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Abstract: (1) Background: Tropical Mountain forests (TMF) constitute a threatened major carbon
sink due to deforestation. Carbon compensation projects could significantly aid in preserving these
ecosystems. Consequently, we need a better understanding of the above-ground carbon (AGC) spatial
distribution in TMFs to provide project developers with accurate estimations of their mitigation
potential; (2) Methods: integrating field measurements and remote sensing data into a random
forest (RF) modelling framework, we present the first high-resolution estimates of AGC density
(Mg C ha−1) over the western Ecuadorian Andes to inform an ongoing carbon compensation mecha-
nism; (3) Results: In 2021, the total landscape carbon storage was 13.65 Tg in 194,795 ha. We found a
broad regional partitioning of AGC density mediated primarily by elevation. We report RF-estimated
AGC density errors of 15% (RMSE = 23.8 Mg C ha−1) on any 10 m pixel along 3000 m of elevation
gradient covering a wide range of ecological conditions; (4) Conclusions: Our approach showed
that AGC high-resolution maps displaying carbon stocks on a per-pixel level with high accuracy
(85%) could be obtained with a minimum of 14 ground-truth plots enriched with AGC density data
from published regional studies. Likewise, our maps increased precision and reduced uncertainty
concerning current methodologies used by international standards in the Voluntary Carbon Market.

Keywords: remote sensing; permanent plots; Andes; Sentinel; artificial intelligence; mountain
forests; biomass

1. Introduction

Human-induced land use change is one of the main contributors to the current at-
mospheric concentration of greenhouse gases [GHG; [1] ]. Reducing GHG emissions is of
transcendent importance, as curving them will directly impact the global climatic system [2]
and can help achieve the goals of the Paris Agreement [3]. To meet the ambitious 1.5 ◦C
goal set by the Paris Agreement, substantial reductions in deforestation and associated CO2
emissions are required, with targets of approximately 70% by 2030 and 95% by 2050 [4,5].
Moreover, forest restoration and regrowth, leading to CO2 sequestration, must continue as
a primary mitigation strategy [6].

However, the extent and distribution of climate mitigation opportunities available
from preserving, restoring, or enhancing tropical mountain forest cover have been insuffi-
ciently explored [7,8]. One major challenge in designing carbon compensation projects at
subnational and national levels is the uncertainty associated with the spatial distribution
of carbon stored in above-ground biomass (AGB) [9–11]. This uncertainty is particularly

Forests 2023, 14, 1903. https://doi.org/10.3390/f14091903 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f14091903
https://doi.org/10.3390/f14091903
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-5150-073X
https://orcid.org/0000-0002-3963-4508
https://doi.org/10.3390/f14091903
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f14091903?type=check_update&version=1


Forests 2023, 14, 1903 2 of 17

pronounced in tropical mountain forests (TMFs) due to sharp environmental gradients,
limited data availability, and knowledge gaps [12,13]. Likewise, in many cases, tropical
mountain forests’ remnants are embedded in human-dominated landscapes at different
successional stages of recovery or degradation [11,14], hence increasing the spatial variation
of above-ground carbon (AGC) [13].

Accurate estimation of AGC density (Mg C ha−1) at the landscape scale depends
mainly on the availability and quality of ground-truth and remote sensing (RS) data
together with the modeling techniques [15–17]. While local forest plot measurements
provide accurate information at the plot level, their scarcity in tropical mountainous
regions poses a challenge when extrapolating their values to the landscape scale [18].
Integrating local plot data with existing high-quality ground-truth AGC datasets offers
a promising approach to improve AGC stock predictions at a pixel scale and to estimate
model uncertainty [19–21].

The integration of RS data is crucial for extrapolating plot-based AGC density esti-
mates and deriving pixel-level estimates of AGC stocks and changes [9,22]. Recent advances
in RS technology have provided comprehensive coverage, high spatial resolution, and short
return cycles. The Sentinel-1 C-band Synthetic Aperture Radar (SAR) and the Sentinel-2
multispectral instrument by the European Space Agency (ESA), are examples of these ad-
vances [23]. The combination of different sensors has the potential to overcome limitations
associated with single remote sensing techniques for AGC density estimates [24].

The choice of a modelling framework is also critical to improving the accuracy of AGC
predictions beyond field data [25,26]. While parametric models such as linear regressions
have been widely used [27–29], non-parametric algorithms, such as machine learning
models, offer a better ability to capture complex relationships and deal with skewed
data [30]. Machine learning algorithms have demonstrated high accuracy in producing
spatially explicit AGC estimates at the pixel level [15,31]. However, previous AGC mapping
exercises in tropical regions have often been limited by coarse spatial resolution (~500 m
to 1000 m) and high uncertainties, rendering them less suitable for local-scale carbon
compensation projects [32–35].

Natural landscapes in Ecuador have changed rapidly in the last four decades [36–39].
The lowland and mountain forests of north-western Ecuador, the Chocó-Andes region, is
one of the three regions of the country where most of the deforestation has occurred [40,41].
One of the largest remaining forest tracts is embedded in the UNESCO Chocó Andino
Biosphere Reserve—RBCA hereafter [42]. From 1991 to 2017, forest loss within the RBCA
was estimated at an annual gross loss rate of 0.66%. However, forest regrowth was observed
for the same period, equal to 8.5% of the forest coverage in 1991 [43]. Moreover, the RBCA
has witnessed a high density of forest conservation and restoration efforts in the last
decade, offering a unique opportunity to establish a compensation mechanism to reduce
deforestation and enhance carbon sequestration.

This research presents an innovative approach to map AGC forest stocks and their
temporal variation using RS coupled with advanced statistical methods at high spatial
resolution (10 m-pixel resolution) where local spatiotemporal ground-truth data is limited.
Our approach leverages machine learning techniques to establish complex non-linear
relationships between observed AGC values, satellite imagery channels, and ancillary
environmental data. Specifically, we developed a set of high-resolution maps of AGC, with
geospatially explicit uncertainty estimates for the RBCA to inform an ongoing local carbon
compensation mechanism, the Zero Carbon program (https://nftree.com.ec/, accessed
on 2 June 2023). This study focused exclusively on the AGC of standing trees ≥ 5 cm in
diameter, not on the belowground or necromass carbon pools.

2. Materials and Methods
2.1. Study Area

This study was conducted in the western versant of the Ecuadorian Andes (0◦11′17.8656′′

N, 0◦7′36.21′′ S; −78◦34′8.8566′′ W, −78◦54′46.242′′ W), which spans over 286,800 ha from

https://nftree.com.ec/
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the outer foothills of the western cordillera of the Andes to its inner foothills, along 4000 m
of elevation gradient (Figure S1). Forests in the study area are humid, evergreen ecosys-
tems with limited or no seasonality characteristic of tropical mountain systems. Forest
composition gradually changes along the elevation gradient driven by temperature con-
ditions [44,45] defining four ecosystems with different structure, composition, and above-
ground biomass [46]. Mean annual air temperature diminishes from 21.6 ◦C at 653 m a.s.l.
to 7.2 ◦C at 3507 m a.s.l., decreasing ca. 0.56 ◦C per 100 m a.s.l., reaching values of 0.7 ◦C at
the upper end (3507 m a.s.l.). By 2020, native forest covered nearly 68% (i.e., 195,000 ha) of
the study area, 3% (i.e., 10,000 ha) was mountain grasslands located above the forest line
(above 3900 m a.s.l.), and 9% was mountain shrublands (i.e., 25,000 ha). The remaining 20%
(i.e., 57,000 ha) constituted agricultural lands. Agriculture and cattle raising constitute an
essential livelihood, with over 80% of the Biosphere Reserve’s productive land use being
dedicated to extensive cattle raising [43].

2.2. Ground-Truth Data

The ground-truth data inputs for this study come from an in situ AGB dataset from
the Pichincha Forest plot network, established in 2015 [45,47], enriched with a published
regional AGB dataset: https://doi.org/10.5061/dryad.59zw3r26f, accessed on 8 November
2022 [48] coming from a regional Andean forest plot network—Red Bosques Andinos—
RBA (https://redbosques.condesan.org/, accessed on 8 November 2022) and a subset of
an extensive AGB pantropical dataset [19]. Both the local and regional databases provided
AGB estimations based on permanent plots to study forest dynamics. From the larger
pantropical dataset [19], we generated a subset based on the following criteria: (1) AGB
records with tree cover < 70%, based on [49], were removed from the analysis. Albeit,
removing these plots might limit the applicability of our AGC model to less mature forests
(i.e., forests between 30% and 70% of tree cover), more than 90% of the forest area inside the
study area has a tree cover > 70% (Figure S2); (2) the geographic extent included only AGB
data from the north-western Amazonia, the Andes (Perú and Bolivia), and the Chocó forests
(Colombia, Ecuador, and Panama); (3) latitudinal and longitudinal coordinates were not
degraded or incomplete; (4) AGB field measurements were sampled from 2000 onwards;
(5) extreme AGB values falling below the 5th percentile or exceeding the 95th percentile
were removed.

The resulting dataset with 494 AGB plots was randomly split into a training and
validation dataset, 80% and 20%, respectively (Table 1), covering the tropical lowland and
montane forests of Colombia, Ecuador, Perú, Bolivia, and Panamá (Figure 1). The dataset
covers an elevation gradient of 3240 m a.s.l. with a mean value of 431 m a.s.l. (±531 m
a.s.l.), with a skewed distribution towards the lower section of the elevation range (i.e.,
75% of the plots correspond to an altitudinal range bounded between 100 and 560 m a.s.l.;
Figure 2a). All AGB plot locations had a mean forest cover of 97% ± Sd = 4.4 (Figure 2b).
The mean plot size was 0.63 ha (±0.32 ha). Lastly, to obtain AGC values, we multiplied the
individual plot AGB value by a conversion constant of 0.465 [50].

Table 1. Training and validation dataset’s composition.

Dataset Training Validation

Pichincha Forest plot network—RBCA 15 8
Regional 379 92

Total 394 100

https://doi.org/10.5061/dryad.59zw3r26f
https://redbosques.condesan.org/
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Figure 2. Above-ground biomass data distribution along (a) elevation gradient and (b) tree cover
values for the year 2000 based on [49].

2.3. Remote Sensing Data Assembling

Multispectral Sentinel-2 (S-2, hereafter) and Sentinel-1 Synthetic Aperture Radar (S-1,
hereafter) imagery from the European Space Agency were accessed from the Google Earth
Engine (GEE) platform [51]. We used atmospherically corrected S-2 scenes (bands B2-B8,
B11, and B12) to predict AGC in the RBCA. We created a stack of images for the target
year, i.e., 2018–2021 ± one year (e.g., images from 2017 to 2019 were used for producing
the year 2018 mosaic) to minimize missing data and cloud interference [52]. We then
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applied the s2cloudless algorithm implemented in GEE for masking clouds and cloud-
shadows to every stack. Each multiyear stack contained around 5 to 20 valid observations
at pixel-level (year and location dependent). In addition, we created yearly S-1 mosaics.
S-1 images were retrieved from the ‘Descending orbit’ (to eliminate potential discrepancies
in the backscatter) and pre-processed by applying an additional border noise correction,
a multi-temporal boxcar speckle filtering and a radiometric terrain normalization ([53];
Table S1).

Different spectral indices were calculated and appended to the cloud-free stacks
(Table S1). Likewise, elevation and slope data (30-m) from the Shuttle Radar Topography
Mission (SRTM) dataset [54] were included as predictor variables. Lastly, X (longitude) and
Y (latitude) coordinates were generated for each pixel of the study area and integrated with
the RS dataset. The geographical coordinates were included to capture the environmental
gradients that influence our study region, e.g., harsher climatic conditions towards the
east and a marked carbon stocks variation from north to south. All the aligned and
registered layers were resampled to a 10 m resolution if necessary. The final composites were
produced by computing the median value of every variable/band at the pixel level in the
2017–2019 period.

2.4. Above-Ground Carbon (AGC) Regression Models

We used a random forest (RF) algorithm [55] to develop a regression-based machine
learning model. RF is a computationally efficient tree-based machine learning model robust
to random and systematic noise [56,57]. RF builds several trees, previously specified by
the user, iteratively from random training data samples (n = 394). The ensemble of the
predictions of all trees constitutes the final model. We parametrized the model to generate
1000 trees with 15 variables per split; a grid search algorithm was used to find the optimum
number of trees. We used the scikit-learn library for fine tuning the RF model in Python [58].
A total of 23 variables were used as predictors (Table S2).

To increase the robustness of our regression and to provide a measure of the model’s
estimation uncertainty at the pixel level we used the mean of ten distinct RF models as
the AGC value for every pixel and every time step. Our dataset, n = 494, was divided into
ten folds [59]; for each fold, an 80% random sample (i.e., n = 394) was used to train an RF
model. For every time step, ten AGC maps were generated and averaged to produce AGC
density estimates at the pixel level.

2.5. Error and Uncertainty Estimation

We assessed the error estimation and precision for the predicted AGC models by
comparing the predicted AGC (i.e., mean of the 10 maps) against the observed ground-truth
AGC. Error and precision were calculated for the entire training dataset (n = 393), validation
dataset (n = 100) and the Pichincha Forest plot network exclusively (n = 23). To evaluate
the performance of the AGC models, we used the adjusted R2 metric, which considers
the model’s goodness of fit while adjusting for model complexity to avoid overfitting.
Additionally, we employed three widely used performance indicators: Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and the Mean Absolute Percentage Error
(MAPE) [23,60]. These metrics allowed us to quantify the magnitude of differences between
the observed and predicted AGC values and provided a comprehensive evaluation of
model accuracy.

Lastly, we assessed the generalization capabilities of our AGC model by comparing
the outputs of independent random forest (RF) models against localized ground-truth data.
Four distinct areas of interest (AOI) were defined, each containing a different number of
local plots (Table 2). In an iterative process, 600 different RF models were trained for each
AOI. For constructing the training and validation datasets for each AOI, the following
procedure was followed: (1) plots belonging to the specific AOI under consideration were
removed from the entire dataset; (2) the remaining dataset was randomly split into training
and validation subsets, with proportions of 80% and 20%, respectively, in each iteration;
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(3) local plots were then randomly selected and incrementally added to both the training and
validation datasets; (4) the maximum number of local plots that were added to the training
subset was limited to 80% of the total local plots available within the AOI. This iterative
process allowed us to progressively evaluate the impact of adding more localized data on
the model’s performance. The validation dataset, consisting of 20% of the data, including
local validation points, was used to estimate the model’s performance for each AOI. This
approach ensured a comprehensive assessment of the model’s ability to generalize across
different areas with varying degrees of local data availability.

Table 2. Metadata of four areas of interest (AOI) where model’s generalization capabilities
were assessed.

AOI AOI Area
(km2)

Coordinates Extent (◦)
Median

Elevation (Interquartile Range)
(m a.s.l.)

Local Plots Size
(n)Latitude Longitude

RBCA 2868 79.381,
78.36

−0.643,
−0.395 1267 (1380) 23

Bolivia 1,165,573 −69.5,
−68

−15.5,
−14 1494 (1462) 23

Peru 1,804,273 72.146,
−70.986

−13.368,
−11.781 1519 (2188) 28

Bolivia and Peru 7,761,764 −72.206,
−68

−15.5,
−11.67 1200 (1973) 67

2.6. Carbon Maps’ Post-Processing

A post-processing was applied to all the generated AGC maps. First, non-forest
areas were masked-out from the results using the Global Forest Change V1.10 [49]. Then,
a temporal coefficient of variation (CV) at the pixel-level was calculated and used for
improving the temporal consistency of the AGC maps. Pixels with a temporal CV > 1.5, i.e.,
high temporal uncertainty, and high slope (>25◦) were smoothed by using a focal window.
We used a circular kernel of 80 m radius to calculate the average AGC inside the moving
window. In each time-step the AGC in the selected pixels was replaced with the smoothed
AGC value. Then, a temporal correction was applied to all the previously smoothed pixels.
AGC values in these pixels were replaced by their minimum temporal AGC value to reduce
temporal inconsistencies [49].

2.7. Carbon Stocks Spatial Patterns, Gains, and Losses

As elevation is the single most important factor controlling AGC stocks in tropical
mountain ecosystems [61–63], AGC maps were decomposed into six elevation ranks to
assess the spatial distribution of the above-ground carbon across the study area. Elevation
ranks were set based on natural breaks in the histogram of the elevation grid. We also
generated a profile along the elevation gradient and summarised the AGC value per pixel
for each elevation rank and generated AGC averages per each rank. Lastly, we compared
our AGC model against pre-existing AGC global datasets [19,64,65] across the elevation
gradient in the RBCA.

We estimated carbon stock change between 2018 and 2021 at the pixel scale to assess
carbon gains and losses. We defined the AGC net change (Mg ha−1 yr−1) as the difference
between AGC stock in 2021 and AGC stock in 2018 divided by the elapsed time (t; in years)
[AGC net change = (AGC2021 − AGC2018)/4]. Positive values were defined as forest
carbon stock gain, whereas negative values as carbon loss.

3. Results

In 2018, the forests of the RBCA stored a mean of 70.26 (±8.1) Mg C ha−1, rang-
ing from 55.6 to 102.8 Mg C ha−1 (Table 3, Figure 3). In 2021 a slight increase in AGC
density was observed at 70.64 (±8.1) Mg C ha−1 at the pixel scale. In 2021, total carbon
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storage at the landscape scale was 13.66 Tg (million megagrams) in its above-ground
compartment, evidencing an annual net gain of 71,886 Mg C, equalling a productivity of
0.37 Mg C ha−1 yr−1 (Table 4). This net increase resulted from a greater increase in pixels
that gained biomass (mean = 0.60 ± 0.66 Mg C−1 ha−1 yr−1) than pixels that lost biomass
(mean = −0.49 ± 0.61 Mg C−1 ha−1 yr−1) between 2018 and 2021.

Table 3. Estimated Above-Ground Carbon density (AGC, Mg C ha−1) and AGC stocks (landscape)
in the Chocó Andino Biosphere Reserve (RBCA) for the period of 2018–2021.

Year AGC Pixel-Level Mean (±Sd) AGC Pixel-Level Range (Min–Max) Landscape Total (Tg)

2018 70.26 (±8.1) 55.6–102.8 13.45
2019 70.65 (±8.2) 55.6–102.8 13.71
2020 70.64 (±8.2) 55.7–102.8 13.76
2021 70.64 (±8.1) 55.6–101.9 13.66
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Table 4. Forest cover, AGC stocks, and AGC net change between 2018 and 2021 at the pixel and
landscape scale in the Chocó Andino Biosphere Reserve (RBCA).

Variable 2018 2021 Productivity

AGC (Mg) 13,446,451 13,662,109
Forest cover (ha) 198,727 194,795

Landscape (Mg C yr−1) 71,886
Pixel (Mg C ha−1 yr−1) 0.37

We found a broad regional partitioning of standing carbon stocks mediated primarily
by elevation, longitude, and latitude (Figure 4). The mean AGC of the piedmont forest
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(340–1200 m a.s.l.) was 80 (±6.2) Mg C ha−1 and decreased monotonically along the
gradient to as low as 59.8 (±3.8) Mg C ha−1 in the upper montane forests (>3500 m a.s.l.;
Figure 5).
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Based on the analysis of the entire validation dataset (n = 100), we successfully pre-
dicted above-ground carbon (AGC) values across the study region with high precision
(R2 = 0.6; p < 0.0001) and accuracy at a fine resolution of 0.01 ha (RMSE = 44.3 Mg C ha−1

in 2021; Table 5). Subsequently, we focused solely on the Pichincha plots (n = 23), which
resulted in improved precision (adj. R2 = 0.7); however, it also led to an increase in the error,
accounting for nearly 28% of the mean AGC density (RMSE = 23.8 Mg C ha−1; Table 5).
Likewise, the RF models with different training subsets for the four AOIs depict that our
AGC model can achieve an overall mean accuracy of ~85%, when at least 14 local sampling
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plots are combined with regional plots to reach a relatively high mapping accuracy (Table 6).
Tables 5 and 6 report differences in RMSE, MAE, and MAPE at the RBCA level. Main
reasons for these differences are the number of RF models that were employed in each
analysis. While we used the average of 10 maps for calculating the accuracy and error
metrics in Table 5, the tabular output of 600 RF models was employed for calculating and
assessing the generalization capabilities of our approach in Table 6.

Table 5. Models’ error assessment based on different datasets for the year 2021 based on the linear fit
between the observed above-ground carbon values against the random forest modelled estimates
at 10 m pixel resolution, where: AGC: above-ground carbon; RMSE: Root Mean Square Error;
MAE: Mean Absolute Error; and MAPE: Mean Absolute Percentage Error.

Total Plots (n) Type Observed AGC
Adj. R2 RMSE MAE

MAPE (%)(Mg ha−1) (Mg C ha−1) (Mg C ha−1)

494 Entire dataset 85.7 0.87 12.1 8.29 0.12
393 Training dataset 85.8 0.95 8.3 6.07 0.09
100 Validation dataset 85.1 0.6 20.6 15.71 0.24
23 RBCA entire dataset 84.5 0.7 23.8 17.39 0.23
8 RBCA validation dataset 81 0.4 34.6 28.62 0.39

Table 6. Models’ error assessment in four areas of interests (AOIs) with different number of local
plots, where: AGC: above-ground carbon; RMSE: Root Mean Square Error; NRMSE; Normalized
RMSE; and MAPE: Mean Absolute Percentage Error. Minimum plots refer to the minimal number of
local plots added to the dataset that ensured a mean accuracy of ≥85%.

AOI Total Plots (n) Minimum Plots (n) Observed
AGC (Mg ha−1)

RMSE
(Mg C ha−1) NRMSE MAPE (%)

RBCA 23 23 84.5 (40.7) 18.4 (3.7) 0.22 (0.044) 16.4 (0.01)
Bolivia 23 19 82.9(44) 19.9 (4.7) 0.24 (0.06) 14.8 (0.02)

Peru 28 14 87.6(34.3) 16.3 (2.7) 0.19 (0.03) 15.4 (0.03)
Bolivia and Peru 67 35 90 (36.3) 21.5 (2.6) 0.24 (0.03) 15.2 (0.01)

When comparing our AGC model with the global maps available for the
tropics [19,22,65], we found that all global maps tended to overestimate AGC density
across the study area, and the variation reported by all global maps was at least two times
higher than our results (Table 7). Further, the three global datasets failed to represent the
AGC/elevation trend reported for our study area. All global AGC maps predicted the
montane forests between 1800 and 2500 m a.s.l. to contain the higher AGC density followed
by the range between 1200 and 1800 m a.s.l. (Figure S3, Table 7).

Table 7. Estimated above-ground carbon (AGC) stocks in the Chocó Andino Biosphere Reserve along
the elevation gradient by the three global datasets and this study, using 2019 as a reference midpoint
of the period studied (2018–2021). The six elevation bins used resemble the ecosystems with distinct
carbon contents (based on [46]).

Elevation
(m a.s.l.)

[22] [19] [65] This Study
AGC (±Sd)

Mg ha−1
Landcape

(Mg C)
AGC (±Sd)

Mg ha−1
Landcape

(Mg C) Mean (±Sd) Sum AGC (±Sd)
Mg ha−1

Landcape
(Mg C)

340–1200 79.05 (±12.9) 2,692,023 88.57 (±23.2) 4,008,942 91.7 (±36.9) 3,895,623 80.01 (±6.19) 3,359,412
1200–1800 94.02 (±25.3) 5,909,566 97.53 (±32.4) 6,996,586 100.2 (±42.4) 6,391,243 72.98 (±6.27) 4,514,733
1800–2500 122.23 (±30.7) 6,507,414 125.74 (±41.9) 7,270,708 113 (±42.2) 6,040,246 65.87 (±4.18) 3,273,434
2500–3000 106.3 (±35.9) 2,920,852 106.93 (±52.9) 3,549,323 99.1 (±49.3) 2,815,016 63.82 (±4.31) 1,641,145
3000–3500 94.6 (±34.1) 1,352,744 81.42 (±45.3) 1,463,638 82.5 (±50.2) 1,245,401 62.45 (±4.16) 856,181
3500–4777 71.5 (±27) 91,700 45.87 (±29.1) 89,000 43.51 (±39.2) 43,373 59.78 (±3.75) 59,682

All 100.7 (±31.7) 19,474,300 89.13 (±47.2) 23,378,197 99.87 (±44.1) 20,430,903 70.65 (±8.2) 13,706,235
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4. Discussion

Our predictive random forest (RF) models for above-ground carbon (AGC) revealed
significant carbon storage in the montane forest of the RBCA, with a total of 13,662,109 Mg C
stored in the above-ground compartment in 2021. The piedmont (600–1200 m a.s.l.) and
lower montane (1200–1800 m a.s.l.) forests on the northwestern versant of the study area
were identified as the primary sinks, accounting for nearly 60% of the total AGC stored in
the RBCA. Above this elevation range, the AGC stocks showed a steady decrease (refer to
Table 7 and Figure 5). This observation aligns with previous studies that reported a decline
in AGC with increasing elevation along elevation gradients in the RBCA and the tropical
Andes [48,61,62,66], reinforcing the capability of our AGC models to accurately capture the
spatial variation of AGC influenced by elevation.

The observed increase in AGC over time was found to be lower than that reported for
mountain forests in the Andes using permanent plots (0.67 ± 0.08 Mg C ha−1 yr−1; [48]).
Additionally, between 2015 and 2019, 16 out of the 21 local plots in our study area exhibited
an AGC increase at an annual rate of 1.20 ± 0.89 Mg ha−1 yr−1 [46]. However, at larger
spatial scales environmental heterogeneity increases, leading to varied AGC trends. As a
result, many pixels across the RBCA indicated a decrease in AGC between 2018 and 2021.
These pixels showed a mean AGC loss of −0.49 (±0.61) AGC ha−1 yr−1 (Table S3). On the
other hand, pixels reporting a consistent increase in carbon stocks showed a mean AGC
gain of 0.60 (±0.66) AGC ha−1 yr−1. To better understand the trajectory of these pixels
over time, further analyses are needed. For example, conducting a time series analysis
for a subset of pixels (e.g., 15% of all pixels exhibiting AGC loss and gain) surrounding
field plot locations using spectral–temporal segmentation algorithms (e.g., LandTrendr
https://github.com/eMapR/LT-GEE, accessed on 2 June 2023), can provide valuable
insights into forest cover changes based on the pixel’s spectral history, utilizing moderate
or high-resolution imagery [67]. Such an approach would complement our understanding
of AGC pixel trends over shorter timeframes.

4.1. Uncertainty and Its Impact on the Calculation of Carbon Credits

Our approach has proven highly effective in estimating above-ground carbon (AGC)
densities at the landscape scale, providing predictive values (Mg ha−1) at the pixel level
that accurately reflect AGC spatial variation within complex landscape mosaics, such as
the western versant of the Ecuadorian Andes. The increased AGC resolution achieved
through our methodology has significant implications for the design of local Payment
for Ecosystem Services (PES) schemes, particularly in determining the size of carbon
benefits that can be generated for any project area. Notably, our high-resolution maps offer
enhanced precision and reduced uncertainty compared to current methodologies used by
international standards in the Voluntary Carbon Market (e.g., Plan Vivo, Verra), where
average AGC density per hectare is estimated for each forest stratum [68,69].

Significant differences emerged when comparing our approach with available global
AGC datasets (Table 7). Global datasets consistently estimated higher AGC contents at
the pixel scale, with considerable dispersion around the means, ranging from 31% to 53%
variation. In contrast, our model demonstrated a considerably lower dispersion, with only
12% variation. On the landscape scale, on average, the three datasets estimated 7.4 million
Mg more carbon stored in the RBCA than our estimates, potentially leading to an overes-
timation of the mitigation potential (refer to Table 6). Several factors contribute to these
discrepancies: (1) The inability of the three global datasets to capture the AGC/elevation
trend reported for tropical mountain ecosystems (e.g., [12,48,61]). All global AGC maps
predicted that montane forests between 1200 and 2500 m a.s.l. contained the highest carbon
density in our study area (Table 7, Figure S3). As this elevation band constitutes 60% of
the forest cover in the RBCA, it significantly increases the estimated total carbon at the
landscape scale. (2) There is limited plot coverage in tropical mountain regions of the
Andes, which forms the basis for global products. Plot distribution tends to be skewed
toward lowland areas [18,70] leading to a lack of representation in higher elevation regions.

https://github.com/eMapR/LT-GEE
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This limitation hinders the applicability of global datasets and increases the uncertainty
surrounding the quantified AGC estimates. (3) Globally available forest masks at a 30 m
resolution (i.e., [49]), may overestimate forest cover remnants in agricultural mosaics. A
30 m pixel resolution product might inaccurately depict forest cover remnants in complex
topographic regions, where forest fragments exist in areas of high slope and are embedded
within diverse land use mosaics (e.g., palmetto plantations and cacao agroforestry systems).
This can lead to overestimation of carbon stocks in such regions.

4.2. Robustness of the AGC Model

Our approach demonstrated a remarkable reduction in the number of local plots
required to achieve a statistically valid sample for obtaining highly accurate AGC estimates.
Current methodologies for REDD+ projects typically recommend a minimum of 45 local
plots for training (70%) and validating remote-sensing-based AGC models [68]. However,
our approach showcased that AGC high-resolution maps, displaying carbon density at
a per-pixel level with high accuracy (≥85%), can be obtained with as few as 15 local
plots enriched with AGC data from published regional studies and existing forest and
carbon datasets. This significant reduction in the number of required local plots can lead to
substantial cost savings and improved efficiency in REDD+ project designs. Furthermore,
our proposed approach allows for near real-time monitoring of AGC dynamics across the
entire study region. Although we utilized S-1 and S-2 imagery, our approach is sensor-
agnostic and can be applied to different satellite imagery sources, whether public or
commercial, at various spatiotemporal resolutions. These findings can have a meaningful
impact on REDD+ project implementation, particularly for projects covering extensive
areas with diverse land-use/land-cover types and limited accessibility, where reaching a
statistically valid sampling size using traditional plot-based biomass measurements can
be challenging.

The inclusion of environmental covariates in the RF model significantly improved the
accuracy of our AGC estimates. Elevation, longitude, and latitude were identified as the most
influential factors in the RF model (refer to Figure 4). This aligns with previous research
that highlights the strong influence of environmental variables on AGC spatial distribution,
especially in complex topographic regions [61,63,71]. Interestingly, an average pixel-level error
of 20.6 Mg C ha−1 compares favourably with past studies that reported uncertainties ranging
from 21 Mg C ha−1 [15] to 40 Mg C ha−1 in tropical forests [60,72–74], see Figure S4. The
accuracy achieved by our AGC model is a crucial aspect for the success of carbon sequestration
schemes and can support more informed decision-making in climate mitigation efforts.

4.3. Implications for Forest Conservation and Restoration in the RBCA

The AGC maps for the RBCA were generated to be integrated into the Zero Carbon
Compensation Program. The Zero Carbon Program emerges as a mechanism to promote,
on the one hand, the decarbonization of Grupo Futuro (GF) companies (https://www.
futuro.com.ec/, accessed on 2 June 2023) and, on the other, as a financing mechanism
for the conservation of biodiversity. The Zero Carbon Program is structured into three
components. The first focuses on quantifying greenhouse gas (GHG) emissions from GF
companies, also known as carbon footprint (based on international quality standards, i.e.,
ISO 14064 [75], 14067 [76] standards; IPCC Protocol for the AFOLU sector). The second
component centres on implementing strategies to reduce GF companies’ carbon footprint.
The third component focuses on designing and implementing compensation strategies
through a trust fund, the Carbon Neutral Fund, formed in 2019. Funds from this trust
are invested in the conservation and restoration of forests via conservation agreements
between GF and landowners in the RBCA.

The third component, related to the compensation mechanism, is implemented on a
technological platform called NFTrees (https://nftree.com.ec/, accessed on 2 June 2023).
Our carbon maps were uploaded in blockchain technology to allow interested buyers to
purchase digital tokens to compensate for their emissions. The purchase is made through a

https://www.futuro.com.ec/
https://www.futuro.com.ec/
https://nftree.com.ec/
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credit card or wire transfer directly to the Carbon Neutral Trust Fund. The NFTrees platform
allows transactional traceability and avoids double accounting (i.e., different parties cannot
claim the same carbon removal or reduction credit). Likewise, blockchain technology
generates a unique and unalterable record (a Token). The token guarantees that any hectare
of forest in which the carbon has been compensated cannot be sold again. Currently, the
GF’s Zero Carbon Program model generates USD 250,000 per year, equivalent to the carbon
offset of around 13,000 Mg of CO2-eq of 12 companies of the GF, which translates into
the conservation of 3000 ha of forests within the RBCA. With the AGC maps integrated
with blockchain technology and digital contracts to gain transparency and traceability, the
Zero Program envisions generating USD 1.9 million in the next five years to finance the
conservation of 22,600 hectares of forest and benefit at least 700 families within the RBCA.

4.4. Limitations and Further Research

RS mapping of above-ground carbon (AGC) stocks relies on various factors that can
influence the quality of the outputs. While we introduced a method to reduce the need for
extensive local ground-truth data, the quantity and quality of regional/global AGC data
remain critical for accurately representing AGC in areas with high environmental hetero-
geneity, such as complex topography and diverse climates. The adequate representation
of such heterogeneity requires a sufficient number of well-distributed regional records,
obtained from forest plots in regional/global datasets. In the case of the RBCA, AGC stocks
were partly underestimated due to the scarcity of up-to-date AGC data from mountainous
areas, particularly above 1000 m a.s.l. (Figure 2a). The lack of updated regional ground-
truth data from regions with similar environmental conditions can increase the Root Mean
Square Error (RMSE) of models and reduce their prediction capabilities. To address this,
initiatives releasing global AGB/AGC datasets that can be used for training and validat-
ing RS-based models must be properly supported with fair compensation mechanisms,
ensuring the maintenance of long-term plot monitoring programs [77]. Additionally, the
incorporation of ground-truth data from the Global Ecosystem Dynamics Investigation
(GEDI) Light Detection and Ranging (LiDAR) sensor [78] as a source of ground-truth data
can increase the prediction capabilities of RS-based AGC models (e.g., [79]).

Accurate carbon credits and potential mitigation estimates need the combination of
removals and emissions (i.e., AGC stocks) and activity data (i.e., land cover change). Locally
generated land change information needs to be developed alongside AGC data for improv-
ing wall-to-wall AGC estimates while ensuring the generated data’s transparency. Here we
have used a previously generated global forest cover dataset at 30 m [49] for generating a
forest vs. non-forest mask for each of the four AGC maps (2018–2021). Although the Global
Forest Change [49] product has been validated and extensively used worldwide, it presents
limitations when used at local scales, particularly in landscape mosaics of forest remnants
embedded in agricultural lands.

Similarly, further research is needed to produce temporally consistent AGC stock
maps, especially in tropical mountainous regions. The atmospheric and topographic
characteristics of the regions add an extra layer of complexity to the consolidation of
quality multitemporal satellite images. Here, we implemented and applied different pre-
processing algorithms to the multitemporal stacks. However, some remnant noise can
influence the AGC stocks at the pixel level. Time series analyses to decompose the raw
data can be beneficial for removing seasonality and noise signals from the stacks [80].
Furthermore, adding the AGC time series in the training dataset can also improve the
temporal consistency of AGC estimates. Although different authors have used statistical
approaches for generating historical AGC maps (e.g., validating these products requires
updated and multitemporal local and regional AGB/AGC data (e.g., [81]).

5. Conclusions

In this study, we have addressed a critical knowledge gap by providing comprehensive
insights into the spatial distribution of above-ground carbon (AGC) density in the TMFs
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of the western Ecuadorian Andes. Our findings hold significant implications for carbon
compensation projects aimed at preserving these threatened ecosystems. By integrating
field measurements and remote sensing data within an RF modeling framework, we
have achieved a pioneering advancement in accurately estimating AGC density at high
spatial resolutions. By employing this approach, we have successfully produced the first
high-resolution estimates of AGC density (Mg C ha−1) across the western Ecuadorian
Andes. Notably, our approach yields a remarkable accuracy of 85%, with RF-estimated
AGC density errors of only 15% (RMSE = 23.8 Mg C ha−1) on any 10 m pixel along a
3000 m elevation gradient, encompassing diverse ecological conditions. The resulting AGC
density maps provide a detailed overview of carbon stocks at a per-pixel level, offering
insights into the factors controlling the spatial distribution of AGC density at the landscape
scale. The outcomes of our study revealed a pronounced regional partitioning of AGC
density predominantly driven by elevation variations. This nuanced understanding of
AGC distribution enriches the foundation for carbon compensation mechanisms, enabling
project developers to make more precise estimations of the mitigation potential inherent
in TMFs. Furthermore, our investigation established the feasibility of obtaining highly
accurate AGC density maps by utilizing a minimum of 14 ground-truth plots augmented
with AGC density data from published regional studies. This approach not only enhances
the precision of carbon stock assessments but also contributes to reducing the uncertainty
associated with existing methodologies employed within the Voluntary Carbon Market
and international standards.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f14091903/s1, Figure S1: Location of the 23 permanent plots
across an elevation gradient on the Choco Andino Biosphere Reserve (RBCA for its Spanish acronym);
Figure S2: Forest cover density (>70%) in 2019 on the Chocó Andino Biosphere Reserve. Forest cover
density derived from [49]; Figure S3: AGC stock estimates by four different models. Maps A-C
correspond to global carbon models for the tropics at different spatial resolutions; Figure S4: Variation
in AGC uncertainty at pixel scale based on the coefficient of variation of 10 random forest models.
White areas within the RBCA represent no-forest cover (i.e., pixels with less than 70% of forest cover,
based on [49] for the year 2021). Polygons inside de RBCA delimit Quito municipality conservation
and sustainable use areas (ACUs for its Spanish acronym); Table S1: Description of satellite bands used
to build the Chocó Andino Biosphere Reserve AGC model; Table S2: Variable relative importance of
the random forest model performed to predict AGC in the RBCA for the reference year 2019. Number
of Trees: 1000; Table S3: Pixels that increase and decrease in above-ground carbon for the period of
2018–2021 in the Chocó Andino Biosphere Reserve.
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