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Abstract: Global climate warming has profoundly affected terrestrial ecosystems. The Tibetan
Plateau (TP) is an ecologically vulnerable region that emerged as an ideal place for investigating
the mechanisms of vegetation response to climate change. In this study, we constructed an annual
synthetic NDVI dataset with 500 m resolution based on MOD13A1 products from 2000 to 2021, which
were extracted by the Google Earth Engine (GEE) and processed by the Kalman filter. Furthermore,
considering topographic and climatic factors, a thorough analysis was conducted to ascertain the
causes and effects of the NDVI’s spatiotemporal variations on the TP. The main findings are: (1) The
vegetation coverage on the TP has been growing slowly over the past 22 years at a rate of 0.0134/10a,
with a notable heterogeneity due to its topography and climate conditions. (2) During the study
period, the TP generally showed a “warming and humidification” trend. The influence of human
activities on vegetation growth has exhibited a favorable trajectory, with a notable acceleration
observed since 2011. (3) The primary factor influencing NDVI in the southeastern and western
regions of the TP was the increasing temperature. Conversely, vegetation in the northeastern and
central regions was mostly regulated by precipitation. (4) Combined with the principal component
analysis, a PCA-CNN-LSTM (PCL) model demonstrated significant superiority in modeling NDVI
sequences on the Tibetan Plateau. Understanding the results of this paper is important for the
sustainable development and the formulation of ecological policies on the Tibetan Plateau.

Keywords: Tibetan Plateau; NDVI; deep learning; climate change; human activities; GEE

1. Introduction

According to the global climate change report released by the IPCC, the average
surface temperature of the Earth has risen by 0.74 ◦C over the past few decades, and there
has been an increase in extreme precipitation events globally [1]. As a result of the dual
impacts of climate change and human activities, the natural environment has also shown
different degrees of alteration [2]. In nature, vegetation is an indispensable part of terrestrial
ecosystems. It plays a vital role in maintaining ecosystem stability, and, as an “indicator” of
regional environmental change, vegetation has a feedback mechanism for climate change [3].
Climate change affects the growth and distribution of vegetation by directly influencing
its material exchange [4]. The Tibetan Plateau, as the largest and highest plateau in the
world, is called the “Roof of the World” [5]. As a result of climate warming, the TP, which
is influenced by different climatic zones, has undergone significant changes, and one of the
most significant responses is the abnormal increase in temperature [6]. The response of the
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TP to climate change is not homogeneous, and temperature changes are more pronounced
at higher altitudes [7]. Researchers also show that mountains far from the influence of
urbanization and topographic shading provide a more unbiased record of climate than
cities [8]. As one of the most sensitive regions to climate change, the TP has received
much attention, which makes it a suitable entry point for global climate change research.
Therefore, analyzing the growth and distribution of vegetation on the TP and its response
to climate change is significant to studying global warming and ecological regulation.

Monitoring the vegetation indices by remote sensing is an effective way to study the
distribution pattern of vegetation [9]. Normal Difference Vegetation Index (NDVI) is a reli-
able indicator for assessing ecological status and is especially suitable for large-scale regions
with limited vegetation coverage [10]. Consequently, employing NDVI as an indicator for
monitoring vegetation dynamics on the TP offers notable benefits [11]. In recent decades,
numerous studies have shown that the vegetation on the TP has been characterized by
“Overall improvement, Local degradation, with significant spatial heterogeneity” [12,13].
Piao [14] analyzed the trend of NDVI in China from 1982 to 1999 and found that more
than 80% of the area showed an increasing trend, with significant spatial and seasonal
heterogeneity. Other studies conducted revealed that the NDVI exhibited a modest upward
trajectory over the TP [13,15].

Furthermore, it was observed that there were discernible patterns of variation across
various latitudes/longitudes, seasons, and climatic zones [16,17]. The aforementioned stud-
ies indicate that the complex topography and diverse climate types have likely led to the
heterogeneity of the distribution and variation of NDVI [18]. Researchers have conducted
extensive and in-depth studies on the reflection of vegetation change characteristics in
recent years. One-way linear regression and the Theil–Sen trend method are frequently
used to determine the slope of the index, which reflects the change (improvement or degra-
dation) of the vegetation based on the positivity or negativity of the slope [19]. Meanwhile,
statistical tests such as the p-test, t-test, or Mann–Kendall test were employed to evaluate
the significance of the trend results for a more in-depth study of vegetation dynamics [20].

Nevertheless, the current research mostly concentrates on the historical changes of
vegetation indices and disregards their forthcoming evolutionary patterns. Jiang [21]
examined the consistency of changes in vegetation cover in the Loess Plateau with the
Hurst index. Omer [22] employed a combination of two machine-learning techniques,
Support Vector Regression (SVR) and Artificial Neural Network (ANN), for the inversion
of LAI. This approach yielded substantial validation accuracy, as indicated by an R-squared
value of 0.75. In studies where different models were used to predict the global GPP,
researchers found that the LSTM model consistently had the lowest RMSE [23]. Chen [24]
used an LSTM model with temperature and precipitation data as input variables to predict
future changes in vegetation NDVI. Jin [25] discovered that, in northwest China, the
impact of humidity on NDVI should not be disregarded and should be included in the
deep learning algorithm’s inputs. Deep learning models provide superior accuracy and
efficiency in addressing ecological multidimensional data compared to traditional machine
learning techniques [26].

Currently, more and more researchers are focusing on the response mechanism of
vegetation to climate change. Researchers frequently examine the association between
NDVI and climate factors (temperature, precipitation, humidity, etc.) through Pearson’s
correlation coefficient, partial correlation coefficient, multiple linear regression, etc. to
quantify the response of vegetation to climate change [27]. Various factors influence
vegetation growth, broadly categorized as natural and anthropogenic forces [28]. Human
activities often exert control over the impact of climate on vegetation growth via means
such as deforestation, reforestation of agricultural land, or vegetation restoration [27].
Residual trends are often used to quantify the impacts of human activities [19]. In addition,
researchers demonstrated that land cover type, altitude, and hydrothermal conditions in
the study area affect the response mechanism of vegetation [29].
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Additionally, the significance of these correlations was examined to ascertain the
approximate distribution of the dominant factors [30]. This method has a significant
limitation: it can neither determine the distribution of the dominant factors nor quantify the
proportion of each dominant factor in the study area. Zhao used a geodetector approach
to measure the explanatory degree of each factor affecting the NDVI change in Shaanxi
Province to quantitatively assess each factor’s contribution to the change in vegetation [31].
Unfortunately, this method could not clarify the spatial distribution of the dominant
factors [32]. Although previous studies have, to a certain extent, derived the distributional
characteristics of NDVI on the TP and its response relationship with climate factors, they
have not considered the influence of topography on the response mechanism. In addition,
most of the studies only chose temperature and precipitation as the driving factors, and did
not elucidate the distribution of climate-dominant factors. By comparing the effectiveness
of multiple linear regression, support vector machine, generalized additive model, and
random forest model in explaining changes in vegetation cover, Qiao found that the
random forest model has a lower fitting error and is more powerful in explaining changes
in vegetation cover [33]. In light of the aforementioned information, we suggest using
a random forest algorithm to ascertain the influence of individual drivers. This would
be achieved by evaluating the Gini coefficient of each decision tree, which serves as an
indicator of the spatial dispersion of the primary component [34]. The random forest can
accurately identify the key drivers of vegetation change by its high simulation accuracy,
fast computing speed, reliable result output, and robust generalization ability [35]. Thanks
to its excellent performance, random forest has shown promising potential in vegetation
change attribution.

To effectively address and further explore the research gaps above, the primary pur-
pose of our study was as follows: (1) Use GEE as a supporting platform to further explore
the variation characteristics of NDVI at varying terrain zones. (2) Quantify the driving
effects of climate change and human activities on vegetation growth. (3) Develop a deep
learning model to simulate NDVI on the TP accurately. The results can provide a theoretical
foundation and reference basis for ecological conservation and policy-making on the TP.

2. Study Area and Materials
2.1. Overview of Study Area

The Tibetan Plateau, known for its highest and widest plateau in the world, ranges
from 73◦19′~104◦47′ E and 26◦00′~39◦47′′ N. It is distributed in six provinces, covering
a total area of about 2.57 × 106 km2, about 26.7% of the total area of China [36]. Five
representative regions (Figure 1, A~E) have been chosen based on a detailed analysis of
topography, climate, and vegetation distribution features. The topography of the TP is
undulating, with an average elevation of 4400 m [37]. The regions on the TP with altitudes
ranging from 4500 to 5000 m occupy the largest part of the total territory, amounting to
32.08% (Figure 1). High-altitude regions are extensively dispersed throughout the central
and western sections of the plateau. In contrast, low-altitude regions constitute a lesser
fraction, primarily concentrated in the southern foothills of the Himalayas and the Qaidam
basin (region E). Moreover, Moderate incline (MO) occupies the widest area, amounting
to 33.24%. Steep (ST) slopes cover the least area, only 4.72%. The plateau’s edge tends to
be steeply sloped, especially the Hengduan Mountain (region B). The Level (LE) area is
mainly located in the Qaidam Basin (E). It is worth mentioning that the Northern Tibetan
Plateau (region D), despite its higher elevation, has a gentler slope.
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Gentle incline (2°~5°, GE), Moderate incline (5°~15°, MO), Steep (>15°, ST). 
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form to extract 483 MODIS images of the study area. Unfortunately, due to the presence 
of clouds etc., the NDVI often shows abnormally low values, which may seriously affect 
the accuracy of the result [40]. This study employed the maximum value composite (MVC) 
approach to generate the yearly NDVI series. The Quality Control (QC) band extraction is 
performed using MRT v4.x software, enabling the rapid identification of aberrant NDVI 
values. (Data with QC = 0 or 1 can be used directly; QC = 2 or 3 indicate that snow, ice, or 
cloud can potentially affect them.) Those affected data are considered noise and therefore 
deemed necessary to be discarded. Subsequently, the Kalman filter is employed to rebuild 
the pixels [41]. The NDVI dataset was successfully reconstructed, demonstrating a high 
level of validation accuracy by the underlying concepts. 

The temperature and precipitation sources are CRU v4.05, a global dataset produced 
and maintained by the University of East Anglia, UK. The spatial resolution of this dataset 
was 0.5° × 0.5°, which is slightly insufficient for studying the climate drivers on the TP. 
Therefore, this study used the Delta method to downscale the raw data to a spatial reso-
lution of 1 km. The Delta method is a robust technique for modifying regional climate data 
and is known for its high accuracy and excellent applicability [42]. The meteorological 
data from the National Earth System Science Data Center (NESSD) were subjected to 
cross-validation with the downscaled outcomes. In addition, the datum of the remote 

Figure 1. Overview of the study area. Representative regions A~E are Sanjiangyuan, Hengduan
Mountains, Southwestern Tibetan Plateau, Northern Tibetan Plateau, and Qaidam Basin, respectively.
Elevation grading criteria are low elevation (<3500 m), middle elevation (3500~5000 m), high elevation
(>5000 m); slope grading criteria are Level (0~0.5◦, LE), Very gentle incline (0.5◦~2◦, VG), Gentle
incline (2◦~5◦, GE), Moderate incline (5◦~15◦, MO), Steep (>15◦, ST).

2.2. Data Sources and Processing

The NDVI original dataset used in this paper is sourced from a public data archive
provided by Google Earth Engine (GEE). MOD13A1 is a data product released by NASA,
which has been processed with basic geometric and atmospheric corrections, etc., with a
spatial resolution of 500 m and a temporal resolution of 16 days [38]. GEE is an open-source
cloud computing platform for global-scale storage management, online processing, and
visualization of massive geoscience datasets [10,39]. We use GEE as a support platform
to extract 483 MODIS images of the study area. Unfortunately, due to the presence of
clouds etc., the NDVI often shows abnormally low values, which may seriously affect the
accuracy of the result [40]. This study employed the maximum value composite (MVC)
approach to generate the yearly NDVI series. The Quality Control (QC) band extraction is
performed using MRT v4.x software, enabling the rapid identification of aberrant NDVI
values. (Data with QC = 0 or 1 can be used directly; QC = 2 or 3 indicate that snow, ice, or
cloud can potentially affect them.) Those affected data are considered noise and therefore
deemed necessary to be discarded. Subsequently, the Kalman filter is employed to rebuild
the pixels [41]. The NDVI dataset was successfully reconstructed, demonstrating a high
level of validation accuracy by the underlying concepts.

The temperature and precipitation sources are CRU v4.05, a global dataset produced
and maintained by the University of East Anglia, UK. The spatial resolution of this dataset
was 0.5◦ × 0.5◦, which is slightly insufficient for studying the climate drivers on the
TP. Therefore, this study used the Delta method to downscale the raw data to a spatial
resolution of 1 km. The Delta method is a robust technique for modifying regional climate
data and is known for its high accuracy and excellent applicability [42]. The meteorological
data from the National Earth System Science Data Center (NESSD) were subjected to
cross-validation with the downscaled outcomes. In addition, the datum of the remote
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sensing maps made in this paper is D_WGS_1984, and the projected coordinate system is
Krasovsky_1940_Albers. The rest of the data and sources are shown in Table 1.

Table 1. Overview of data sources.

Category Index Description (Unit) Period Sources

Terrain factors
DEM Elevation (m) 2021 https://lpdaac.usgs.gov/

(accessed on 10 July 2023)
Slope Slope (◦) 2021 Extract from DEM

Aspect Aspect (◦) 2021 Extract from DEM

Vegetation Index NDVI MOD13A1 product 2000~2021 https://earthengine.google.com/
(accessed on 16 December 2022)

Meteorological factors T Temperature (◦C) 2000~2021 https://www.uea.ac.uk/
(accessed on 5 June 2023)

P Precipitation (mm) 2000~2021 https://www.uea.ac.uk/
(accessed on 5 June 2023)

RH Relative humidity (%rh) 2000~2021 http://loess.geodata.cn/
(accessed on 5 June 2023)

SR Solar radiation (W/m²) 2000~2021 http://loess.geodata.cn/
(accessed on 5 June 2023)

3. Research Methods
3.1. Distribution Index

In order to reveal the influence of topography on vegetation changes, this paper
introduces the distribution index to eliminate the uncertainty of vegetation restoration
evaluation caused by the difference in absolute area of topographic conditions [43]. The
formula is as follows:

K =
(Sie/Si)

(Se/S)
(1)

where Si is the area of vegetation change type i, Se denotes the whole area of terrain e, Sie is
the area occupied by i under e, and S represents the overall study area. If K > 1, the ratio
of the area of a specific vegetation change type under a given terrain condition (Sie/Si) is
found to be bigger than the ratio of this vegetation change type in the overall study area
(Se/S). This observation indicates that terrain e is the dominant terrain for this vegetation
change type i. Moreover, it is noteworthy that an increase in the value of K corresponds to
a higher degree of dominance, and vice versa.

3.2. Trend and Residual Analysis

The Theil–Sen median method, as a robust nonparametric statistical trend algorithm,
can eliminate the interference of outliers in NDVI series [19]. We used this method to assess
the trends of NDVI and climate factors. It is calculated as follows:

β = median
(Xj − Xi

j − i

)
, i < j ≤ n (2)

where n is the period, and here n is 22; Xi denotes the NDVI in year i. The positivity,
negativity, and magnitude of β can well reflect the trend of vegetation growth (improvement
or degradation). Our findings indicate that NDVI exhibits stable behavior across the range
of β values between −0.0005 and 0.0005. The Mann–Kendall test is a nonparametric
statistical test often combined with the Theil–Sen Median to determine the trend of factors
over time (Table 2) [20]. Additionally, we employ the coefficient of variation (CV) to
quantify the stability of the NDVI series [44].

https://lpdaac.usgs.gov/
https://earthengine.google.com/
https://www.uea.ac.uk/
https://www.uea.ac.uk/
http://loess.geodata.cn/
http://loess.geodata.cn/
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Table 2. Proportion of growing trends of vegetation on the TP.

Class Categories Legend Range Area Percentage (%)

Growing Trend

Significant degradation SID β < −0.0005; |Z| > 1.96 1.14%
Slight degradation SLD β < −0.0005; |Z| < 1.96 9.05%

Stable STA |β| < 0.0005 21.17%
Slight Improvement SLI β > 0.0005; |Z| < 1.96 33.72%

Significant Improvement SII β > 0.0005; |Z| > 1.96 34.92%

Continuity

Continuously improvement CI β > 0.0005; Hurst > 0.5 29.83%
Continuously degradation CD β < −0.0005; Hurst > 0.5 3.41%

Improvement→Degradation ID β > 0.0005; Hurst < 0.5 38.82%
Degradation→Improvement DI β < −0.0005; Hurst < 0.5 6.78%

No significant changes NS |β| < 0.0005 21.17%

The residual trend method, first proposed by Evans and Geerken, separated the effects
of climate change and human activities on vegetation growth [45]. This is achieved by
constructing a multiple linear regression model incorporating NDVI and climate factors
and predicting the vegetation changes only affected by climate change. The calculation
formula is as follows.

NDVIcc = a × T + b × P + c × RH + d × SR + ε (3)

δ = NDVIobs − NDVIcc (4)

In Equation (3), a, b, c, and d are the regression coefficients of NDVI with temperature,
precipitation, humidity, and solar radiation, respectively. NDVIobs is the observed value of
NDVI, and NDVIcc is the predicted value, and the difference between the two is regarded
as the part contributed by human activities, i.e., the residual. When δ > 0, human activities
have a positive effect on vegetation growth. Furthermore, we evaluate the relation between
NDVI and climate factors using the Pearson correlation coefficient [18].

3.3. Hurst Exponent

A hydraulic scientist from the UK introduced the Hurst exponent, a metric that
captures the underlying long-term trend in a series [45]. Researchers have also employed
this concept through extensive investigation to examine vegetation dynamics [46]. The
procedure can be briefly described as follows:

1. For a given NDVI sequence {NDVI(t) }(t = 1,2,. . .,n), its mean sequence can be ex-
pressed as:

NDVI(τ) =
1
τ ∑τ

t=1 NDVI(t) τ = 1, 2, 3 . . . (5)

2. The accumulated deviation was:

U(t,τ) = ∑τ

t=1

(
NDVI(t) − NDVI(τ)

)
1 ≤ t ≤ τ (6)

3. A range of R was specified as:

Rτ = maxU(t, τ)− minU(t, τ) (1 ≤ t ≤ τ; τ = 1, 2, 3 . . . , n) (7)

4. The standard deviation is:

Sτ =

[
1
τ ∑τ

t=1 NDVI(t)− NDVI(τ)2
] 1

2
(8)

5. If Rτ
Sτ

∝ τH , it indicates the presence of Hurst phenomenon in the time series:

Rτ

Sτ
= (cτ)H (9)
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6. The Hurst exponent can be obtained by fitting the equation:

log(R/S)a = a + H × log(n) (10)

In the formula, if 0.5 < Hurst < 1, it indicates that the future trend of NDVI is consistent
with the original trend, and the closer the value of Hurst is to 1, the stronger the consistency;
if 0 < Hurst < 0.5, it shows the reversal of the existing trend, i.e., inconsistency; Hurst = 0.5
indicates that NDVI will change stochastically. The combination of Hurst and Theil–Sen
median trend analysis can be used to forecast the future evolution of NDVI.

3.4. Random Forest Algorithm

Random forest is an integrated learning algorithm developed by Breiman that com-
bines multiple decision trees to accomplish classification and regression tasks [47]. Random
forest was used to evaluate the relative importance of features [48]. The main evaluation
metric was Gini index, and it could be expressed as:

Ginim =
|y|

∑
k=1

∑
k′ ̸=k

pk pk′ = 1 −
|y|

∑
k=1

p2
k (11)

where y indicates y categories, and pk denotes the proportion of the kth category in node
m. The variable j has an importance score at node m:

VIM(Gini)
jm = Ginim − Ginil − Ginir (12)

In this study, we used temperature, precipitation, humidity, and solar radiation as
features to predict the dependent variable NDVI. The feature importance scores of the
random forest are stored in the “feature_importances” attribution in Scikit-learn. As the
score increases, there is a corresponding increase in the contribution of the climate factors
to NDVI. Scikit-learning is a Python library developed specifically for practical application
in machine learning. Using the RandomForestRegressor() function from the library, a
random forest model was constructed. Based on a thorough analysis of data volume and
computation rate, we used 10-fold cross-validation, where the training set was divided
into 10 equal parts, 9 of which were used as the training set and the remaining as the
validation set.

3.5. PCA-CNN-LSTM(PCL) Model

The framework of the PCL model is illustrated in Figure 2. In the first segment of the
model, Convolutional Neural Network (CNN) was employed to preprocess raw data [49].
The convolutional layers employed kernels to extract features, generating an initial feature
matrix. Following this, a pooling layer was employed to decrease the dimensionality of the
features while preserving the most significant characteristics. The CNN model enabled it
to extract latent information from local variables effectively.

Additionally, we have constructed a feature selector that employs principal component
analysis (PCA) to reduce the dimensionality of the multi-dimensional input variables. This
process selects principal components Fi, which exhibit substantial information content
and are mutually independent. This approach not only ensures model accuracy but also
enhances computational efficiency. In this study, the selection criteria for the input principal
components were as follows: The cumulative variance contribution surpasses 95% and
single component’s contribution exceeds 10% (Table A1).
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The second module was LSTM layers, which extract relevant vectors for constructing
time series [50]. The LSTM model is a variant of the Recurrent Neural Network (RNN)
specifically designed to tackle managing long-term dependencies. The activation function
Sigmoid is employed, effectively addressing the gradient explosion issue and possessing a
unilateral inhibitory property [51]. Furthermore, the model incorporates the Adam opti-
mization algorithm, which expedites weight fitting and enhances the model’s robustness.
This paper uses 70% of the NDVI data as the training dataset and allocates the remaining
30% as the test dataset.

4. Experiments and Results
4.1. Spatial Distribution Patterns

We employed GEE to take an average of each pixel of the NDVI dataset. The study
area was predominantly comprised of regions with low and lower coverage, accounting for
41.3% and 18.9%, respectively. This region experiences a harsh climate with extremely cold
and dry conditions, resulting in infertile soils and a limited capacity for vegetation growth
(Figure 3a). Additionally, as longitude increases, so does the vegetation coverage. The area
with NDVI > 0.6 accounts for only 28.5%, and is mainly located in (1) the northeast of TP,
which has a lower elevation and gentle incline, rendering it conducive for the development
of the plantation. This phenomenon fosters favorable circumstances for the proliferation
of vegetation. (2) The southeast of TP is high in altitude and steep in slope but rich in
biodiversity and plentiful in water resources, hence fostering thriving vegetation [52]. The
area of medium coverage is characterized by a “narrow band” that divides the low coverage
(left) from the high coverage (right). Moreover, the NDVI on the TP is stable, with areas of
high stability primarily found in the eastern and southern regions of the plateau (Figure 3b).
The distribution of moderately stable areas, however, is relatively dispersed. The regions
characterized by low stability are primarily situated in the northern section of the plateau.
In summary, the NDVI in TP is generally low, with noticeable spatial heterogeneity and
longitudinal zonation, indicating an overall distribution pattern of “low in the northwest
and high in the southeast”.
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Figure 3. Vegetation coverage map of TP over the period 2000–2021, including (a) the mean NDVI,
(b) the variation coefficient of NDVI, (c) interannual NDVI, and (d) average NDVI at varying
topography zones. This paper categorized NDVI into five distinct groups: NDVI < 0.2 (lower
coverage), 0.2 < NDVI < 0.4 (low coverage), 0.4 < NDVI < 0.6 (medium coverage), 0.6 < NDVI < 0.8
(high coverage), and NDVI > 0.8 (higher coverage). CV’s grading criteria are CV < 0.05 (Higher
stability), 0.05 < CV < 0.1 (Higher stability), 0.1 < CV < 0.15 (Moderate stability), 0.15 < CV < 0.2 (Low
stability), and CV > 0.2 (Lower stability).

Based on the findings above, it has been shown that topography, a fundamental
element of natural circumstances, influences the dispersion of regional hydrothermal
conditions. To further research the impact of topography on vegetation coverage, we
graded elevation, slope, and aspect (Figures 1 and 3d), and analyzed the distribution
of the average NDVI under varying topographic conditions. Among them, the aspect
was classified into five categories, which were shady aspect (0◦~45◦ & 315◦~360◦, SHA),
half-shady aspect (45◦~135◦, HSH), sunny aspect (135◦~225◦, SUN), half-sunny aspect
(225◦~315◦, HSU), and flat slope (−1◦, FLS). The distribution of NDVI on TP was insensitive
to changes in aspect, with comparable NDVI on HSH and HSU (about 0.4), which was
more significant than that on SHA and SUN (about 0.35). The maximum NDVI was found
between 3500 and 4000 m, with larger values occurring at lower elevations. The NDVI
dropped to 0.49 when the elevation was over 4000 m, and it continued to decline with
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increasing elevation. Moreover, we found that the NDVI of TP kept rising as the slope
increased, from a low of 0.21 on level ground (primarily in the Qaidam Basin) to a high of
0.61 on steep ground.

4.2. Temporal Variation Characteristics

Interannual variation of the average NDVI on the TP between 2000 and 2021 (Figure 3c)
reveals a fluctuating growth pattern, with a growth rate of 0.0134/10a (R2 = 0.71). The mean
value of NDVI was 0.356, with the maximum appearing in 2021 (0.376) and the minimum
appearing in 2000 (0.341). The interannual changes of NDVI had apparent phases. In the
first phase: 2000~2010, the mean values of NDVI and standard deviation were 0.349 and
0.275, respectively. Additionally, the growth rate was 0.0131/10a (R2 = 0.54), which was
lower than the value of the entire study period. This indicated that the vegetation coverage
during this phase was relatively low, exhibiting slower growth and smaller fluctuations. The
subsequent period, 2011~2021, had elevated NDVI and growth rate (0.0217/10a) compared
to the entire period. These findings suggest a significant acceleration in vegetation growth
during this phase. It is worth mentioning that the average standard deviation had a
significant increase to 0.80 from 2014 to 2017, coinciding with a pronounced fluctuation in
NDVI. Overall, vegetation on the TP during the 22 years tended to improve. The observed
rise in vegetation coverage over the latter decade is likely the primary reason contributing
to the upward trend of NDVI in the study period [53].

4.3. Spatiotemporal Variation Trend

In this paper, we explored the trend of NDVI on TP from 2000 to 2021 and assessed its
statistical significance (Table 2 and Figure 4). The findings showed that the trend of NDVI
was in the range of −0.34 to 0.38/10a. Most of the study areas (68.65%) saw an upward
trend, demonstrating significant spatial heterogeneity. Additionally, the trend steadily
decreased from north to south. From the results of the Mann–Kendall test, the average Z
value was 1.44, and the significance level of vegetation change was not high in general. We
categorized the changing trend into five categories by using 1.96 as the critical value of Z
(if Z > 1.96, it means that a significance level of 0.05 was reached). Among them, the area of
significant improvement is the largest, amounting to 9.8 × 105 km2, accounting for 34.92%
of TP, mainly distributed in the northern part of the plateau, such as the northern Tibetan
Plateau and the Qaidam basin. The vegetation degradation area only accounts for 10.19%,
and is concentrated in the southwest Tibetan Plateau. In summary, the vegetation change
on the TP shows a discernible pattern of “general improvement, local stabilization, and
degradation located in the southwest”.

The average Hurst exponent of the TP was 0.43 and the areas with Hurst < 0.5 ac-
counted for 67.64% of the total area. This indicated that the persistence of NDVI on the
plateau is relatively weak, and a trend reversal is likely to occur in the future. To further
explore the future trend of the vegetation, the Theil–Sen median trend was coupled with
the Hurst exponent. The results were categorized into five categories according to the rules
of Table 2 about 45.6% of the TP will present an inconsistent change trend in the future,
of which the improvement reversal amounts to 38.82%. It is primarily concentrated in
the north-central region, which is currently at risk of vegetation degradation due to the
combined effects of climate change and human activities. In addition, the consistency of
the improvement trend is weaker than the degradation. The regions exhibiting consistent
improvement are primarily in the Qaidam Basin and the northern TP. Conversely, the areas
experiencing consistent degradation comprise the smallest proportion and are sparsely
distributed in the southwestern TP.
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Figure 4. Spatiotemporal variation characteristics of NDVI from 2000 to 2021, including (a) the
growing trend, the abbreviation principle of the legend referred by Table 2, (b) future trend of
vegetation dynamics, terrain distribution index at varying (c) slope zones, and (d) elevation zones.

To investigate the dynamic patterns of vegetation on the TP in response to varying
terrain conditions, we employed the distribution index to identify the predominant terrain
conditions. In Figure 4c,d, the dotted line represents K = 1. If it is higher than the dotted line,
the terrain is the dominant terrain for that particular type of vegetation change. The distribu-
tion index of vegetation improvement and degradation exhibits a symmetrical distribution
pattern across each slope grade, leading to a mutual offsetting effect. Consequently, the
influence of slope on the distribution index of vegetation change types is less significant
(Figure 4a). Of these, LE has a more significant trend of degradation, thus highlighting
the urgent need to enhance urban ecological regulations and save the indigenous flora in
the area. The distribution index has prominent differentiation characteristics with altitude.
Low elevation is the dominant terrain of significant improvement (1.03 < K < 1.58). The
most dominant zone is found between 3000 and 3500 m with a K value of 1.58. However,
as the elevation exceeds 4500 m, the value of K decreases rapidly to 0.77. Middle altitude
(4000~5000 m) is the dominant terrain of slight improvement and degradation. Within this
zone, the elevation at 4500~5000 m is the most dominating in terms of degradation (with a
K value of 1.35 for slight degradation and 1.47 for significant degradation). Our findings
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revealed that significant vegetation improvement is most pronounced at low altitudes,
whereas degradation is more prevalent at medium altitudes, particularly in the range of
4500~5000 m. However, vegetation tends to stabilize at medium-to-high altitudes.

4.4. Correlation between NDVI and Climate Change

The Tibetan Plateau, the earth’s third pole, exhibits interannual fluctuations in temper-
ature, precipitation, humidity, and solar radiation (Figure 5a–d). The majority of the study
area (69.62%) has a notable upward trajectory in temperature, with a trend of 0.104 ◦C/10a.
Furthermore, the spatial analysis revealed a steady extension of the temperature increase
trend from north to south. The cooling area is mainly distributed in the Qaidam Basin,
which is at a relatively low altitude, and the atmospheric circulation may be the main
reason for the temperature decline [54]. During the study period, about 55.24% of the TP ex-
perienced an increase in precipitation, with a trend of 1.80 mm/10a. The areas experiencing
an increase in precipitation are primarily situated in the northeastern and southwestern TP.
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(a) temperature, (b) precipitation, (c) relative humidity, (d) solar radiation, (e–h) correlation coefficient
between NDVI and (e) temperature, (f) precipitation, (g) relative humidity, and (h) solar radiation.

Regarding humidity, a majority of 60.98% of the plateau exhibited an upward trajectory.
The expansion of humidity increase was seen to extend from east to west gradually. The
trend of solar radiation on the plateau is generally negatively correlated with the altitude,
i.e., solar radiation’s trend is more potent in areas with lower altitudes. Over the past
22 years, the solar radiation on the TP has shown a decreasing trend. Merely 16.34% of
the region has encountered an augmentation in solar radiation, mainly concentrated in the
southern portion of the plateau. The findings suggest that the TP is generally undergoing a
“warming and humidification” trend.
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To further quantify the influence of climate change on NDVI, a correlation analysis
was performed between NDVI and several climate factors from 2000 to 2021. The resulting
average correlation coefficients were determined to be 0.314, 0.355, 0.276, and −0.193,
respectively (Figure 5e–h). It shows that the correlation between NDVI and precipitation
is the largest, with the majority of the TP (accounting for 70.48%) exhibiting a positive
correlation. Using the p-test method to assess the statistical significance of the correlation
results, it was determined that 40.43% of the areas reached a 0.05 significance level. In
comparison to the correlation observed between humidity and NDVI, it was determined
that the spatial distribution of the two positively correlated response zones exhibited a
significant level of consistency. Furthermore, when considering thermal conditions, it is
evident that NDVI and temperature show a robust positive correlation. This correlation is
particularly pronounced in the southeast TP, which falls within the semi-humid and humid
zones. This area is characterized by ample water resources, rendering it highly sensitive to
temperature. The relationship between solar radiation and NDVI has a negative correlation.
The region exhibiting a negative correlation is situated mainly in the center of the plateau,
including approximately 64.38% of the total area. Conversely, the positive correlation area
is predominantly found at the edge of the TP. Generally, vegetation growth on the plateau
is influenced by two integrated factors: thermal factors (temperature and solar radiation)
and moisture factors (precipitation and humidity).

5. Discussion
5.1. Driving Mechanisms of Vegetation Change

The study found that, from 2000 to 2021, the NDVI on the TP showed little interan-
nual variability and an overall slowly fluctuating upward trend, with an increase rate of
0.015/10a. This was faster than the NDVI change rate in China and is consistent with
previous studies on the vegetation coverage variation characteristics in this study area [14].
The results also show that the rate of greening on the TP has increased over the past ten
years, which accords with Zhang’s forecast based on MODIS NDVI data from 1982 to
2010 [13]. The alpine environment of the TP exhibits a heightened sensitivity to climate
changes [55]. The progression towards warming and humidification may have a positive
impact on vegetation growth. This will be achieved by mitigating the inhibitory effects of
low temperatures on vegetation growth at high altitudes and by augmenting the water
supply to vegetation in arid regions [56,57]. Furthermore, some researches have indicated
that ecological restoration measures, such as the practice of “Grain for Green”, have played
a significant role in the revival of vegetation on the TP [58].

In addition, the spatial pattern of NDVI on the TP is not entirely consistent with the
distribution of NDVI trends. For instance, the southeast of the plateau, particularly the
Hengduan Mountains, is regarded as having a high NDVI (Figure 3). Nevertheless, the
growth rate within this region exhibits a notable sluggishness, which can be explained
by two factors: First, the vegetation in this area is stable (lower coefficient of variation)
and flourishing (greater NDVI), contributing to a modest trend. Second, the Hengduan
Mountains have a complex topography and are less affected by human activities [59].
It is evident from the observation above that topography exerts a substantial influence
on vegetation growth. The variation of vegetation was primarily influenced by altitude
through the regulation of hydrothermal conditions [60]. The slope is vital for surface
vegetation material exchange and energy flow, significantly impacting vegetation growth
and distribution. A study claims that China’s program “Grain for Green” is primarily
implemented on slopes higher than 8◦, which may help to explain why MO and ST are the
predominant terrains showing slight improvement [61].

Meanwhile, consistent with Rumpf’s research [60], our study also showed that the rate
of warming on the TP increased with elevation, and was faster than that at lower elevations.
Vegetation at high altitudes is steadily improving, presumably due to the melting of alpine
ice and snow caused by a warming climate, which has shifted the tundra line upwards,
expanding the area of ideal growing conditions for vegetation. Furthermore, meltwater
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contributes the requisite moisture conditions for vegetation flourishing [62]. It is foreseen
that, with global warming, the space for vegetation to survive in the extreme cold zone will
be further expanded.

Over the past 22 years, the TP has experienced more significant climate change;
hence, it was described as a “driver and amplifier of global change” [6]. Some studies
have confirmed that warming and humidification are becoming increasingly significant
in northwestern China, and the climate of the arid and semi-arid zone is changing from
cold-dry to warm-humid [63]. Random forest models have been widely used in identifying
dominant drivers of vegetation change due to their exceptional explanatory capability,
rapid computing speed, and robust generalization ability [64]. The climate dominant factor
was identified based on the level of relevance after random forests were utilized (Figure 6a).
Most of the plateau’s NDVI variations are caused by temperature and precipitation change,
with the regions dominated by both, making up 80% of the total area (43.39% and 37.23%,
respectively). The precipitation-dominated region is mainly located in the central and
northeastern parts of the plateau, which is more sensitive to precipitation due to higher
temperatures and water evapotranspiration [65]. This region, interestingly, is situated at
the border between semi-arid and arid zones, and it also happens to coincide with the
medium vegetation coverage strips (Figure 3a). Jenerette’s study on the factors influencing
vegetation growth in central Asia also revealed that precipitation significantly impacts
vegetation at this border [66]. The largest region dominated by temperature is found in
the southeast of the TP, with smaller concentrations towards the west. The southeastern
region is high in altitude and steep in slope, primarily concentrated in areas where rivers
originate. Because of its historically abundant water resources, the temperature has become
the dominant factor limiting vegetation growth, and, as a result, it is more sensitive to
temperature [67].

Additionally, solar radiation and relative humidity also influence the growth of vege-
tation. The humidity-dominated region is concentrated in the northeastern TP. The surface
soil texture is predominantly sandy and gravelly with poor water retention capacity. Thus,
water evaporates more quickly, making vegetation more susceptible to changes in mois-
ture [68]. The region dominated by solar radiation is mainly in the northern TP, an elevated
territory known for its frigid climate and perpetual snow and ice coverage. The tundra
line shifts upward due to increased solar radiation, enhancing the temperature and light
conditions for vegetation growth, especially low-growing plants [65]. Our study also
indicated that overall thermal conditions substantially influenced vegetation growth on
the TP, especially under extremely topographic conditions (e.g., slope > 5◦and altitude
> 5000). However, in areas where the topography of the plateau is more moderate (low
elevations, gentler slopes), moisture conditions are the dominant climate factor driving
vegetation NDVI.

Based on the aforementioned findings, it is evident that temperature and precipitation
are the primary climate factors that exert influence on vegetation growth. Furthermore, the
vegetation coverage of the TP exhibits a positive trend in response to global warming. On
the other hand, ecological restoration measures have been implemented on the TP over
the years. These measures have demonstrated a beneficial impact on the improvement of
the ecological systems in the region. In this paper, we quantitatively separated the effects
of climate change and human activities on NDVI through the residual trend method, and
determined the intensity and direction of human activities on vegetation cover based on
the positivity and magnitude of the residual trend (Figure 6b–d). Over the past 22 years,
there has been a fluctuation in residual values, initially experiencing a decline followed by
an upward trajectory. This overall pattern indicates a consistent and progressive increase,
suggesting that human activities have had a positive and accelerating effect on vegetation
development. In terms of interannual changes, the residual values were small and showed
an insignificant decrease from 2000 to 2010, indicating that the impact of human activities
on vegetation growth during this period was relatively minor and the negative impacts
slightly prevailed. Since 2011, the residual values have increased significantly, and the
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positive impacts of human activities on vegetation growth on the plateau have accelerated,
which may be attributed to the government’s implementation of the policy of returning
farmland to grassland and ecological compensation [68].
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Moreover, the residual trend of TP ranged from −0.036 to 0.047/a, and it showed a
distinct pattern of “overall growth and local decline”, with only a limited number of regions
experiencing a significant decline rate (7.98%). Notably, these areas were primarily located
in the southwestern Tibetan Plateau. Degraded area (i) is far from human settlements and
has many lakes, which is expected to have limited human impacts. Nevertheless, this region
is linked to major highways like G562 and G312, and the development of transportation
infrastructure has resulted in the deterioration of the local vegetation. Furthermore, site (ii)
is situated in Qumalai County, Qinghai Province, home to one of the largest gold mines
in Asia. This mine has been found to have a potential resource of 300 tonnes. Mining
activities have resulted in the deterioration of the local vegetation. In all, the impact of
human activities on vegetation growth is mainly positive.

5.2. Superiority of the PCL Model for Simulating NDVI

The NDVI series often exhibit distinct characteristics due to the diversity of spatiotem-
poral variables and driving factors. The deep learning network’s input data are derived
from the primary climatic factors that influence the NDVI on the TP, including temperature,
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precipitation, humidity, and radiation—and are standardized to enhance the effectiveness
of the training process. Our research focuses on multivariate collaborative modeling due to
the need to include the influence of meteorological data in simulating NDVI. The datasets
were fed into various models to assess accuracy (Figure 7), with RMSE and R2 chosen as
the criteria for accuracy evaluation.
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The simulation results of the four models and their comparisons with the true values of
NDVI are presented in Figure 7. One-dimensional CNN can effectively extract features from
time series for prediction purposes. However, it lacks sensitivity to variations in the time
series, resulting in a more significant prediction error and outliers (as shown in Figure 7a).
Nevertheless, CNN has exceptional performance in extracting hidden spatiotemporal
characteristics. The LSTM showed better performance in simulating NDVI (Figure 7b),
with an R2 of up to 0.918 and an RMSE of only 0.0129. However, the LSTM network itself is
unable to capture spatiotemporal features of the series, and it has to be manually encoded
as the input data, which limits the prediction accuracy [69]. In addition, the presence of
spatiotemporal features in the sequence during the training of the model leads to a large
variance in the adaptive learning rate of the model, which further affects the accuracy
of the prediction model. The CNN-LSTM model is devised to forecast time series by
leveraging the CNN’s ability to extract data feature information and the LSTM’s proficiency
in processing time series. As shown in Figure 7c, it is evident that the simulated data of
CNN-LSTM are highly concentrated and exhibit the maximum level of data correctness, as
indicated by an R2 value of 0.976.

Nevertheless, the CNN-LSTM network has a rather intricate topology and suffers
from slow computing efficiency due to the substantial volume of input data. Consequently,
we enhanced the data input module by utilizing principal component analysis to extract
the main components of the original input variables from the feature vectors obtained by
the CNN. According to the selection rule of principal components, F1, F2, and F3 were
selected as the input principal components. This reduced the data from seven dimensions
to three, effectively compressing the input data volume while retaining crucial information.
Based on the findings presented in Figure 7d, it is evident that the PCL model, after
undergoing parameter optimization, exhibits a high level of prediction accuracy. The
evaluation indices demonstrate significant improvement compared to a single model and
the predicted outcomes align well with the actual data. It is worth pointing out that
although the simulation accuracy of PCL is reduced compared to that of the CNN-LSTM
model (R2 decreases by about 3.34%), the computational efficiency is greatly improved due
to the reduction of the amount of data inputs. The risk of overfitting is also reduced.

Moreover, it was evident that LSTM has a clear advantage over CNN in simulating
NDVI series. Meanwhile, the convolutional kernel pooling function unique to CNN
can extract the feature information of the data well. When paired with the memory
capabilities of LSTM, it further enhances the simulation performance of the NDVI sequence
data. Finally, the model’s input and operation efficiency are further optimized for the
consideration of principal components. In conclusion, the PCL model has significant
superiority in simulating the NDVI series on the Tibetan Plateau.

6. Conclusions

Based on the reconstructed NDVI dataset on the GEE, this paper studies the dis-
tribution pattern, change characteristics, and influencing mechanisms of NDVI on the
Tibetan Plateau. Moreover, we developed a PCA-CNN-LSTM (PCL) model that effectively
simulates NDVI.

Temporally, NDVI showed a fluctuating upward trend during the study period, with
a growth rate of 0.0134/10a, and the speed accelerated in the last 10 years. Spatially, the
vegetation change trend showed a pattern of “general improvement, local stabilization,
and degradation located in the southwest”. The trend of improvement is most significant
in the low altitudes, and the middle altitude is the dominant terrain of degradation. In the
future, the improved area is at risk of reversal, which needs to be emphasized.

Over 22 years, there has been a fluctuation in residual values and the positive impacts
of human activities on vegetation growth have accelerated since 2011. Among the climate
factors, temperature and precipitation play a decisive role in vegetation dynamics, con-
tributing 43.39% and 37.23%, respectively. Above all, vegetation is sensitive to temperature
in the western and southeastern regions, and precipitation in the central and northeastern
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regions. In addition, our study shows that thermal conditions (temperature and solar
radiation) had a more significant influence on vegetation growth on the Tibetan Plateau,
especially under extreme topographic zones.

The LSTM model excels at simulating long time series, while the CNN model is
adept at extracting hidden spatiotemporal features. Additionally, the data input module is
optimized using principal component analysis, which enhances computational efficiency
without compromising simulation accuracy. As a result, the PCL model demonstrates a
notable advantage in simulating the NDVI on TP.

These findings can give governments more practical evidence to formulate rational
ecological conservation policies on the Tibetan Plateau. In the future, spatial and temporal
analyses of anthropogenic data (e.g., ecological conservation, human footprint, grazing
intensity, etc.) can be collected to give more substantial evidence for quantifying the NDVI
trend caused by human activities.

Author Contributions: All coauthors made significant contributions to the manuscript. Conceptual-
ization, X.L. and G.D.; data curation, X.L., H.B. and Z.L.; formal analysis, X.L.; funding acquisition,
G.D.; investigation, X.L., H.B. and Z.L.; methodology, X.L. and G.D.; project administration, G.D.;
resources, G.D.; software, X.L., H.B. and Z.L.; supervision, X.Z.; validation, G.D. and H.B.; visualiza-
tion, H.B. and X.Z.; writing—original draft, X.L.; writing—review and editing, G.D. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Program on Key Research Projects of China (no.
2017YFC1502706).

Data Availability Statement: The data sources for this paper can be found in Table 1. Other data that
support the findings of this study are available from the author, upon reasonable request.

Acknowledgments: The authors would like to thank Jianbo Tan from Changsha University of Science
and Technology for his guidance on the experimental part of the study. We thank Liu Jinghao for
her help in data processing. We also thank the other anonymous reviewers for their constructive
comments on the manuscript. Moreover, we thank NASA and TPDC (National Tibetan Plateau Data
Centre) for their support of the experimental data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Explanation of variance of each component.

Principal Component Variance Variance Contribution Rate/% Cumulative Variance Contribution Rate/%

F1 4.496 64.233 64.233
F2 1.388 19.823 84.056
F3 0.858 12.261 96.317
F4 0.136 1.939 98.256
F5 0,067 0.961 99.218
F6 0.052 0.744 99.961
F7 0.003 0.039 100.000
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