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Abstract: For extracting tree structural data from LiDAR point clouds, individual tree segmentation is of
great significance. Most individual tree segmentation algorithms miss segmentation and misrecognition,
requiring manual post-processing. This study utilized a hierarchical approach known as segmentation
based on hierarchical strategy (SHS) to improve individual tree segmentation. The tree point cloud was
divided into the trunk layer and the canopy layer to carry out trunk detection and canopy segmentation,
respectively. The effectiveness of SHS was evaluated on three mixed broadleaf forest plots. The
segmentation efficacy of SHS was evaluated on three mixed broadleaf forest plots and compared with
the point cloud segmentation algorithm (PCS) and the comparative shortest-path algorithm (CSP). In the
three plots, SHS correctly identified all the trunk portion, had a recall (r) of 1, 0.98, and 1, a precision (p) of
1, and an overall segmentation rate (F) of 1, 0.99, and 1. CSP and PCS are less accurate than SHS. In terms
of overall plots, SHS had 10%–15% higher F-scores than PCS and CSP. SHS extracted crown diameters
with R2s of 0.91, 0.93, and 0.89 and RMSEs of 0.24 m, 0.23 m, and 0.30 m, outperforming CSP and PCS.
Afterwards, we evaluate the three algorithms’ findings, examine the SHS algorithm’s parameters and
constraints, and discuss the future directions of this research. This work offers an enhanced SHS that
improves upon earlier research, addressing missed segmentation and misrecognition issues. It improves
segmentation accuracy, individual tree segmentation, and provides both theoretical and data support for
the LiDAR application in forest detection.

Keywords: LiDAR; point cloud; trunk detection; crown clustering; individual tree segmentation;
Backpack-LiDAR; forestry inventory

1. Introduction

Forest resources are one of the most important natural resources on Earth, serving
functions such as preventing wind, fixing sand, conserving water, and maintaining eco-
logical balance. The traditional forest inventory algorithm requires a lot of labor and
material resources, while at the same time necessitating the damage or even cutting down
of the forest [1]. In the last two decades, the application of LiDAR (Light Detection and
Ranging) as an active remote sensing technology in forestry resource investigation has
become more and more extensive. Compared with traditional optical remote sensing
algorithms, LiDAR-acquired point cloud data can accurately acquire the vertical structure
of forests and obtain accurate tree structural parameters, such as tree position, tree height,
diameter at breast height (DBH), crown diameter, etc. [2,3], which are useful for extracting
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quantitative structural models (QSM) [4], as well as calculating forest biomass and forest
carbon stocks [5].

Individual segmentation is an important prerequisite for extracting structural parame-
ters of forest trees, and individual tree segmentation algorithms have also been the main
direction of forest LiDAR point clouds research in recent years [6]. Early individual tree
segmentation algorithms have been developed based on airborne LiDAR point cloud data.
Wallace, L. et al. developed an airborne LiDAR system [7], and, at the same time, by
identifying individual trees in the study area and estimating forest survey indicators at the
plot scale and individual tree scale, data such as tree height, individual tree position [8],
and canopy diameter were extracted, and the results of the survey were obtained with
higher accuracy. The individual tree identification algorithm of airborne LiDAR is mainly
based on the rasterized canopy height model (CHM), using the local maximum search
algorithm to determine the individual tree position, and applying the segmentation algo-
rithm to split the individual trees [9]. Popescu, S.C. et al. introduced a novel approach,
referred to as variable-window individual tree identification, which is based on the linear
regression connection equation between the measured height of trees and their crown
diameter [10]. In their study, Koch, B. et al. put forward a method for identifying potential
locations of treetops by employing a local maximum filter on the canopy height model
(CHM) [11]. They subsequently utilized a watershed segmentation algorithm to delineate
the canopy, enabling the automated extraction of individual trees. The findings of their
research demonstrated that the application of an image segmentation algorithm on the
CHM yielded superior performance in coniferous forest stands. However, it should be
noted that in broadleaf forest stands with significant depression, this approach may lead to
the merging of canopies. Li, W. et al. introduced a novel technique called the individual
tree segmentation technique (PCS) [12]. This approach employs the local maximum algo-
rithm to identify seed points as canopy vertices and utilizes the top-down region growth
algorithm to separate individual trees. The results of their evaluation indicate that the PCS
algorithm achieves an impressive overall accuracy of 90%.

However, airborne LiDAR acquires relatively low point densities (usually a few to
tens of points per square meter) and a small number of individual tree point clouds, and
the top-down data acquisition algorithm makes it difficult to acquire points from trunks
and branches, limiting its further research and application at the single-plant scale [13,14].
Compared to airborne LiDAR (UAV-LiDAR), which can acquire large-scale forest point
clouds above the canopy, terrestrial LiDAR (T-LiDAR) and mobile LiDAR (M-LiDAR)
are able to penetrate deeper into the understory. T-LiDAR and M-LiDAR use side-view
scanning modes with high point densities (usually several hundred to thousands of points
per square meter) [15,16] and can obtain rich tree-side information, such as stems, branches,
and even internal canopy details [17], which is very important for individual tree scales.
Due to the aforementioned advantages, more and more studies focus on the individual tree
segmentation of T-LiDAR or M-LiDAR point clouds. Tao, S. et al., addressing the problem
of how difficult it is to segment the canopy of TLS and MLS point cloud data, proposed an
individual tree segmentation algorithm for canopy segmentation, the comparative shortest
path (CSP) algorithm [18]. The segmentation accuracy of the algorithm in broadleaf and
coniferous forest plots far exceeds that of the PCS algorithm. However, the algorithm is
only applicable to forest point clouds with simpler understory environments, and under
more complex forest point cloud plot conditions, the algorithm suffers from misidentifica-
tion. Thus, it identifies non-tree point cloud targets as segmentation targets and has even
lower accuracy for the less accurate M-LiDAR point clouds. M-LiDAR can be categorized
into vehicle-based scanning, hand-held, and other personal laser scanning technologies
according to the scanning algorithm, including backpack-based laser scanning (BLS) [19].
M-LiDAR is more suitable for point cloud data acquisition on small and medium-sized
complex plots than T-LiDAR. The difference in principle and density leads to the poor
performance of individual tree segmentation algorithms based on UAV-LiDAR and T-
LiDAR point clouds when applied to M-LiDAR point cloud data, leading to problems
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such as missed segmentation and misrecognition. Comesaña-Cebral, L. et al. proposed
an algorithm to segment the Backpack-LiDAR point cloud using the DBSCAN algorithm
with a cylinder voxelization algorithm. This approach achieved a segmentation rate close
to 90%, but encountered a case of individual tree over-segmentation in the traditional
algorithm [20]. Liu, L. et al. successfully segmented 140 individual trees in a natural
forest plot using a relative density segmentation algorithm, but there were eight missed
segmentations and five misidentified trees [21].

In order to improve the accuracy of individual tree segmentation, as well as the preci-
sion of extracting tree parameters, and to reduce the problems of missed segmentation and
misrecognition in individual tree segmentation, an improved individual tree segmentation
algorithm is proposed in this study. This algorithm has been developed on the basis of the
hierarchical idea and based on the characteristics of the height change of the vertical structure
of the forest. The individual tree segmentation is divided into two major parts, including the
trunk detection in the lower layer and the crown clustering in the upper layer. This process,
achieved through point cloud layering, enables accurate identification of the trunk part of trees
and the clustering of crowns from different trees. This method exhibits high segmentation
accuracy in the region where the crowns are more closely overlapped and, at the same time, it
has strong robustness. Additionally, it is able to exclude point cloud targets other than trees,
avoiding the problem of misidentification. Evaluating the accuracy of segmentation results
using tree-level evaluation metrics as well as point-level evaluation metrics.

2. Materials and Methods
2.1. Study Area and Data Acquisition

The data collection site is located in Ximazhuang Park (39◦55′ N, 116◦37′ E), Tongzhou
District, Beijing, China, and the researchers in this paper scanned the entire park during
September–October 2022 using Backpack-LiDAR. Data acquisition was conducted by the re-
searcher with the Backpack-LiDAR in the plot, following an approximate S-shaped route. This
approach ensured the collection of tree information from multiple angles, thereby reducing
occlusion, as well as noise interference. At the same time, the route was designed in order to
ensure the establishment of an accurate point cloud map. The route concluded by returning to
the starting point to close the loop. The study encompassed a total area of approximately 3200
m2, consisting of two plots of 30 × 30 m2 each, which were representative of mixed broadleaf
forests, and one irregularly shaped plot with an area of around 1400 m2. The total number of
trees in the plots, as well as parameters such as diameter at breast height (DBH), tree height,
coordinates, and crown diameter of each tree were measured manually. The tree species in
the plots mainly contain catalpa, ginkgo, phacelia, and golden-leaf elm. The plots contain a
tree layer, a shrub layer, and an herb layer, with a relatively regular distribution of individual
trees and high canopy overlap (Figure 1).
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The Backpack-LiDAR scanning system used to collect data is mainly composed of
three parts: the LiDAR is RoboSense’s RS-LiDAR-16, the IMU is ALUBI’s 9-axis high-
precision attitude sensor LPMS-IG1, and the main control machine is selected from the
Intel NUC11PAHi50Z. The LiDAR wavelength is 905 nm, the horizontal field of view is 360◦,
the ranging capability is 150◦ (80m@10% NIST), the horizontal resolution is 0.1◦, the vertical
field of view is 30◦, and the vertical angle resolution is 2.0◦. The maximum output frequency
of the IMU is 500 Hz, and the open-source SLAM algorithm is used to build a 3D point cloud
map. The specifications of the LiDAR and the IMU are shown in detail in Table 1.

Table 1. The specification of LiDAR and IMU.

Name Content Parameter

RS-LiDAR-16 Field of View Horizontal: 360◦

Vertical: 30◦

Detection Range Up to 150 m
Laser Wavelength 905 nm

Scanning Accuracy ±2 cm
Resolution Horizontal: 0.1◦/0.2◦/0.4◦

Attitude Angle Range
Dual Gyroscope Parameters

Magnetic Field Sensor Parameters
Output Frequency

Resolution

Vertical: 2.0◦

Roll: ±180◦; Pitch: ±90◦; Yaw: ±180◦;
#1: 3-axis, ±400, 24 bits

#2: ±1000/±2000 dps, 16 bits
3-axis, ±2/±8 gauss, 16 bits

5~500 Hz
0.01◦

LPMS-IG1

2.2. Individual Tree Segmentation Based on a Hierarchical Strategy

We propose an individual tree segmentation algorithm based on hierarchical strategy
(SHS), which mainly includes three parts: data preprocessing, trunk detection, and canopy
clustering. Figure 2 shows the specific process of individual tree segmentation. Firstly, data
preprocessing is performed on the initial plot point cloud data, including downsampling,
statistical outlier removal (SOR), cloth simulation filtering (CSF), and point cloud normal-
ization. Secondly, the pre-processed point clouds are stratified via pass-through filtering to
obtain trunk slices and crown slices, which are used as inputs for trunk detection and crown
clustering, respectively. Next, the DBSCAN algorithm is used to cluster the trunk slices,
perform trunk detection, and calculate the trunk center of mass. A KDTree structure is built
for the crown slices. The nearest-neighbor search is used to build the undirected graphs of
the crown slices and the trunk centroid. A search table is built, and the crown point cloud
is clustered through the heap-optimized Dijkstra’s algorithm. Finally, the clustered tree
trunks and crowns are combined one by one to complete the individual tree segmentation.

2.3. Data Preprocessing

In order to ensure the accuracy of individual tree segmentation and to increase the
computational speed of the algorithm, this study performed a series of data preprocessing
operations to remove noise from the plots’ clouds, reduce the number of point clouds in
the plots, and highly normalize the plots’ clouds. In order to reduce the impact of the
huge number of point clouds on the data complexity of the segmentation algorithm, this
study used the random sampling algorithm [22] to accomplish data downsampling. This
algorithm accomplishes sampling by randomly selecting the number of point clouds within
a threshold range, where each point in the point cloud has the same probability of being
sampled, and random sampling does not change the original positional distribution of the
point cloud.

A statistical outlier removal (SOR) algorithm was used to reduce the impact of noise
on the segmentation accuracy of the sample point cloud (especially in the canopy). The
SOR algorithm statistically analyzes the neighborhood of each point in the point cloud and
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calculates the average distance from the point to the neighboring points, which is defined
by the following equation:

d(xi) =
1
n

n

∑
j=1

d
(
xi, xi,j

)
(1)

Si =

√√√√√ n
∑

j=1

(
d
(
xi, xi,j

)
− d(xi)

)2

n− 1
(2)

where xi,j is a point in the neighborhood and d
(
xi, xi,j

)
is the distance from point xi to xi,j.

Assuming that the distance from the point xi to all points in its neighborhood follows a
Gaussian distribution N

(
µ, σ2), the average distance d(xi) is the mean of the Gaussian

distribution µ, the sample standard deviation Si is the standard deviation of the Gaussian
distribution σ, and the point xi, whose distance is outside the standard range (µ− σ, µ + σ),
is defined as a noisy point and removed from the point cloud. Downsampling and SOR
filtering change the point cloud numbers of Plot 1 and Plot 2 from 583,072 and 467,612 to
257,431 and 212,342, respectively, and their densities from 42.54 pts/m3 to 19.02 pts/m3 and
from 32.11 pts/m3 to 15.66 pts/m3. Plot3’s point cloud number is changed from 1,532,492
to 656,870 and its density is changed from 64.46 pts/m3 to 29.88 pts/m3.

The cloth simulation filtering (CSF) algorithm [23] is employed for the purpose of
segmenting ground and non-ground point clouds. The CSF method leverages the inherent
characteristics of the fabric to adjust the point cloud filtering process by adjusting the
simulated physical processes associated with the fabric. Equation (2) in Newton’s second
law provides a direct relationship between the force applied to the fabric particle and its
position. The researchers analyze the force exerted on the particle by dividing it into two
separate stages. Then, they calculate Equation (2) without considering any internal force
in order to obtain Equation (3). The positions of the fabric particles can be determined by
solving Equation (3). The following equations are displayed: Equations (2) and (3).

m
∂P(t)

∂t2 = Fext(P, t) + Fint(P, t) (3)

P(t + ∆t) = 2P(t)− P(t− ∆t) +
G
m

∆t2 (4)

where m is the particle mass (usually m is set to 1), P represents the position of the particle
at time t, Fext(P, t) is the external force on the particle, Fint(P, t) is the internal force on the
particle, ∆t is the time interval, and G is the gravitational constant.

This approach yields very accurate filtering results with minimal parameter settings.
The proposed methodology involves the initial inversion of the input point cloud, fol-
lowed by the subsequent placement of a textile material over the inverted surface. The
determination of the final shape of the cloth and subsequent classification of the original
points into ground and non-ground components can be achieved by the analysis of the
interactions between the nodes of the fabric and the related LiDAR points. In certain
instances, the simulated cloth may serve as the ultimate Digital Terrain Model (DTM) that
is generated, thereby bypassing the need for interpolating ground points and effectively
restoring areas where data are absent. Figure 3 illustrates the outcomes of the segmentation
process, specifically the differentiation between ground points and non-ground points by
the utilization of CSF filtering.

The height normalization of the point cloud uses the simulated fabric generated by
the CSF algorithm as the DTM, and the normalized point cloud height is obtained by
subtracting the DTM height from the original point cloud height. After normalization, the
height value of the point cloud indicates the relative height from zero to the point. The step
of height normalization does not change the spatial distribution of trees and branches [18].
Figure 4 shows the comparison of the point cloud before and after height normalization.
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2.4. Individual Tree Segmentation
2.4.1. Point Cloud Stratification

In order to segment the tree trunk and tree crown separately, this paper uses the
straight pass filtering algorithm to layer the pre-processed point cloud, which is divided
into a trunk point cloud layer and a crown point cloud layer by setting the height field and
a fixed height value. The trunk point cloud layer contains most of the tree trunk points,
and the crown point cloud layer contains all the tree crown points and some of the tree
trunk points.

2.4.2. Trunk Detection

The density-based spatial clustering of applications with noise (DBSCAN) algorithm
is able to discover sample points with similar density and cluster them. Compared to
the K-means algorithm [24], DBSCAN does not need to pre-determine the number of
clusters, is less susceptible to noise, and is able to cluster clusters of arbitrarily shaped point
clouds [25]. The definition of the DBSCAN algorithm is as follows: neighborhood radius ε
and the minimum number of points MinPts are the criteria used by the DBSCAN algorithm
to describe density. Here, ε denotes the range of a sample point’s neighborhood, and
the minimum number of samples MinPts denotes the smallest number of samples within
that neighborhood. DBSCAN determines the type of a sample point based on the density
of the sample points. When a sample point has a number of sample points within the
neighborhood radius ε that is greater than or equal to the number of MinPts, the points are
classified as core points. Points that are not core points but are within the neighborhood of
a core point are classified as boundary points, and points that are neither core nor boundary
points are classified as noise points. When a sample point is contained in a neighborhood ε

of a core point, the sample point is said to be density-direct to that core point; if there is a
sequence xi,2, · · · ,xi,n−1 between the sample point xi,1 and the sample point xi,n and xi,j+1
is density-direct from xi,j, then xi,n is said to be density accessible from xi,1.

The process of the DBSCAN algorithm is as follows: According to the neighborhood
radius ε and the minimum number of points MinPts, calculate all the core points in the
sample. Starting from these core points, extend the clustering by considering the direct
density of reachable sample points to be added to the current clusters. Traverse all sample
points, excluding the unvisited points and the points that are not clustered, which are
considered as outlier points.

Due to the presence of low shrubs and other non-trunk point clouds in the understory,
in order to exclude the interference of non-trunk point clouds, this paper uses the cylindrical
fitting algorithm of Random Sample Consensus (RANSAC) [26], combining the height of
the point cloud with the number of point clouds as a constraint to further test the clustering
results of DBSCAN. The RANSAC algorithm was first proposed in 1981 by Fischler and
Bolles as an iterative algorithm for fitting data models for linear fitting, planar fitting, and
cylindrical fitting problems. The general cylindrical equation can be expressed as:

(x− x0)
2 + (y− y0)

2 + (z− z0)
2 − r2 =

[l(x− x0) + m(y− y0) + n(z− z0)]
2

l2 + m2 + n2 (5)
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where (x0, y0, z0) is a point on the cylindrical axis L, (l, m, n) is the direction vector of
the cylindrical axis L, and r is the radius of the cylinder. In this algorithm, the clustering
results of DBSCAN are used as inputs. The RANSAC cylindrical fitting algorithm is used
to randomly extract three points from the input point cloud to solve x0, y0, z0, l, m, n.
A cylindrical model is determined, and the deviation of all the input point clouds from
the cylindrical model is calculated. The process is repeated until the desired error value
is reached or the specified number of iterations is reached. The final cylinder fitting is
accomplished with the output model parameters. Continue to set the point cloud with
model parameter output as a pending trunk point cloud, and the point cloud without
cylindrical parameter output as non-trunk point clouds. Take 90% of the height of the trunk
layer and 90% of the average value of the number of points of the input point cloud as
constraints to obtain the target trunk point cloud, and calculate the center of mass of each
trunk point cloud as the starting point of the tree crown clustering.

Calculate the centroid of each trunk as the starting point for canopy clustering. Use
the KDTree to accelerate the creation of a point cloud undirected graph of tree crowns and
build a search table by adding the trunk centroids to the undirected graph through nearest
neighbor search. Use the centroid of each trunk as the starting point to establish the core of
the canopy clustering and use the Dijkstra algorithm with heap optimization to calculate
the shortest distance from each point in the canopy layer to the starting point, and then use
this information to classify the clusters.

The canopy point cloud is stored using an adjacency table structure. The adjacency
table has a lower space complexity than the adjacency matrix, which is suitable for scenarios
with a large amount of point cloud data. By traversing each point in the tree canopy
layer, searching for the nearest neighbor points within the neighborhood of the point, and
calculating the distance between the points using the Euclidean distance as the distance
calculation algorithm, the formula is as follows:

d
(

pi, pj
)
=

√(
xpi − xpj

)2
+

(
ypi − ypj

)2
+

(
zpi − zpj

)2
, i ̸= j (6)

where pi = (xi, yi, zi) and pj =
(

xj, yj, zj
)
. The neighbor edges of pi and pj are established

with distance d
(

pi, pj
)

as the weight of the adjacency table. In order to add the trunk center
of mass to the undirected graph, first add the trunk center of mass points to the canopy
point cloud. Next, search the trunk center of mass for the nearest neighbors and use the
distance between the trunk center of mass and the nearest neighbor points as weights
to establish the adjacency edge relationship. Finally, complete the establishment of the
search table.

The Dijkstra algorithm, based on heap optimization, uses a priority queue to optimize
the traversal phase. The main idea of the algorithm is to expand the shortest path tree step-
by-step by continuously selecting the node closest to the starting point. First, a minimum
heap is created as a priority queue, which is used to store the nodes to be processed. Create
a distance array, dist, to record the shortest distance from the starting node source to other
nodes. Set the shortest distance of the start node to 0 and the shortest distance of the other
nodes to infinity. In each loop, the node with the smallest distance is selected from the
priority queue heap, noted as the current node, and marked as visited. Iterate through
all the near-neighbor points of the current node; if the path distance of the current node
to reach the near-neighbor point is less than the current recorded shortest distance of the
near-neighbor point, then update the shortest distance of the near-neighbor point; if the
near-neighbor point is not in the priority queue, then add it to the priority queue. Repeat
the above steps until the priority queue is empty. Finally, get the shortest path from each
starting point to each point in the canopy layer. The pseudocode is shown in Algorithm 1.
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Algorithm 1. Pseudo-code for Dijkstra’s algorithm based on heap optimization.

Require: graph: the input graph; source: the source node;
Ensure: dist: an array with the shortest distances from the source to all other nodes;
1: dist[source]← 0
2: heap←MinHeap()
3: heap.insert(source, dist[source])
4: while heap is not empty do
5: current← heap.extractMin()
6: for each neighbor in graph.neighbors(current) do
7: distance← dist[current] +graph.edgeWeight(current, neighbor)
8: if distance < dist[neighbor] then
9: dist[neighbor]← distance
10: if neighbor is not in heap then
11: heap.insert(neighbor, dist[neighbor])
12: else
13: heap.decreaseKey(neighbor, dist[neighbor])
14: end if
15: end if
16: end for
17: end while
18: return dist

SHS clusters the canopy point cloud based on the shortest path tree, compares the
shortest path distance from each point in the canopy point cloud to each starting point.
Then, it clusters the point to the cluster of starting points corresponding to the minimum
value of the shortest path distance until each point is clustered.

2.5. Point Cloud Segmentation and Comparative Shortest Path

In this study, the PCS algorithm [12] and the CSP algorithm [18] are selected as
comparison algorithms of the SHS algorithm so as to verify the superiority of the SHS
algorithm in segmenting the forest Backpack-LiDAR point cloud. The PCS algorithm
utilizes the intrinsic three-dimensional structure of the airborne LiDAR point cloud to
determine the shape of an individual tree by the difference in the spacing between the
top of the tree and the bottom of the tree. The CSP algorithm pioneers the use of a new
segmentation algorithm to segment a canopy point cloud by computationally identifying
paths in the tree trunk based on the vascular structure of the tree and using this to segment
individual trees in a forest point cloud.

2.6. Implementation and Accuracy Assessment

For the individual tree segmentation algorithm based on hierarchical strategy (SHS)
proposed in this paper, this study uses the open-source software CloudCompare (https:
//www.cloudcompare.org/, accessed on 5 October 2022) to complete the implementation
of the data preprocessing part. In this process the random sampling part is set to one-third
or one-half of the original number of points after sampling, the SOR filtering mean distance
estimation points and the standard deviation multiplier threshold are set to the default value,
the fabric resolution of CSF filtering is set to 0.5, and the maximum number of iterations is
1000. Point cloud stratification, trunk detection, and canopy clustering are realized using the
point cloud library (PCL) based on C++. The PCS and CSP algorithms were implemented
using LiDAR360 software (https://www.lidar360.com/, accessed on 13 February 2022).

In order to accurately evaluate the accuracy of this segmentation algorithm, this study
uses the recall rate (r), precision rate (p), and overall segmentation rate (F) for evaluation
with the following formulas:

r = TP
TP+FN

p = TP
TP+FP

F = 2× r×p
r+p

(7)

https://www.cloudcompare.org/
https://www.cloudcompare.org/
https://www.lidar360.com/
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where TP is a true positive indicating the number of trees that were correctly segmented, FN
is a false negative indicating the number of neighboring trees that were assigned incorrect
segmentation, and FP is a false positive indicating the trees that were segmented but
did not actually exist. High TP values and low FN and FP values correspond to high
segmentation accuracy.

In order to assess the accuracy of segmentation in terms of point level, we extracted
the crown widths of individual trees segmented using each of the three methods, compared
them using field-measured crown width data. We evaluated the accuracy of the extracted
crown widths using the coefficient of determination, R2, with the root mean square error
(RMSE), two common metrics used to verify the precision of the segmentation algorithms
in terms of side-by-side validation:

R2 = 1−

n
∑

i=1

(
di − d̂i

)2

n
∑

i=1

(
di − d

)2 (8)

RMSE =

√
1
n

n

∑
i=1

(
di − d̂i

)2
(9)

where di is the measured crown diameter of the plot numbered i, d̂i is the extracted crown
diameter of the plot numbered i, and d is the mean of the measured crown diameter of plot.

3. Results

For trunk detection, SHS detected 43 trunks in Plot 1, 51 trunks in Plot 2, and 62 trunks
in Plot 3. SHS counted the same number of detections as the number of manual inspections,
with 0 missed detections and 0 false detections. That is, each individual tree trunk was
correctly detected in Plots 1–3, with a 100% correct detection rate. Figure 5. shows the
detection results of SHS on tree trunks in Plots 1–3.
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The specific segmentation results (TP, FN, and FP) and evaluation metrics (r, p, and F)
using the three algorithms for the three plots are shown in detail in Table 2. SHS has recall
values (r) of 1, 0.98, and 1; precision values (p) of 1, 1, and 1; and overall segmentation rate
(F) of 1, 0.99, and 1. The total recall value (r) is 0.99, total precision value (p) is 1, and total
overall segmentation rate (F) is 0.99. In Plots 1–3, the PCS algorithm has r values of 0.88,
0.96, and 0.96; p values of 0.84, 0.98, and 0.64; and F values of 0.86, 0.97, and 0.77. The total
recall value (r) is 0.94, total precision value (p) is 0.79, and total overall segmentation rate
(F) is 0.86. The CSP has r values of 1, 1, and 1 in the plots; p values of 0.93, 0.98, and 0.53;
and F values of 0.96, 0.99, and 0.69. Total recall (r) is 1, total precision (p) is 0.73, and total
overall segmentation rate (F) is 0.84. The segmentation results of the proposed algorithm in
this paper and the comparative shortest-path algorithm (CSP), as well as the point cloud
segmentation (PCS) algorithm for the individual trees of Plots 1–3, respectively, are shown
in Figure 6.

Table 2. Segmentation results and accuracy assessments in Plot 1, Plot 2, and Plot 3.

Plot Algorithm Actual
Number

Segmentation
Number TP FN FP r p F

SHS 43 43 43 0 0 1 1 1
1 CSP 43 46 43 0 3 1 0.93 0.96

PCS 43 45 38 5 7 0.88 0.84 0.86
SHS 51 51 50 1 0 0.98 1 0.99

2 CSP 51 51 51 0 1 1 0.98 0.99
PCS 51 49 48 2 1 0.96 0.98 0.97
SHS 62 62 62 0 0 1 1 1

3 CSP 62 116 62 0 54 1 0.53 0.69
PCS 62 76 49 2 27 0.96 0.64 0.77
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Figure 6. The plots depict the outcomes of the individual tree segmentation process in Plots 1–3,
wherein distinct colors were assigned to the segmented individual trees. The plots labeled (a–c) rep-
resent the results obtained from processing Plot 1 using the methods SHS, CSP, and PCS, respectively.
On the other hand, the plots labeled (d–f) and (g–i) correspond to Plot 2 and Plot 3, respectively,
processed using the same three algorithms.
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In terms of missed segmentation and misidentification, SHS has only one instance of
missed segmentation for a tree in Plot 2, accounting for 0.6% of the total number of trees.
PCS has 5, 2, 2, accounting for 5.8% of missed segmentation in the three plots, and 7, 1, 27,
accounting for 22.4% of misidentifications. CSP has 0, 0, 2, accounting for 1.2% of missed
segmentation, and 3, 1, 54, accounting for 37.2% of misidentifications. Figure 7 shows some
typical cases of missed segmentation and misidentification.
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Figure 7. The scatter plots depict the comparison between the extracted crowns and the measured
crowns in individual trees. These scatter plots represent the findings produced from three segmenta-
tion algorithms, labeled as (a), (b) and (c), respectively. The sample plots used for this analysis are
numbered as 1, 2, and 3.

Figure 7 illustrates the linear correlation between the tree-extracted crowns derived
from the three segmentation methods and the crowns measured in the field. The results
indicate that the R2 values for sample plots 1 and 3 using the SHS technique are 0.91 and
0.89, respectively, surpassing those of the other two algorithms. Additionally, the RMSE
values for sample plots 1 and 3 using the SHS method are 0.24 m and 0.30 m, respectively,
demonstrating lower values compared to the other two algorithms. In Plot 2, the coefficient
of determination (R2) for the SHS algorithm was found to be 0.93, which was comparable
to the R2 value obtained using the CSP technique. However, the R2 value for the SHS
algorithm was somewhat higher than that of the PCS 1% approach. In terms of root mean
square error (RMSE), the SHS algorithm yielded a value of 0.23 m, which was slightly lower
than the RMSE value of 0.22 m obtained using the other two methods. The percentage in
question is 4%. These plots depict the outcomes of the segmentation process for individual
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trees in Plots 1–3. Each segmented tree is represented by a distinct color. The first three
plots, labeled as (a) to (c), were processed using the algorithms SHS, CSP, and PCS. The
remaining plots, labeled as (d) to (f) and (g) to (i), represent Plot 2 and Plot 3, respectively,
and were processed using the same three algorithms.

4. Discussion
4.1. Comparison and Analysis of Results from Individual Tree Segmentation Algorithm Based on
Stratification Strategy with PCS and CSP

The PCS and CSP algorithms successfully segmented individual trees with a high
degree of accuracy in Plots 1 and 2, but their performance degraded significantly in Plot
3. The primary determinant of segmentation accuracy for the PCS algorithm is the thresh-
old [12]. Plot 3 exhibits a densely vegetated understory and a heavily overlapping tree
canopy. The scanning capabilities of the Backpack-LiDAR render a portion of the treetop
point cloud inaccessible [27]. Consequently, the PCS adaptive thresholding algorithm is
rendered ineffective, and the segmentation accuracy declines, leading to the occurrence of
misrecognition [28]. According to Wang, Y. et al., the precision of segmenting individual
trees is influenced by factors such as the heights, species, and canopy morphologies of
adjacent trees [29]. The segmentation results of PCS provide additional support for the
aforementioned literature. The results of PCS’s partial misidentification are illustrated
in Figure 8b,d. Due to the sensitivity of the CSP algorithm to non-tree point clouds at
greater altitudes, a considerable quantity of vegetation in Plot 3 is identified as individual
tree targets, resulting in a decline in the accuracy of segmentation. Consistent with our
experimental findings, Burt, A. et al. contend that CSP is unique to non-ground LiDAR
point clouds and is only pertinent to structurally simple and sparse forest types [30].
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Figure 8. Typical problems in segmentation. (a) There is a scanner figure in the plot, which is
misidentified as a tree trunk by the CSP algorithm. (b) The PCS algorithm recognizes four trees as
the same tree, resulting in a missed segmentation. (c) The PCS algorithm and the CSP algorithm
misidentified the building in the plot as an individual tree. (d) The PCS algorithm segmented the
crown of one tree into the crowns of two trees. (e) The CSP algorithm recognized taller shrubs as
individual trees.

Strictly enhancing the precision of individual tree segmentation remains a formidable
task. For segmenting Backpack-LiDAR point clouds, Comesaña-Cebral, L. et al. proposed
a fusion of the DBSCAN and cylinder voxelization algorithms [20]. The resulting segmen-
tation accuracy was approximately 90%; however, a considerable number of misidentified
and omitted segments persisted. Using a relative density segmentation algorithm, Liu,
L. et al. effectively segmented 140 individual trees in a natural forest plot [21]. However,
eight segmentations were missed and five were misidentified. The application of the SHS
algorithm, as outlined in the referenced publication, results in a notable enhancement in
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the segmentation precision of the point cloud as compared to the PCS and CSP algorithms.
Furthermore, SHS demonstrates effective performance in mitigating the occurrence of
missed segmentation and misclassification, while also exhibiting resilience in handling
non-tree point clouds (refer to Figure 8c). To summarize, the accuracies of the individual
tree segmentation and crown diameter measurements for the three algorithms discussed in
Section 3 clearly show that SHS has the capability to enhance the accuracy of individual
tree segmentation and reduce errors in identifying and recognizing trees.

4.2. Important Parameters in the Individual Tree Segmentation Algorithm Based on
Stratification Strategy

The crown-trunk layered height interval and the cylindrical fitting nearest neighbor
threshold are critical factors in the individual tree segmentation technique that relies on the
layering strategy. These parameters have a direct impact on the quality of the segmentation
results obtained using the segmentation based on hierarchical strategy (SHS) method. The
optimization of the height interval for canopy-trunk layering has been shown to enhance
the computational efficiency of the algorithm [24]. Additionally, the DBSCAN algorithm
has demonstrated its effectiveness in detecting trunk point clouds when the trunk layer
consists of a lower proportion of non-trunk point clouds [20]. This, in turn, reduces the
number of pending trunk point clouds for input cylindrical fitting. On the other hand, the
SHS algorithm is capable of efficiently detecting canopy point clouds when the canopy layer
contains a larger quantity of such point clouds. When the canopy layer contains a higher
density of canopy point cloud data, the Spatial Hierarchical Structure (SHS) forms a tightly
connected undirected graph. By utilizing the Dijkstra algorithm with heap optimization,
it becomes possible to precisely compute the shortest path from the canopy points to
the center of mass of the trunk. This enables the successful completion of the process of
clustering the canopy.

The morphology of tree trunks inside real-world plots is approximately cylindrical,
albeit with deviations from the ideal cylindrical shape [31,32]. The precise identification
of tree trunks within plots that have intricate understory habitats, characterized by the
presence of numerous non-tree disturbances resembling tree trunks, poses a significant
obstacle. In a study conducted by [19], it was shown that the precision of segmenting
individual trees was diminished in plots characterized by intricate understory settings,
as opposed to plots with uncomplicated understory environments. Additionally, the
extraction of structural data of the trees was also influenced by this disparity. This study
achieved improved recognition of distinct tree trunk shapes and non-tree trunk shapes
in the SHS algorithm by implementing a nearest-neighbor threshold for cylinder fitting.
Additionally, we carefully selected a suitable range of tree trunks to accurately fit the
residuals to the cylinder model.

4.3. Limitations of Individual Tree Segmentation Algorithms Based on Hierarchical Strategy and
Possible Future Research Directions

As indicated in Section 4.2, the outcomes of the SHS algorithm exhibit sensitivity to
the parameter configurations pertaining to stratification height, cylindrical fitting, and
the estimation of tree height and diameter at breast height. The park forest sample data
employed in the research demonstrates the ease of adjusting these parameters. Never-
theless, the accuracy of the SHS algorithm’s segmentation is significantly compromised
when the research sample plot encompasses trees exhibiting substantial morphological
disparities. The PCS algorithm and the CSP algorithm encounter the same issues [33].
Traditional algorithms for segmenting individual trees rely on a combination of a priori
knowledge and machine learning techniques. However, when dealing with sample plots
that exhibit significant variations in tree attributes, it becomes necessary to change different
parameters in order to get segmentation results that are more accurate when compared to
each other. In recent times, a considerable number of scholars have employed deep learning
networks in their investigations pertaining to the field of agroforestry. The study conducted
by [34] presents a novel approach that leverages convolutional neural networks (CNN)
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and LiDAR data to facilitate the process of 3D maize phenotyping. The proposed method
effectively partitions maize stems and leaves in field settings, exhibiting notable efficacy
with an F-score exceeding 0.82 for individual organs and 0.99 for entire plants. The study
conducted by [35] introduces a novel methodology that utilizes PointNet++ to effectively
separate several components of tree structures, including the canopy, trunk, and branches,
based on LiDAR point cloud data. The efficiency of the model was assessed by utilizing
LiDAR data obtained from a total of 435 tree samples, encompassing various species such as
Korean red pine, Korean pine, and Japanese larch. In contrast to alternative methodologies
such as PointCNN [36] and PointNet [37], the PointNet++ [38] model employed in this
investigation showed superior performance, notably in the realm of trunk segmentation.
Nevertheless, the accuracy of canopy segmentation was comparatively lower, measuring at
90.3%. The deep learning network model possesses a notable capacity for generalization,
which is advantageous in minimizing the need for extensive post-processing efforts in
individual tree segmentation. Additionally, this model facilitates the extraction of tree
parameters by integrating a compact network. In future research, our aim is to integrate the
deep learning network with the SHS algorithm. We intend to utilize the SHS algorithm to
generate a comprehensive dataset for tree segmentation. Additionally, we plan to enhance
the current network architecture by incorporating principles from the traditional individual
tree segmentation algorithm. Through rigorous training, our objective is to develop a
segmentation model that can effectively handle variations in tree sizes.

5. Conclusions

This work presents an improved individual tree segmentation approach, referred to
as the individual tree segmentation approach based on hierarchical strategy (SHS), with
the aim of addressing the issues of missing segmentation and misrecognition, commonly
encountered in existing individual tree segmentation methods. The process involved in
this study included the stratification of point clouds into trunk and crown components.
The trunk point cloud was subjected to RANSAC cylindrical fitting for constraint pur-
poses, while the crown component was segmented using the Dijkstra algorithm with heap
optimization. The resulting segmentation outcomes were then compared using both the
PCS algorithm and the CSP algorithm. The SHS algorithm demonstrates a significant
improvement in overall segmentation accuracy (F) compared to the PCS and CSP algo-
rithms in the context of missed segmentation and misrecognition. Specifically, in the three
broadleaf mixed forest samples, the SHS algorithm achieves segmentation accuracies of 1,
0.99, and 1, respectively. In contrast, the overall segmentation rates (F) of the PCS and CSP
algorithms are consistently 10%–15% lower than those of the SHS algorithm. In this study,
the crown width data were obtained by extracting information from the point clouds of
individual trees using three different algorithms. These extracted crown widths were then
compared to the crown widths measured in the sample plots. The results indicated that
the SHS algorithm had higher coefficients of determination (R2) compared to the PCS and
CSP algorithms. Additionally, the root mean square error (RMSE) of the SHS algorithm
was smaller than that of the PCS and CSP algorithms in Plot 1 and Plot 3. However, it
is worth noting that the results of the SHS algorithm were similar to the results of the
other two algorithms in terms of both R2 and RMSE. The coefficient of determination (R2)
and root mean square error (RMSE) values obtained from the SHS algorithm in Plot 2
exhibit similarity to the corresponding values obtained from the other two techniques. This
paper examines the disparities in segmentation outcomes among three algorithms, along
with their specific variations. It further explores the significant parameters involved in the
segmentation process of the SHS algorithm. Lastly, it addresses the existing constraints of
the SHS algorithm and outlines potential avenues for future research in this field. In con-
clusion, the SHS algorithm, as presented in this study, demonstrates notable enhancements
in addressing the challenges of missed segmentation of individual tree segmentation and
misrecognition. This algorithm contributes to the theoretical foundation of LiDAR research
in forest detection and facilitates the progress towards achieving precise and accurate forest
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detection methodologies. In next investigations, our focus will be on integrating deep
learning networks as a means to enhance the challenging issue of parameter adjustment in
the segmentation of individual trees.
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