.

The Transformer module(as shown in Figure 5), integrated into our flame semantic
segmentation framework, consists of multiple TransformerEncoderLayer modules. These
modules enable the network to effectively process the input data and extract discriminative
features relevant to flame semantics. During the feature extraction process, the Trans-
formerEncoderLayer module utilizes a self-attention mechanism to capture long-range
dependencies between different regions in the input image. By attending to the entire
image simultaneously, the Transformer can effectively capture the spatial context of the
flame region and its surroundings, even when the flame region is small. During the
feature extraction process, the TransformerEncoderLayer module utilizes a self-attention
mechanism to capture long-range dependencies between different regions in the input
image. By attending to the entire image simultaneously, the Transformer can effectively
capture the spatial context of the flame region and its surroundings, even when the flame
region is small. By incorporating the Transformer architecture into our flame semantic
segmentation framework, our method can effectively extract flame-specific features by
capturing extensive contextual information. This enables the model to better understand
the spatial relationship between the flame region and its surroundings, leading to improved
segmentation accuracy and performance.

Figure 5. Structure Diagram of Transformer Encoder.

In practical usage, we employ a combined approach by both concatenating and par-
allelizing Transformer modules in the encoder phase, aiming to effectively extract flame
semantic features and address the limited receptive field issue commonly encountered in
traditional convolutional neural networks.

In the encoder phase, we first concatenate a Transformer module to extract deep-level
information from the images. By utilizing the self-attention mechanism, this Transformer
module captures global contextual relationships, aiding in the understanding of spatial
characteristics within the flame regions. However, considering that flame regions are
typically small, relying solely on a single Transformer module may struggle to accurately
capture subtle features.

To overcome this limitation, we further introduce a parallel Transformer module
in the encoder phase. The parallel Transformer module aims to preserve the extensive
spatial information of the images and provide a broader receptive field. By incorporating
both concatenated and parallel Transformer modules, we can leverage the complementary
aspects of different layers in feature representation, enabling a more comprehensive capture
of the flame region’s semantic information.

By simultaneously concatenating and parallelizing Transformer modules, our pro-
posed method harnesses the benefits of deep-level information and an expanded receptive
field, thereby enhancing the capability to extract flame semantic features. This architectural
design proves valuable in practical applications, augmenting the model’s understanding
and accuracy in flame region analysis.
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The self-attention mechanism serves as the pivotal component within the Transformer
encoder, playing a vital role in directing the model’s focus towards salient image regions
based on their respective significance. This enables the network to emphasize critical
information and tailor the extracted features to align with identified targets. In this mecha-
nism, embedded patch vectors are transformed into three distinct vectors: query (Q), key
(K), and value (V), which are computed through dot product operations. The correlation
between K and Q is assessed via dot product calculation. Subsequent to normalization
through scaling and softmax functions, the computed similarity values are utilized to
weight the value vector, thereby obtaining semantic importance. Aggregation of all se-
mantic weights facilitates the generation of the self-attention feature. Ultimately, a feature
map enriched with substantial information is derived through subsequent processing via
a Multi-Layer Perceptron (MLP). This self-attention computation process can be represented
as follows:

Z = Attention(Q, K, V) = So f tmax(
QKT
√

dK
)V, (1)

where Z is the self-attention feature; dK is the scaling factor; Q is the query vector; K is the
key vector; V is a value vector.

3.1.3. CBAM (Convolutional Block Attention Module) Attention Mechanism

The Convolutional Block Attention Module (CBAM) is an attention mechanism mod-
ule that combines spatial and channel attention [31] in the convolutional blocks [32]. By in-
tegrating both spatial and channel attention mechanisms, CBAM offers improved perfor-
mance compared to attention mechanisms that focus solely on channel attention, such as
SENet [33]. Figure 6 illustrates the overall structure after incorporating the CBAM module.
It can be observed that the output of the convolutional layers undergoes a channel atten-
tion module, which generates weighted results. Subsequently, the output passes through
a spatial attention module before obtaining the final weighted results. The introduction of
CBAM aims to enhance the features specifically related to the flame region.

Figure 6. Overview of CBAM Module: Spatial and Channel Attention Mechanisms.

The channel attention module processes the input feature map by applying global max
pooling and global average pooling operations based on width and height. Subsequently,
each pooled feature is fed through a Multi-Layer Perceptron (MLP). The output features
from the MLPs are element-wise summed and passed through a sigmoid activation function
to generate the final channel attention feature map. This channel attention feature map
is then multiplied element-wise with the input feature map to produce the input features
required for the spatial attention module.

The spatial attention module takes the output feature map from the channel attention
module as its input. Firstly, a global max pooling and global average pooling operation are
performed based on the channels. The results of these operations are then concatenated
along the channel dimension. Subsequently, a convolutional operation is applied to reduce
the dimensionality to a single channel. The resulting feature map is passed through
a sigmoid function to generate the spatial attention feature. Finally, this feature map is
multiplied element-wise with the input feature map of this module, yielding the final
generated feature.
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As illustrated in Figure 7, the integration of the CBAM attention mechanism results
in a model that focuses more on the flame’s characteristic regions. The fine details of the
features become more pronounced, while attention to the background is reduced.

(a) (b) (c)

Figure 7. Comparison of Feature Maps before and after Integration of CBAM Attention Mechanism:
(a) Original Image (b) Feature Maps before CBAM Integration (c) Feature Maps after CBAM Inte-
gration where in (c), greater emphasis is placed on capturing flame-specific features, while in (b),
background features are partly misclassified as flame characteristics.

Discussion: In order to better extract fire-related features and improve model per-
formance, we compared the effectiveness of various attention mechanisms including SE
(Squeeze-and-Excitation attention), CAM (Channel Attention Module), SAM (Spatial At-
tention Module), and CBAM (Convolutional Block Attention Module), as shown in Table 1
and Figure 8. Introducing different attention mechanisms proved beneficial for enhancing
the model’s learning and segmentation of fire features, with CBAM exhibiting a better
focus on fire-related characteristics. Considering factors such as model parameters and
overfitting, we opted to solely employ the CBAM attention mechanism in this study.

Table 1. Comparison of Various Attention Mechanism Modules (Xdenotes the incorporation of this
module and the bolded sections represent the optimal values).

Method Metric

SE CAM SAM CBAM IoU Recall Precision
X 77.06% 85.68% 88.45%

X 76.74% 87.80% 85.90%
X 76.80% 85.93% 85.85%

X 78.12% 87.89% 86.34%

3.1.4. Decoder (DeepLabV3+ Based)

In DeeplabV3+, the enhanced feature extraction network can be divided into two parts:
In the Encoder, the preliminary effective feature maps that have been compressed by

a factor of four are processed using parallel Atrous Convolutions. These Atrous Convolu-
tions are performed with different rates to extract features at multiple scales. The resulting
feature maps are then merged and further compressed using 1 × 1 convolutions.

In the Decoder, the preliminary effective feature maps that have been compressed by a
factor of two are adjusted in terms of channel dimensions using 1 × 1 convolutions. These
adjusted feature maps are then stacked with the upsampled feature maps from the output
of the Atrous Convolutions. Once the stacking is complete, two rounds of depth-wise
separable convolution blocks are applied.

Additionally, DeeplabV3+ incorporates other important components such as the use
of dilated convolutions (Atrous Convolutions) to capture multi-scale context information,
the application of skip connections to combine features at different levels, and the utilization
of depth-wise separable convolutions for efficient computation. These elements collectively



Forests 2023, 14, 1887 10 of 20

contribute to the overall performance improvement and semantic segmentation accuracy
achieved by DeeplabV3+.

Figure 8. Performance Comparison of Various Attention Mechanisms.

3.2. Adaptive Copy-Paste

The Copy-Paste augmentation method [34] involves the process of pasting objects
from one image onto another image, resulting in a diverse set of training data with various
choices of source images, object instances, and paste locations. This simple strategy of
randomly selecting and pasting objects at random locations has shown significant improve-
ments in model performance across multiple settings.

However, high-resolution and large-scale characteristics of remote sensing images
result in a limited proportion of flame regions in general images. This leads to insufficient
learning of flame-specific features and the inability of random Copy-Paste methods to
augment flame-related features, thereby hindering the improvement of model performance.
To address this issue, we propose an adaptive Copy-Paste data augmentation method,
which further trains the underrepresented flame regions and enhances the model perfor-
mance. Compared to traditional techniques such as resampling and undersampling, our
method eliminates the need for manual hyperparameter tuning, reduces training time,
and does not affect the size of the dataset.

As shown in Figure 9, we introduce a global confidence bank to store the confidence
values for each image. Considering that our task aims to segment flame and non-flame
regions, we utilize the Intersection over Union(IoU) metric for the flame category as the
confidence measure for each image. Specifically, for each image, we initialize the confidence
value to 0 and update it during each training iteration using an exponential moving average
(EMA) parameter transfer, as described in Equation (2).

Coni = θ × Coni + (1− θ)× iou (2)

where Coni represents the confidence value for the i-th image, while iou represents the IoU
metric specific to the flame category. The parameter θ is set to a value of 0.98.
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Figure 9. Overview Diagram of the Adaptive Copy-Paste Method.

Upon obtaining the confidence bank, during each training iteration, the confidences
within the current confidence bank are initially normalized to probabilities. Subsequently,
a random image is selected based on the probabilistic transformation of confidences for
each image in the current batch. In this selected image, all pixels belonging to the flame
category are then superimposed onto the image with the lowest confidence within the
batch. Finally, Gaussian filtering [35] is applied to achieve edge-smoothing effects.

Simultaneously, following the validation of the batch, the confidence values corre-
sponding to the images within the batch are updated using the post-validation IoU metric.
This comprehensive approach ensures that the training process incorporates probabilistic
image selection, targeted flame category augmentation, and refinement through confidence-
based IoU updates.

The pseudo-code for the adaptive Copy-Paste method is shown in Algorithm 1.

Algorithm 1 Adaptive Copy-Paste Augmentation

Require: Batch of images
Ensure: Updated batch with pasted flame pixels

1: Initialize/Update confidence bank Con
2: Normalize all confidences in Con to probabilities
3: Select image Imin with the lowest confidence in the batch
4: for each image I in the batch do
5: if I = Imin then
6: Continue to the next image
7: end if
8: Randomly select a flame image Iflame
9: Paste all flame pixels from Iflame onto Imin

10: Apply Gaussian filter to smooth the edges of Imin
11: end for

3.3. Dice Loss

In the context of fire segmentation, where the fire regions constitute a small proportion
of the overall image, we introduce the Dice loss as a means to focus on and learn the
fire-specific features.

The Dice loss is a widely used loss function in segmentation tasks, aiming to optimize
the similarity between the predicted fire segmentation and the ground truth fire mask. It is
derived from the Dice coefficient, which measures the overlap or similarity between two
binary masks.

The Dice loss [36] is defined as 1 minus the Dice coefficient, and it serves as an objective
function to guide the model towards producing more accurate fire segmentations. The Dice
coefficient is computed as twice the intersection of the predicted fire mask and the ground
truth fire mask, divided by the sum of their areas.
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By incorporating the Dice loss during the training process, we encourage the model to
focus on and accurately capture the fire regions. The Dice loss penalizes the discrepancies
between the predicted and ground truth fire masks, guiding the model to better learn the
fire-specific features and improve the segmentation performance.

Since the fire regions are sparse in each image, the Dice loss is particularly beneficial
as it can effectively handle class imbalance. It emphasizes the intersection between the
predicted and ground truth fire masks, enabling the model to learn the subtle details and
boundaries of the fire regions, even in the presence of significant background regions.

The introduction of the Dice loss in our fire segmentation framework addresses the
challenge of imbalanced class distribution and enables the model to effectively learn and
focus on the fire regions. By optimizing the Dice loss, our model can achieve more accurate
and precise fire segmentations, contributing to improved fire detection and analysis tasks.

The Dice loss can be described as follows:

DiceLoss = 1− 2 ∑N
i=1 yi ŷi

∑N
i=1 yi + ∑N

i=1 ŷi
(3)

where yi and ŷi represent the label value and predicted value, respectively, for pixel i in
an image. The parameter N represents the total number of pixels, which is equal to the
number of pixels in a single image multiplied by the batch size.

4. Data and Experiments
4.1. Data Description

The quality of the dataset and labels significantly influence the training results in
the context of fire semantic segmentation tasks. Therefore, we extracted a portion of the
publicly available flame dataset and preprocessed it. Additionally, we collected forest
fire images from remote sensing sources to create a custom dataset. This dataset not only
preserves the flame features but also includes diverse background scenarios, enabling
effective segmentation of complex forest conditions.

Specifically, we randomly selected 500 images from the flame dataset [37] and resized
them to 512 × 512 dimensions. Images without flame features were removed, and an
additional 500 forest fire images of size 512 × 512 were collected from various regions
using online sources. In total, the dataset comprises 1000 images. To better validate
the effectiveness of our approach, we partitioned the dataset into training, validation,
and testing sets in an 8:1:1 ratio. The specific distribution quantities are presented in
Table 2.

Table 2. Partitioning of the Dataset.

Dataset Train Validation Test Summary

Number 800 100 100 1000

Based on the visualization shown in Figure 10, our dataset exhibits severe class
imbalance, which provides an opportunity to validate the effectiveness of our proposed
method. Furthermore, we present several visualized images from our dataset in Figure 11.
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Figure 10. Visualization of Fire and Non-Fire Pixel Proportions in the Dataset.

(a) (b) (c)

(d) (e) (f)
Figure 11. Visualization of Several Typical Images in the Dataset ((a–c) Obtained through net-
work acquisition with complex terrains as the background, (d–f) Obtained through processing the
flame dataset).

Flame: The FLAME dataset is a vital resource for wildfire research, offering aerial
imagery captured by UAVs and drones during controlled burns in Northern Arizona.
It includes raw drone videos and thermal heatmaps. Aimed at fire classification and
segmentation tasks, it provides 39,375 labeled frames for training, 8617 for testing, and
2003 pixel-annotated frames for segmentation. This dataset empowers advanced image
analysis, aiding in understanding wildfire behavior for improved management, risk reduc-
tion, and ecological preservation.

4.2. Experimental Settings

The experimental settings were carefully configured as follows:
The input images were resized to a shape of [512, 512]. A batch size of 4 was used

during training. The initial learning rate was set to 5 × 10−4, and a minimum learning rate
of 0.01 times the initial learning rate was defined for learning rate decay. The optimization
algorithm employed was Adam [38] (Adam is an optimization algorithm that combines
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momentum and RMSProp techniques to dynamically adjust learning rates for individual
model parameters, making it effective for a variety of optimization tasks) with a momentum
value of 0.9. No weight decay was applied in the training process. The learning rate decay
strategy used was cosine annealing, where the learning rate decreases gradually over the
course of training. These settings were chosen to ensure a balanced trade-off between
model performance and computational efficiency. It is worth noting that we used the same
experimental settings when comparing our approach with other state-of-the-art semantic
segmentation models.

4.3. Evaluation Metrics

To assess the effectiveness of our proposed method in forest fire segmentation, we
employed various evaluation metrics, such as Intersection over Union (IoU) [39], precision,
and recall specifically for the fire class.

IoU =
TP

TP + FP + FN
(4)

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

We computed evaluation metrics using the confusion matrix generated by our im-
proved model, which includes the pixel counts of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN). Specifically, IoU measures the similarity
between the predicted forest/non-forest areas and the ground truth. Precision and re-
call evaluate the completeness and accuracy of our method. Our results demonstrate the
superior performance of our proposed method in accurately segmenting forest flames,
as evidenced by the higher values of these evaluation metrics.

4.4. Results and Analysis

In this section, we compare the performance of our proposed method with several state-
of-the-art semantic segmentation approaches, specifically focusing on the IoU, Precision,
and Recall metrics for the fire class. For our comparative experiments, we selected a set of
representative semantic segmentation networks, which are described in detail below:

FCN (Fully Convolutional Network): FCN [40] is a semantic segmentation network
that replaces fully connected layers with convolutional layers, enabling end-to-end pixel-
level prediction. It utilizes upsampling and skip connections to capture both local and
global context information, resulting in accurate and detailed segmentation maps.

PSPNet (Pyramid Scene Parsing Network): PSPNet [41] is a semantic segmentation
model that incorporates a pyramid pooling module to capture multi-scale contextual
information. By aggregating features from different pyramid levels, PSPNet effectively
captures context at various scales, allowing for robust and precise segmentation of objects
in complex scenes.

U-Net: U-Net [42] is a popular network architecture for biomedical image segmen-
tation. It consists of an encoder-decoder structure with skip connections. The encoder
captures contextual information, while the decoder recovers spatial details using skip
connections. U-Net is known for its ability to handle limited training data and produce
accurate segmentation results.

DeepLabV3+: DeepLabV3+ [43] is an advanced semantic segmentation model that
combines the strengths of DeepLabV3 and a modified encoder-decoder architecture. It
utilizes atrous convolution and a multi-scale feature fusion module to capture fine-grained
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details and context information. DeepLabV3+ also incorporates a spatial pyramid pool-
ing module to handle objects at different scales. This network achieves state-of-the-art
performance in semantic segmentation tasks.

The validation results are shown in Table 3 and Figure 12. Despite achieving state-of-
the-art performance in current mainstream semantic segmentation tasks, networks such as
deeplabV3+ struggle in the specific context of forest fire segmentation due to the extreme
class imbalance of the fire class. This hinders the effective learning of fire-specific features
by these advanced networks. On the other hand, Unet, with its unique architecture, is
capable of handling limited training data and producing accurate segmentation results.
Consequently, in the comparison of base models, Unet outperforms other base models in
all metrics. Our proposed model, built upon the deeplabV3+ framework, addresses these
limitations through various design improvements. The validation results are shown in
Table 3. Despite achieving state-of-the-art performance in current mainstream semantic
segmentation tasks, networks such as deeplabV3+ struggle in the specific context of forest
fire segmentation due to the extreme class imbalance of the fire class. This hinders the
effective learning of fire-specific features by these advanced networks. On the other
hand, Unet, with its unique architecture, is capable of handling limited training data and
producing accurate segmentation results. Consequently, in the comparison of base models,
Unet outperforms other base models in all metrics. Our proposed model, built upon the
deeplabV3+ framework, addresses these limitations through various design improvements.
As a result, our model achieves a 6.67% improvement in IoU, a 5.23% improvement in
Precision, and a 3.27% improvement in Recall compared to the base model. Furthermore,
our model also surpasses Unet in all metrics.

Table 3. Comparison of Semantic Segmentation Methods’ Performance (The bolded sections represent
the optimal values).

Model IoU Precision Recall

FCN 62.90% 82.91% 63.00%
Unet 79.63% 88.40% 88.92%

PSPNet 71.16% 71.73% 82.46%
DeeplabV3+ 72.69% 82.78% 85.64%

FlameTransNet (Ours) 83.72% 91.88% 90.41%

In Figure 13, we provide visual representations of the prediction results obtained
from different models. To ensure the inclusion of diverse scenarios, we carefully selected
four typical situations to evaluate the models’ performance. In the first column, which
corresponds to images with a higher proportion of fire, our model demonstrates superior
accuracy compared to the other models. Even the Unet model shows noticeable false detec-
tions, whereas our model consistently produces relatively accurate predictions. Moving to
the second column, where the fire class is less prominent, our model showcases remarkable
completeness in comparison to the competing models. In the third column, depicting
fire-absent scenarios, our model effectively avoids false detections altogether. Furthermore,
in the fourth column, which presents fire images with complex backgrounds involving
objects such as humans, trees, and smoke, our model accurately delineates the fire regions.
Taking all these distinct scenarios into consideration, our model consistently outperforms
mainstream semantic segmentation networks both in terms of quantitative analysis and
qualitative evaluation, thereby establishing its superior performance and reliability.
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Figure 12. Visualization of Performance Comparison Among Various Semantic Segmentation Methods.

Figure 13. Visual Comparison of Prediction Results from Various Models: (a) Image, (b) Ground
Truth, (c) FCN, (d) Unet, (e) PSPNet, (f) DeeplabV3+, (g) FlameTransNet (Ours).
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4.5. Ablation Experiments

To further validate the effectiveness of our proposed method, we conducted ablation
experiments. Specifically, our method consists of the fusion of Transformer, the incorpora-
tion of CBAM, the adoption of the adaptive Copy-Paste data augmentation method (ACP),
and the integration of Dice loss (DL).

In Table 4, we demonstrate the impact of incorporating each method on various
performance metrics of the model. It can be observed that our proposed methods contribute
to the improvement of model performance. Specifically, the inclusion of the CBAM results
in a 5.43% increase in IoU. Furthermore, the introduction of Transformer Module leads to an
additional 2.42% improvement in IoU. Subsequently, with the incorporation of the adaptive
Copy-Paste method and Dice loss, the performance of the model is further enhanced.

Table 4. Ablation Experiments of the Proposed Methods on the Dataset (Xdenotes the incorporation
of this module and the bolded sections represent the optimal values).

Method Metric

Base CBAM Transformer ACP DL IoU Precision Recall

X 72.69% 82.78% 85.64%
X X 78.12% 86.34% 87.89%
X X X 80.54% 87.64% 88.38%
X X X X 82.93% 88.71% 89.98%
X X X X X 83.72% 91.88% 90.41%

5. Conclusions

In conclusion, our study focused on semantic segmentation of forest flames using ad-
vanced techniques such as the fusion of Transformer, the incorporation of CBAM, the adop-
tion of the adaptive Copy-Paste data augmentation method, and the integration of Dice
loss. We demonstrated the effectiveness of our proposed method through comprehensive
evaluations and comparisons with state-of-the-art semantic segmentation models. The ac-
curate segmentation and recognition of forest flames are of great importance for real-time
monitoring, emergency response, and forest management decisions. Our method offers
robust support for early detection and control of forest fires, minimizing ecological damage
and ensuring the sustainable utilization of forest resources. By leveraging computer vision
and deep learning techniques, we contribute to the development of effective solutions for
forest fire management, thus mitigating the adverse impacts of forest fires on ecosystems
and human society. Future research directions can include exploring the application of
our method in real-time fire monitoring systems and extending its capabilities to handle
different types of fire scenarios with improved accuracy and efficiency.

Although our proposed method has achieved promising results, we believe there are
several directions for further research in the future:

• When considering the dynamic update of the confidence bank using the Exponential
Moving Average (EMA) method, we used a standard configuration with the parameter
value θ set to 0.98. However, we did not extensively explore this parameter further.
In the future, there is potential to investigate more refined updating methods and
optimal parameter values.

• During both training and testing, we employed an approach of resizing images to
a specific size to reduce training duration and enhance training effectiveness. This
resized configuration was used to validate the effectiveness of our method. However,
for real-world applications, post-processing is required to restore the predicted results
to the original image size. In future work, there is potential to explore techniques for
effectively handling high-resolution image training and addressing the challenges
associated with such data.
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• The detection of smoke holds significant importance in fire detection as well. Efforts
can be made to transfer the methodologies to smoke detection or to integrate smoke
detection techniques, thereby enabling further explorations in this domain.
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