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Abstract: The three‑dimensional reconstruction of forest ecological environment by low‑altitude re‑
mote sensing photography from Unmanned Aerial Vehicles (UAVs) provides a powerful basis for
the fine surveying of forest resources and forest management. A stereo vision system, D‑SLAM, is
proposed to realize simultaneous localization and densemapping for UAVs in complex forest ecolog‑
ical environments. The system takes binocular images as input and 3D densemaps as target outputs,
while the 3D sparse maps and the camera poses can be obtained. The tracking thread utilizes tempo‑
ral clue to match sparse map points for zero‑drift localization. The relative motion amount and data
association between frames are used as constraints for new keyframes selection, and the binocular
image spatial clue compensation strategy is proposed to increase the robustness of the algorithm
tracking. The dense mapping thread uses Linear Attention Network (LANet) to predict reliable dis‑
parity maps in ill‑posed regions, which are transformed to depth maps for constructing dense point
cloud maps. Evaluations of three datasets, EuRoC, KITTI and Forest, show that the proposed sys‑
tem can run at 30 ordinary frames and 3 keyframes per second with Forest, with a high localization
accuracy of several centimeters for Root Mean Squared Absolute Trajectory Error (RMS ATE) on Eu‑
RoC and a Relative Root Mean Squared Error (RMSE) with two average values of 0.64 and 0.2 for
trel and Rrel with KITTI, outperforming most mainstream models in terms of tracking accuracy and
robustness. Moreover, the advantage of dense mapping compensates for the shortcomings of sparse
mapping in most Smultaneous Localization and Mapping (SLAM) systems and the proposed sys‑
tem meets the requirements of real‑time localization and dense mapping in the complex ecological
environment of forests.

Keywords: binocular vision SLAM; pose estimation; dense mapping; keyframe selection; spatial
clue compensation; forest 3D reconstruction

1. Introduction
With the advantage of quickly and accurately obtaining three‑dimensional spatial in‑

formation, Light Detection and Ranging (LiDAR) is widely used in forest resource sur‑
veys. Solares‑Canal et al. [1] proposed a methodology based on Machine Learning (ML)
techniques to automatically detect the positions of and dasometric information about in‑
dividual Eucalyptus trees from a point cloud acquired with a portable LiDAR system.
Gharineiat et al. [2] summarized the methods of feature extraction and classification using
ML techniques for laser point cloud data, which have good applications in scene segmen‑
tation, vegetation detection, and tree species classification.
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In recent years, with the rapid development of UAVs technology, UAVs carrying Li‑
DAR or visual sensors have greatly assisted in forest ecological exploration and forest man‑
agement [3], and the forest information they captured can provide an essential basis for the
three‑dimensional reconstruction of forest ecological models. UAVs do not have a priori
information about the relevant environment and their own position before executing the
task, and they know nothing about the environment they are in, so there is no way to
talk about UAV path planning and autonomous navigation, and how to solve the navi‑
gation problem of UAVs in the unknown environment of the forest is a difficult problem
for forestry ecological exploration. Simultaneous Localization andMapping (SLAM) [4] is
one of the key algorithms for realizing fully autonomous navigation and real intelligence of
mobile robots by means of sensor‑equippedmotion carriers that can move in unknown en‑
vironments, senses and build environment maps, and estimate their own positions in the
constructed maps at the same time, which empowers the robots to autonomously localize
themselves and build real‑time maps in unknown environments.

2. Related Work
Visual SLAM [5–7] has the advantages of being low cost, easy to use, and rich in in‑

formation compared with LiDAR SLAM [8–10], so there is a huge potential for the devel‑
opment of visual SLAM. The mainstream methods for visual SLAM are the direct method
and the feature point method. Dense Tracking and Mapping (DTAM) [11] based on the
direct method uses the image pixels to construct a cost function and describes the depth
using the inverse depth, constructing a 3D dense map in a global optimization. Large‑
scale direct monocular SLAM (LSD‑SLAM) [12] directly matches image luminosity, uses a
probabilistic model to represent semi‑dense depth maps, and generates maps with global
consistency. Direct sparse odometry (DSO) [13] is an improved version of LSD‑SLAM that
combines the direct method with sparse synchronization optimization, which can be ap‑
plied in the case where RAM and CPU resources are lacking. Large‑scale direct sparse vi‑
sual odometry with stereo cameras (Stereo DSO) [14] integrates the constraints of the fixed
binoculars into the Bundle Adjustment (BA) of the multi‑view binoculars, which solves
the scale drift problem while mitigating the optical flow sensitivity and the roll‑up shutter
effect of the conventional direct method.

The direct methods track directly on the image grayscale information, which have
the advantages of fast speed and good real‑time performance, however, they are based
on the assumption of grayscale invariance and are limited to the narrow baseline motion.
Feature‑based methods use an indirect representation of the image, usually in the form of
point features tracked along consecutive frames, recover poses of the camera by minimiz‑
ing the projection error, which are more robust, and currently dominate the field of vision
SLAM. Real‑time single camera SLAM (MonoSLAM) [15] is the first monocular SLAM
system, which achieves real‑time drift‑free performance from the structure to the motion
model, but the feature stability is greatly affected by motion. Parallel Tracking and Map‑
ping for small AR workspaces (PTAM) [16] is the first visual SLAM to be solved by an
optimization method, which pioneers a keyframe mechanism and a dual‑threaded paral‑
lel processing task to simultaneously handle tracking and mapping. A series of Oriented
FAST and Rotated BRIEF (ORB) SLAM algorithms built by the SLAM group at the Univer‑
sity of Zaragoza, Spain, is currently the most popular feature point method solution. A
versatile and Accurate Monocular SLAM System (ORB‑SLAM) [17] was first proposed in
2015, which is based on PTAM and uses ORB descriptors, and it only supports monocu‑
lar cameras, thus it suffers from the scale uncertainty problem. An Open‑Source SLAM
System for Monocular, Stereo, and RGB‑D Cameras (ORB‑SLAM2) [18] improves the effi‑
ciency and robustness of ORB feature extraction and descriptormatching, and it adds func‑
tions such as closed‑loop detection and pose map optimization to enable it to cope with
more complex environments and faster pose change. However, the keyframe selection
conditions are more lenient leading to the high redundancy between frames in uniform
linear motion, which will bring a higher cost of maintenance and deletion of keyframes in
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the later stage, thus affecting the performance of the system. Cameras with excessive cor‑
nering, fast speed changes, severe scene occlusion, and large changes in lighting can cause
tracking to be lost if keyframes are not inserted in time. In addition, ORB‑SLAM2 can only
construct sparse maps, which does not enable tasks such as autonomous navigation and
obstacle avoidance for robots.

Monocular SLAM is based on spatial geometric relationships and suffer from the dis‑
advantage of scale drift. SLAM based on RGB Depth Camera (RGBD SLAM) [19,20] is
susceptible to interference from varying light intensities, making it unsuitable for outdoor
scenes. Additionally, the high cost of these cameras hinders their widespread adoption
in the industry. Conventional vision SLAM based on geometric transformations has poor
robustness when lighting changes, fast carrier motion, and low texture grayscales are not
obvious, and are poorly applied in the scenes, as well as having drawbacks such as large
amounts of calculations and large cumulative error. Therefore, it is generally used in in‑
door small target scenes and its application in outdoor complex scenes is limited. Deep
learning methods [21–24] are not constrained by the above environmental conditions, and
are able to quickly estimate the more accurate disparity in outdoor complex environments,
enhancing the robustness of pose estimation and 3D scenes reconstruction. In this work,
combine with deep learning, a stereo vision system, D‑SLAM, is proposed to realize the
simultaneous localization and dense mapping for UAVs in complex forest ecological envi‑
ronment. The main work is as follows.

(1) Using the temporal clue of binocular images as the main clue, the six Degrees of Free‑
dom (6‑DoF) rigid body pose of the UAV is estimated by utilizing the minimized
visual feature reprojection error.

(2) Using the spatial clue of binocular images as an auxiliary clue, a binocular spatial com‑
pensation strategy is proposed to increase the robustness of the algorithm’s tracking
when the camera corner is too large.

(3) Taking the relativemotion amount and data association between frames as the impor‑
tant conditions for filtering keyframes, the keyframe filtering strategy is improved to
enhance the system’s localization and mapping accuracy as well as running speed.

(4) By increasing the 3D dense map construction thread, using the LANet network to
predict the disparitymap of the keyframes, and combining the poses of the keyframes
to generate a dense point cloud, a dense map of the complex ecological environment
of the forest is constructed by utilizing techniques such as point clouds registration,
point clouds fusion and point clouds filtering.

3. Study Area and Data
The experimental forest farm of Northeast Forestry University was selected as the

study area, using a ZED2 binary camera (Stereolabs, San Francisco, CA, USA) to collect
image data and video bag data to create a Forest dataset for the training and testing of
generating disparity maps and dense mapping, respectively.

3.1. Study Area
The study area is located at 126◦37′ E, 45◦43′ N in the Harbin Experimental Forestry

Farm of Northeast Forestry Universit, at an altitude of 136–140 m, with a mesothermal
continental monsoon climate. The forest is covered with 18 species of plantation forests,
including Larix gmelinii Rupr., Quercus mongolica Fisch. ex Ledeb., Betula platyphylla Suk.,
and Fraxinus mandshurica Rupr. The structural types in the sample plots include the tree
layer and herb layer, and the canopy density exceeds 0.70. The experimental environment
is characterized by the easy lock–lose of Global Navigation Satellite System (GNSS satel‑
lites), large sample plot coverage, and obvious topographic relief, which is representative
of the field forest exploration tasks.
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3.2. Forest Dataset
Five types of forest vegetation, Larix gmelinii, Pinus sylvestris var. mongolica Litv., Pi‑

nus tabulaeformis Carr., Fraxinus mandschurica, and Betula platyphylla, were selected for the
experiments, and a ZED2 binocular camerawas usedwith a baseline length of 20 cm, while
RGB binocular image pairs and their corresponding disparity maps were collected with an
original pixel resolution of 1280 × 720, which was cropped to a resolution of 1240 × 426,
totaling 5000 pairs to produce the Forest dataset used for the Neural network model train‑
ing and testing. Out of this, 80% are used as training data, 10% as the validation set and
10% as the test set. The details are shown in Table 1.

Table 1. Forest dataset details.

Variety Training
Set

Validation
Set

Test
Set Total Resolution Sparse

/Dense
Synthetic
/Real

Larix gmelinii 960 120 120 1200 1240 × 426 dense real
Pinus sylvestris 1200 150 150 1500 1240 × 426 dense real
Pinus tabulaeformis 800 50 50 500 1240 × 426 dense real
Fraxinus mandschurica 640 80 80 800 1240 × 426 dense real
Betula platyphylla 800 100 100 1000 1240 × 426 dense real

The Forest dataset includes not only the disparitymapdataset (Figure 1) used for train‑
ing and testing LANet networks, but also the bag video dataset (Figure 2) and binocular
image dataset (Figures 3 and 4) used for testing the D‑SLAM system, including three res‑
olutions: High Definition (HD) 1080:1920 × 1080, HD720:1280 × 720, and Video Graphic
Array (VGA): 672 × 376, as shown below.

Forests 2024, 15, x FOR PEER REVIEW 4 of 32 
 

 

3.2. Forest Dataset 
Five types of forest vegetation, Larix gmelinii, Pinus sylvestris var. mongolica Litv., 

Pinus tabulaeformis Carr., Fraxinus mandschurica, and Betula platyphylla, were selected for 
the experiments, and a ZED2 binocular camera was used with a baseline length of 20 cm, 
while RGB binocular image pairs and their corresponding disparity maps were collected 
with an original pixel resolution of 1280 × 720, which was cropped to a resolution of 1240 
× 426, totaling 5000 pairs to produce the Forest dataset used for the Neural network model 
training and testing. Out of this, 80% are used as training data, 10% as the validation set 
and 10% as the test set. The details are shown in Table 1. 

Table 1. Forest dataset details. 

Variety 
Training 

Set 
Validation 

Set 
Test 
Set Total Resolution 

Sparse 
/Dense 

Synthetic 
/Real 

Larix gmelinii 960 120 120 1200 1240 × 426 dense real 
Pinus sylvestris 1200 150 150 1500 1240 × 426 dense real 
Pinus tabulaeformis 800 50 50 500 1240 × 426 dense real 
Fraxinus mandschurica 640 80 80 800 1240 × 426 dense real 
Betula platyphylla 800 100 100 1000 1240 × 426 dense real 

The Forest dataset includes not only the disparity map dataset (Figure 1) used for 
training and testing LANet networks, but also the bag video dataset (Figure 2) and binoc-
ular image dataset (Figures 3 and 4) used for testing the D-SLAM system, including three 
resolutions: High Definition (HD) 1080:1920 × 1080, HD720:1280 × 720, and Video Graphic 
Array (VGA): 672 × 376, as shown below. 

 
Figure 1. Disparity maps in Forest dataset. 

 

Figure 2. Bag in Forest dataset. 

Figure 1. Disparity maps in Forest dataset.

Forests 2024, 15, x FOR PEER REVIEW 4 of 32 
 

 

3.2. Forest Dataset 
Five types of forest vegetation, Larix gmelinii, Pinus sylvestris var. mongolica Litv., 

Pinus tabulaeformis Carr., Fraxinus mandschurica, and Betula platyphylla, were selected for 
the experiments, and a ZED2 binocular camera was used with a baseline length of 20 cm, 
while RGB binocular image pairs and their corresponding disparity maps were collected 
with an original pixel resolution of 1280 × 720, which was cropped to a resolution of 1240 
× 426, totaling 5000 pairs to produce the Forest dataset used for the Neural network model 
training and testing. Out of this, 80% are used as training data, 10% as the validation set 
and 10% as the test set. The details are shown in Table 1. 

Table 1. Forest dataset details. 

Variety 
Training 

Set 
Validation 

Set 
Test 
Set Total Resolution 

Sparse 
/Dense 

Synthetic 
/Real 

Larix gmelinii 960 120 120 1200 1240 × 426 dense real 
Pinus sylvestris 1200 150 150 1500 1240 × 426 dense real 
Pinus tabulaeformis 800 50 50 500 1240 × 426 dense real 
Fraxinus mandschurica 640 80 80 800 1240 × 426 dense real 
Betula platyphylla 800 100 100 1000 1240 × 426 dense real 

The Forest dataset includes not only the disparity map dataset (Figure 1) used for 
training and testing LANet networks, but also the bag video dataset (Figure 2) and binoc-
ular image dataset (Figures 3 and 4) used for testing the D-SLAM system, including three 
resolutions: High Definition (HD) 1080:1920 × 1080, HD720:1280 × 720, and Video Graphic 
Array (VGA): 672 × 376, as shown below. 

 
Figure 1. Disparity maps in Forest dataset. 

 

Figure 2. Bag in Forest dataset. Figure 2. Bag in Forest dataset.



Forests 2024, 15, 147 5 of 30Forests 2024, 15, x FOR PEER REVIEW 5 of 32 
 

 

 

Figure 3. Left images in bag. 

 

Figure 4. Right images in bag. 

4. Methods 
The structure of D-SLAM system is shown in Figure 5. The tracking thread searches 

for feature points to match with the local map in each frame and uses motion-only BA to 
minimize the reprojection error to optimize the pose of the current frame to realize the 
camera’s location and tracking in each frame, and at the same time determines whether 
the current frame is a keyframe or not according to the conditions. The local mapping 
thread receives the keyframes from the tracking thread, eliminates redundant map points, 
generates new map points, optimizes the local map points and the poses of keyframes, 
and deletes redundant keyframes. The dense mapping thread receives the disparity map 
generated by the LANet, combines it with the pose of the keyframe to obtain a 3D point 
cloud, and then generates the dense point cloud map through point clouds registration, 
point clouds fusion and point clouds filtering. The loop closing thread corrects the cumu-
lative drift through pose-graph optimization and starts the full BA thread for the BA op-
timization of all map points and keyframes. 

Figure 3. Left images in bag.

Forests 2024, 15, x FOR PEER REVIEW 5 of 32 
 

 

 

Figure 3. Left images in bag. 

 

Figure 4. Right images in bag. 

4. Methods 
The structure of D-SLAM system is shown in Figure 5. The tracking thread searches 

for feature points to match with the local map in each frame and uses motion-only BA to 
minimize the reprojection error to optimize the pose of the current frame to realize the 
camera’s location and tracking in each frame, and at the same time determines whether 
the current frame is a keyframe or not according to the conditions. The local mapping 
thread receives the keyframes from the tracking thread, eliminates redundant map points, 
generates new map points, optimizes the local map points and the poses of keyframes, 
and deletes redundant keyframes. The dense mapping thread receives the disparity map 
generated by the LANet, combines it with the pose of the keyframe to obtain a 3D point 
cloud, and then generates the dense point cloud map through point clouds registration, 
point clouds fusion and point clouds filtering. The loop closing thread corrects the cumu-
lative drift through pose-graph optimization and starts the full BA thread for the BA op-
timization of all map points and keyframes. 

Figure 4. Right images in bag.

4. Methods
The structure of D‑SLAM system is shown in Figure 5. The tracking thread searches

for feature points to match with the local map in each frame and uses motion‑only BA to
minimize the reprojection error to optimize the pose of the current frame to realize the
camera’s location and tracking in each frame, and at the same time determines whether
the current frame is a keyframe or not according to the conditions. The local mapping
thread receives the keyframes from the tracking thread, eliminates redundant map points,
generates new map points, optimizes the local map points and the poses of keyframes,
and deletes redundant keyframes. The dense mapping thread receives the disparity map
generated by the LANet, combines it with the pose of the keyframe to obtain a 3D point
cloud, and then generates the dense point cloud map through point clouds registration,
point clouds fusion and point clouds filtering. The loop closing thread corrects the cu‑
mulative drift through pose‑graph optimization and starts the full BA thread for the BA
optimization of all map points and keyframes.
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Llocal Bundle Adjustment (Local BA), Full Bundle Adjustment (Full BA), Special Euclidean group
(SE3), Point cloud (Pcd), Linear Attention Network (LANet), and bags of binaryWords for fast place
recognition in image sequences (DboW2).

4.1. Tracking
(1) Binocular initialization

Monocular initialization requires two or more image frames with both rotation and
translation necessary for successful initialization. Binocular initialization is conducted in
the first frame and absolute scale information is obtained. The binocular camera performs
stereo matching through the left and right images of the first frame, using the principle of
triangulation to obtain the depth information of the feature points, according to the current
frame of the pose to obtain the world coordinates, so the binocular camera can generate
3D map points and create an initial map in the first frame, and then tracking is conducted
directly in the next frame.

(2) Pose estimation

In binocular mode, two consecutive frames of the left image in the temporal dimen‑
sion perform feature matching to find the corresponding data‑associated feature points,
whereby the left image frames are consecutive in the temporal clue which serves as the
main clue for the pose estimation. The continuity of the right image frames in the spatial
dimension is used as an auxiliary clue to search for feature matching points on the right
spatial clue frame corresponding to the left image frame, and if a match can be made and
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the effective depth value of the feature point can be obtained, the 3D‑3D Iterative Closest
Point (ICP) method can be used to estimate the pose of the current frame.

The two consecutive frames of the left image in the temporal dimension find the corre‑
sponding data‑associated feature points through the feature matching, assuming that the
3D map points corresponding to these two sets of feature points are p = {p1, p2, . . . pn}
and p′ = {p′1, p′2, . . . p′n}, where p, p′ ∈ R3. Because each point in p and p′ has already
been associated with the data through subscripts one by one, p′ i = R · pi + t is satisfied
between p and p′ in the ideal case, where R ∈ SE(3) and t ∈ R3, but in fact p′ i ̸= R · pi + t
due to the presence of noise. At this time, (R, t) can be solved by constructing the least
squares problem [25] expressed as follows.

argmin
R,t

n
∑

i=1
∥p′ i − (R · pi + t)∥2 =argmin

R,t

n
∑

i=1

{∥∥(p′ i − p′
)
− R · (pi − p)

∥∥2
+

∥∥p′ − R · p − t
∥∥2

}
= argmin

R,t

n
∑

i=1

{
∥q′ i − R · qi∥2 +

∥∥p′ − R · p − t
∥∥2

} (1)

where the point clouds p and p′ aremoved towards the center, let qi = pi − p, q′ i = p′ i − p′,

p = 1
n

n
∑

i=1
pi, and p′ = 1

n

n
∑

i=1
p′ i.

In Equation (1), the first additive term is expanded and simplified as follows.

argmin
R

n
∑

i=1
∥q′ i − R · qi∥2 = argmin

R

n
∑

i=1
(q′ i

Tq′ i − 2q′ i
T Rqi + qi

T RT Rqi)

⇕

argmin
R

n
∑

i=1
−q′ i

T Rqi = argmin
R

[
−tr(R

n
∑

i=1
q′ i

Tqi)

] (2)

Let M =
n
∑

i=1
q′ i

Tqi, Singular Value Decomposition (SVD) decomposition is utilized to

obtain SVD(M) = USVT and thenR = UVT , and by substituting the resulting R into the

second additive term argmin
t

n
∑

i=1

∥∥p′ − R · p − t
∥∥2, it will be easy to obtain t = p′ − R · p.

If there is no right feature point on the spatial cue that can match on the left feature
point, or the effective depth value of the left feature point can not be obtained, at this time,
it can only be triangulated by the multi‑frame view. Based on the known 3D positions
of the feature points in the local sliding window, and their 2D observations in the image,
the pose of the current frame can be solved by using the 3D‑2D Perspective‑n‑Point (PnP)
method.

The coordinates of n 3D spatial points and their 2D point observations are known,
n known map points pw

i (i = 1, 2, ..., n) are selected as reference points from the world
coordinate system, and 4 known map points cw

j (j = 1, 2, 3, 4) are selected as control points,
which are associated with the reference points by means of a weighted sum expressed as
follows.

pw
i =

4

∑
j=1

αijcw
j (3)

where
4
∑

j=1
αij = 1.

pc
i and cc

j are map points and control points under the camera coordinate system, and
because only the values of the coordinates are taken differently, the relative spatial posi‑
tions between the points have not changed, so the relationship of the weighted sum also
holds, then there is

pc
i =

4

∑
j=1

αijcc
j (4)
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In the camera coordinate system, the reference point pc
i with its corresponding pixel

point pu
i (ui, vi) can be described by the projection equation [26] as follows

wi

[
pu

i
1

]
= K · pc

i = K ·
4

∑
j=1

αijcc
j (5)

there is

wi

 ui
vi
1

 =

 fu 0 uc
0 fv vc
0 0 1

 4

∑
j=1

αij

 xc
j

yc
j

zc
j

 ⇔


4
∑

j=1
αij fuxc

j + αij(uc − ui)zc
j = 0

4
∑

j=1
αij fvyc

j + αij(vc − vi)zc
j = 0

⇔ A2×12 · h12×1 = 0 (6)

The coefficient matrix A2×12 is constructed from the weighting coefficients of the reference
points, the pixel coordinates and the camera internal parameters, and the vector h12×1 is
constructed from the 12 coordinate values xc

1

ʹ yc
1

ʹ zc
1, xc

2

ʹ yc
2

ʹ zc
2, xc

3

ʹ yc
3

ʹ zc
3, and xc

3

ʹ yc
3

ʹ zc
3

of the 4 control points in the camera coordinate system. From this, a linear equation
A2×12 · h12×1 = 0 can be constructed by projecting a reference point pc

i to a camera pixel
point ui. Then n reference points pc

i projected to pixel points ui can construct the linear
equations A2n×12 · h12×1 = 0, followed by solving the equation for the vector h. The solu‑
tion process is based on least squares and SVD methods, solving the equations to obtain
the coordinate values of the four control points in the camera coordinate system, combined
with the known coordinate values of the four control points in theworld coordinate system,
and then utilizing the ICP algorithm to find the transformation relationship (R, t) between
the four control points in the two coordinate systems.

The camera poses solved by the abovemethods are subject to errors due to noise, com‑
putation and other factors, and BA optimization can be used to further optimize the poses
and improve the accuracy. Construct a nonlinear least squares problem on reprojection er‑
ror: 3D points are projected to 2D points which are combined with the observed 2D points
to construct the reprojection error equation, and the optimal solution is obtained by itera‑
tions using the Gaussian Newton method. In the world coordinate system, the map point

pw
i is converted to camera coordinates pc

i = T · pw
i by the transfer matrix T =

[
R t
0 1

]
,

and the pixel coordinates are obtained by projecting the camera coordinates using the cam‑
era model

wi

[
p̂u

i
1

]
= K · pc

i (7)

Establish the relationship from world coordinates to pixel coordinates:
wi p̂u

i = K · pc
i = K · T · pw

i , i.e., p̂u
i = 1

wi
K · T · pw

i , obtain the error term by subtracting the
value pu

i (ui, vi) from the observed coordinates of the 2D point, construct the least squares
problem by using the sum of all the error terms, minimize the reprojection error and the
camera pose is solved by using Gauss‑Newton optimization algorithm [25] as follows.

T = argmin
T

1
2

n

∑
i=1

∥∥∥∥pu
i −

1
wi

K · T · pw
i

∥∥∥∥2

2
(8)

(3) Keyframes selection

ORB‑SLAM2 obtains keyframes under more relaxed conditions to ensure that it can
“keep up”with the tracking thread in the early stage, however, the quality of the keyframes
is not taken into consideration. For instance, the high redundancy between frames when
the camera in uniform linear motion will lead to the high cost of maintaining and deleting
the keyframes in the later stage, which would affect the performance of the system. The
untimely insertion of keyframes can easily lead to loss of tracking when turning or chang‑
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ing speeds quickly. Furthermore, tracking loss also occurs easily when there is serious
occlusion and large changes in lighting.

According to the actual complex ecological environment of the forest, the keyframe
selection strategy is designed to avoid the introduction of too much information redun‑
dancy due to the excessive image overlap. At the same time, the image overlap should
not be too small to ensure that there are some covisibility feature points to avoid tracking
loss. Under the constraints of the covisibility graph, the quality of keyframe tracking is
guaranteed while achieving the goal of having both constraints and less information re‑
dundancy between keyframes and other keyframes in the local map. Based on the above
requirements, the amount of relative motion between frames (rotation angles and transla‑
tion changes) and data association (number of matched feature points) are considered as
the important basis for the selection of keyframes.

The amount of relativemotion Tran (R, t) between the current frame and the previous
keyframe is a function of the pose (R, t), and it is defined as follows.

Tran (R, t) = (1 − α) ||t||+ αmin(2π − ||R|| , ||R||) (9)

where α = ( tan ω
tan ω+1 )

1
4 , and ω = min(2π − ||R|| , ||R||).

Because R ∈ SE(3) , t ∈ R3, Tran represent the relative motion between frames, their
Euclidean spatial distances are taken as the amount of translation and rotation changes
between frames, respectively. α ∈ [0, 1] is a motion transformation factor between frames,
the size of which increases exponentially with the increase in the angle of camera rota‑
tion, and it has a corner of the amplification function and at the same time has a transla‑
tion suppression function. When α is large, the suppression 1 − α of the translation can
be brought close to 0, where the amount of relative motion between the frames depends
mainly on α. The value of α and the specific expression of Tran are determined by the range
of ω = min(2π − ||R|| , ||R||). Tran (R, t) can be expressed as follows,

Tran (R, t) =

(1 − α)||t||+ αmin(2π − ||R||, ||R||) , ω ∈ [0, π
2 ) , α = ( tan ω

tan ω+1 )
1
4

αmin( 2π − ||R||, ||R|| ) , ω ∈ [π
2 , π] , α = ( |tan ω|

|tan ω|+1 )
1
4

(10)

When the angle of camera rotation ω ∈ [π
2 , π], the camera almost loses the perspective, at

which time the feature points cannot be matched on the temporal clue causing the camera
tracking to fail. In order to increase the robustness of the system in tracking, the spatial
clue compensation strategy is adopted: the previous frame of the right image of the spatial
clue is used as the clue connection, and it is inserted to compensate for the lost field of view
on the temporal clue, continuing the tracking, as shown in Figure 6.
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The system is preset with a maximal threshold of η and a minimal threshold of ξ,
comparing the Tran with the threshold are follows:

when Tran < ξ, Frameckey ̸= Framecur;
when ξ ≤ Tran ≤ η, Frameckey = Framecur;
when Tran > η, if ω < π

2 , Framekey = Framecur, else ω ≥ π
2 , Framekey = Framercur − 1.

Framecur is the current frame of the left image, Framercur − 1 is the previous frame of
the right image, Frameckey is the candidate keyframe, and Framekey is the keyframe.

In the above analysis, when the amount of relative motion between frames Tran > η,
it indicates a significant change in the camera’s view, and keyframes should be inserted
in time, otherwise the tracking will be lost. When ξ ≤ Tran ≤ η, it is the normal mo‑
tion range of the camera, in which redundant keyframes should be avoided. Taking the
amount of relative motion between frames and data association as constraints, combining
the candidate keyframes obtained from the above calculation, the keyframes selection for
the system needs to satisfy the following two conditions:

(1) The number of tracked covisibility feature points between Frameckey and the previous
keyframe satisfies the following condition: Track(Framekey − 1, Frameckey) > τf .

(2) The number of near points tracked by Frameckey is less than the threshold τt andmore
than τc new near points can be created.

In outdoor environments, such as forest scenes, where most areas are far away from
the sensors, the introduction of near and far points for binocular vision as conditions for
filtering keyframes is particularly important for improving the localization accuracy of the
system. The near point is the feature point in binocular mode where the depth value is less
than 40 times the binocular baseline distance, otherwise it is called the far point.

The 3D coordinates obtained by triangulation for the near point are more accurate
which can provide information about orientation, translation, and scale. In contrast the far
point carries less information which provides only relatively accurate information about
orientation. It is very challenging in a large forest scene and at a distance from the camera,
the system needs enough near points to accurately estimate the camera’s translation, so the
system has certain requirements for the number of tracked near points and the number of
generated new near points. It works better by setting τt = 90 , τc = 50 in the experiments.

The steps of keyframes selection for the system are as follows.
Step 1: Determine whether the prerequisites for inserting keyframes are met: the sys‑

tem is not currently in localization mode and the local mapping is free, while it is far from
the last relocation, and the number of internal points must be greater than the minimum
threshold of 15, i.e., mnMatchesInliers > 15.

Step 2: Calculate the relative motion Tran(R, t) between frames and determine the
candidate keyframe Frameckey or keyframe Frameckey based on the comparison between
Tran(R, t) and the thresholds.

Step 3: If it is a candidate keyframe Frameckey, calculate the number of tracked fea‑
ture points between Frameckey and the previous keyframe Framekey − 1 and perform the
judgment of condition 1: Track(Framekey − 1, Frameckey) > τf .

Step 4: Calculate the number of near points tracked by Frameckey and perform the
judgment of condition 2: The number of near points tracked by Frameckey is less than the
threshold τt and more than τc new near points can be created.

Step 5: If both conditions 1 and 2 are satisfied, which indicates high matching and
correlation between frames and the high quality of feature points, the candidate keyframe
Frameckey is set as the keyframe Framekey, i.e., Framekey = Frameckey.

Correspondingly, the algorithm of keyframes selection for the system is as follows
(Algorithm 1).
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Algorithm 1 Keyframe Selection

Input: the binocular image frames Framecur and Framercur
Parameter: threshold τt, τc, τf , ξ, η

Output: Keyframe Framekey
1: for each vailable new Framecur do
2:    calculate ω = min (2π − ||R|| , ||R||)
3:    if ω ∈ [0, π

2 ) then
4:     α = ( tan ω

tan ω+1 )
1
4

5:     Tran (R, t) = (1 − α) || t||+ αmin (2π − ||R|| , ||R||)
6:    else

7:      α = ( |tan ω|
|tan ω|+1 )

1
4

8:      Tran (R, t) = αmin(2π − ||R|| , ||R||)
9:    end if
10:    if Tran < ξ then
11:      Frameckey ̸= Framecur
12:    else
13:       if ξ ≤ Tran ≤ η then
14:        Frameckey = Framecur
15:      else
16:        if ω < π

2  then
17:          Framekey = Framecur
18:        else
19:         Framekey = Framercur − 1
20:       end if
21:      end if
22:    end if
23:   calculate the number of covisibility feature points Track between Frameckey and the
last keyframe
24:    if Track(Framekey − 1, Frameckey) > τf  then
25:     calculate the number of near points tracked and the number of new near points
created in Frameckey
26:      if the number of near points tracked in Frameckey is less than the threshold τt and
more than τc new near points are created then
27:       Framekey = Frameckey
28:    end if
29:   end if
30: end for

4.2. Local Mapping
The local mapping thread implements mid‑term data association, it receives keyframes

imported from the tracking thread, eliminates substandard map points, generates new map
points, performs localmapoptimization, removes redundant keyframes, and sends optimized
keyframes to the loop closing thread. Only the information of adjacent common frames or
keyframes is used in the tracking thread; moreover, only the pose of the current frame is op‑
timized, and there is no joint optimization of multiple poses and no optimization of the map
points. The Local BA optimizes both multiple keyframes that satisfy a certain covisibility re‑
lationship and the corresponding map points, so as to make the keyframes more accurate in
terms of poses and map points. More new map points are obtained by re‑matching between
covisibility keyframes, increasing the number of map points while improving the tracking
stability. Removing redundant keyframes helps to reduce the scale and number of Local BAs
and improve the real‑time performance of the system.

4.3. Loop Closing
Loop closing is divided into two steps: loop closing detection and loop closing cor‑

rection. Loop closing detection uses Bag of Words (BoW) to accelerate matching, queries
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the dataset to detect whether the loop is closed or not, and then computes the Special Eu‑
clidean Group (SE3) poses between the current keyframe and the loop closing candidate
keyframe. Monocular vision suffers from scale drift while binocular vision easily obtains
depth information making the scale observable, so there is no need to deal with scale drift
in geometric validation and pose‑graph optimization. The loop closing correction focuses
on loop closing fusion and essential graph optimization to correct cumulative drift, and
starts the Full BA thread for the BA optimization of all map points and keyframes, which
is more costly and therefore a separate thread is needed.

4.4. Dense Mapping
The tracking thread calculates the pose for each frame, if the densemap is constructed

using each frame in the tracking thread, it not only increases running time and storage
space overhead for the system, but it also affects the localization accuracy due to the heavy
computationwhich slowsdown the system’s running speed; hence, the keyframes are used
to construct the dense map. Firstly, the disparity map is calculated for each keyframe;
secondly, the point cloud is generated by combining the more accurate keyframe poses
optimized by Local BA, and then the initial dense map is formed through point clouds
registration, point clouds fusion, and point clouds filtering; and thirdly, the dense map is
updated by global BA optimization.

Obtaining disparity maps is a key step in dense mapping, while the traditional stereo
matching methods have a poor matching effect in the regions of weak texture, occlusion
and other features that are not obvious, and the generated disparitymap is insufficiently ro‑
bust. In thiswork, LANet [27], a linear attention stereomatching network is embedded into
D‑SLAM as one of the modules to generate dense disparity maps, which are transformed
to generate depth maps and point clouds to realize the construction of dense maps of the
forest ecological environment. LANet networks are capable of optimizing depth estima‑
tion by efficiently utilizing environmental global and local information to improve stereo
matching accuracy in ill‑posed regions, such as those with weak texture, poor lighting,
and occlusion and achieve efficient disparity inference prediction. Because LANet is one
of the research findings of the authors of this paper, it has been published in a public paper
“LANet: Stereo matching network based on linear‑attention mechanism for depth estima‑
tion optimization in 3D reconstruction of inter‑forest scene” https://www.frontiersin.org/
articles/10.3389/fpls.2022.978564/full (accessed on 2 September 2022), and the overview of
the LANet as shown in Figure 7.

(1) Feature extraction

ResNet [28] is adopted as the backbone network for feature extraction; all layers use
a 3×3 convolutional kernel, and the first stage uses three convolutional layers conv0_1,
conv0_2, and conv0_3, to extract the primary features of the image. The second stage uses
four sets of basic residual blocks, conv1_x, conv2_x, conv3_x, and conv4_x, to extract the
deep semantic features of the image. Downsampling with stride 2 was used in conv0_1
and conv2_1, and the input image size is reduced to 1/4 of the original size after two down‑
samplings. The dilated convolution is applied to enlarge the receptive field in conv3_x and
conv4_x, and the dilation rates of these two layers are 2 and 4, respectively.

(2) Attention Module (AM)

AM can better integrate local and global information to obtain richer feature represen‑
tations at the pixel level, and the AM consists of two parts: the Spatial Attention Module
(SAM) and Channel AttentionModule (CAM). SAM captures long‑range dependencies be‑
tween global contexts, seeks correlations between pixels at different locations, and models
semantic correlations in the spatial dimension.

https://www.frontiersin.org/articles/10.3389/fpls.2022.978564/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.978564/full
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Because the time and space complexity of self‑attention [29] is O(n2), the cost of train‑
ing and deploying the model is very high when it is used on large‑size images. Linear‑
attention is proposed to be able to reduce the overall complexity of self‑attention from
O(n2) to O(n) while retaining high accuracy. The correlation matrix P ∈ Rn×n in self‑
attention is low rank, where most of the information is concentrated in a small number of
maximum singular values; hence, a low rank matrix P is used to approximate P to reduce
the complexity of self‑attention by changing its structure. The details are as follows:

Let X ∈ Rn×dm be the input sequence, W Q, W K ∈ R dm× dk , W V ∈ R dm× dv are three
learnable matrices, and Q = XWQ, K = XWK, V = XWV , the query matrix, the key ma‑
trix and the value matrix Q, K, V ∈ R n×dm embedded in the input sequence are obtained
respectively. where n is the length of the sequence and dm , dk , dv are the dimensions of
the hidden layers of the projection space. Two low dimensional linear projection matrices
E ∈ Rn×k and F ∈ Rn×k are constructed, which are fused with K and V to reduce their
dimensionality. E or F performs matrix multiplication with K or V to reduce K and V from
their original n × d‑dimension to the k × d‑dimension, as shown in Figure 8.
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The correlation matrix P ∈ Rn×k is computed by the scaled dot product method, and
the value of linear‑attention is

P · (FVWV) (11)

where

P = so f tmax

[
QWQ(EKWK)

T

√
d

]
(12)

and the complete form of linear‑attention is

Linear − Attention
(

QWQ, KWK, VWV
)
= so f tmax

[
QWQ(EKWK)

T

√
d

]
· (FVWV) (13)

The complexity of linear‑attention is mainly determined by P, O(P) = O(nk), and if
a very small mapping dimension k is choosen and set to k << n, the overall complexity
of P will decrease to linear O(n). It can be proven that when k = O(nd/ε2), the value of
P · (FVWV) approaches P · (VWV), and the value of linear‑attention can be approximately
equivalent to that of self‑attention, with an error of no more than ε.

The feature values obtained through linear‑attention aremultiplied by the scale factor
α and then summed bit‑wise with the original features X ∈ RH×W×C to obtain the spatial
attention feature map Y ∈ RH×W×C as follows.

Yj = α
n

∑
i=1

(PijFiViWV
i ) + Xj (14)

where featureYj is theweighted sumof the features at all locations and the original location
feature Xj. Therefore, it has global contextual information, and spatial attention can fuse
similar features in the global spatial range, which is conducive to the consistent expression
of feature semantics, and likewise it enhances the robustness of feature extraction in ill‑
posed regions.

Each channel corresponds to a feature map of a specific category of semantics. CAM
models semantic relevance in the channel dimension, capturing long‑range semantic de‑
pendencies between channel features, enabling global correlations between each channel,
which is beneficial for obtaining stronger semantic feature responses and improving fea‑
ture recognition. CAM is calculated on the original feature map based on the self‑attention
mechanism, without involving the complexity of O(n2).

The input feature X ∈ RH×W×C is reshaped into Q′, K′, V′ ∈ Rn×d and there exists
Q′ = K′ = V′, where n = 1

4 H × 1
4 W , d = C, and the channel correlationmatrix P′ ∈ Rd×d

is obtained by multiplying the matrices between Q
′ T and K′ as follows.

P′
ji = so f tmax

[
Q′ TK′
√

d

]
=

exp
[

Q′ T
iK

′
j√

d

]
C
∑

i=1
exp

[
Q′ T

iK
′
j√

d

] (15)
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In the Equation (15), P′
ji denotes the correlation between the i th channel and the j

th channel, and the higher the correlation between the two channel features, the greater
the value of P′

ji. The final feature for each channel is a weighted sum of the features of all
channels and the original feature as follows.

Zj = β
C

∑
i=1

(V ′
i P′

ji) + Xj (16)

where Z is the final feature. The self‑attention feature map of Rn×d is obtained by multi‑
plying the matrices between V ′ and p′ , which is reshaped into the form of RH×W×C mul‑
tiplied by a scale factor β, and it is then summed bit‑wise with the original feature map
X ∈ RH×W×C to finally obtain the channel attention feature map Z ∈ RH×W×C.

(3) Construction of Matching cost

The feature information from the four parts of conv2_16, conv4_3, SAM and CAM is
cascaded to form a 2D 1/4H× 1/4w× 320 featuremapwhich is fused by two convolutional
layers of 3 × 3 and 1 × 1 while the channels are compressed to 32, connecting the left 2D
feature map with the right feature map corresponding to each disparity to construct a 4D
matching cost‑volume of 1/4D × 1/4H × 1/4W × 64.

(4) The 3D CNN aggregation

The 3DCNN aggregationmodule is used for cost‑volume regularization, aggregating
semantic and structural feature information in disparity and spatial dimensions to predict
accurate cost‑volume. It consists of two structures: the basic structure is used for abla‑
tion experiments to test the performance of various parts of the network, and it consists
of twelve convolutional layers with a convolution kernel size of 3 × 3 × 3 performing BN
and ReLU. The stacked hourglass structure is used to optimize the network and increase
the robustness of disparity prediction in low‑texture regions and occluded regions to ob‑
tain more accurate disparity values. The first four 3D convolutional layers contain BN and
ReLU, and the 3D stacked hourglass network utilizes an “encoder‑decoder” structure to
reduce the parameters and computation of the network. The encoder downsamples twice
by using a 3D convolution with a convolution kernel of 3 × 3 × 3 and a step size of 2.
Correspondingly the decoder upsamples twice to recover the size by using an inverse con‑
volution with a step size of 2, while the number of channels is halved. To compensate for
the information loss caused by the “encoder–decoder” structure, a 1 × 1 × 1 3D convo‑
lution is used inside each hourglass module to connect features of the same size directly,
which uses fewer parameters than a 3× 3× 3 convolution, and reduces the computational
power to 1/27 of the original one, with negligible runtime; thereby, the running speed of
the network is improved without increasing the computational cost.

(5) Disparity prediction

Each hourglass corresponds to one output, the total loss is a weighted sum of the
losses corresponding to each output, and the last output is the final disparity map. A

differentiable Soft Argmin function was utilized to obtain disparity estimation
∧
d through

the regression method as follows. Equations (17)–(19) are from reference [30].

∧
d =

Dmax−1

∑
k=0

k · pk (17)

where Dmax denotes the maximum disparity. With the L1 loss function, the total loss is
calculated as follows.

L =
3

∑
i=1

λi · SmoothL1(
∧
di − di) (18)
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where λi denotes the coefficient of the i th disparity prediction, di denotes the true value

of the i th disparity map,
∧
di denotes the i th predicted disparity map, and the SmoothL1(x)

function is expressed as follows.

SmoothL1(x) =
{

0.5x2 , i f |x| < 1
|x| − 0.5 , otherwise

(19)

5. Results
The experiment and evaluation of the whole system is split in four parts:

• LANet performs the prediction training and evaluation of disparitymaps on the Scene
Flow and Forest datasets, and compares them with several mainstream methods.

• D‑SLAM tests the accuracy of projection trajectories on two datasets, EuRoC and
KITTI, and compares them with mainstream SLAM systems.

• D‑SLAM tests the partial and overall performance of the system on three datasets,
EuRoC, KITTI and Forest.

• D‑SLAM performs real‑time dense mapping on two datasets, KITTI and Forest, as
well as analyzing and discussing the mapping results.

5.1. Experiment on Disparity Map Generation by LANet
LANet is pre‑trained on the clean pass dataset of Scene Flow [31], and fine‑tuned

training is conducted on the Forest target dataset. Network training was based on Python
3.9.7, the PyTorch 1.11.0 framework, one Nvidia TITAN Xp GPU 3090 for the server, and
Adam [32] for the optimizer, with β1 = 0.9, β2= 0.999, and batch size set to eight.

(1) Ablation experiments on Scene Flow

Ablation experiments are carried out on the Scene Flow dataset to test the perfor‑
mance of each key module and parameter in the network. In Table 2, Res is the ResNet
module, SA denotes the Spatial Attention Module using a self‑attention mechanism, SAM
denotes the Spatial Attention Module using a linear‑attention mechanism, CAM denotes
the Channel Attention Module, k is the dimensionality of E and F in the model, E and F
share the same parameter, i.e., E = F, Basic denotes the basic structure, and Hourglass is
stacked hourglass network. Experiments were conducted to evaluate the performance of
each key module with evaluation metrics which are >1, >2, and >3pixel error, End Point
Error EPE, and runtime.

Table 2. Ablation experiments of attention mechanism on Scene Flow.

Module >1 px (%) >2 px (%) >3 px (%) EPE (px) Runtime (s)

Res_Base 12.78 8.11 6.41 1.65 0.12
Res_CAM_Base 11.12 7.02 5.36 1.21 0.14
Res_SA_Base 10.24 6.48 4.91 1.03 0.24
Res_SAM_k128_Base 10.47 6.65 5.04 1.10 0.16
Res_SAM_k256_Base 10.38 6.58 4.98 1.07 0.17
Res_SAM_k512_Base 10.29 6.52 4.93 1.05 0.18
Res_CAM_SAM_k512_Base 9.26 5.56 3.95 0.95 0.19
Res_CAM_SAM_k512_Hourglass 7.22 3.71 2.31 0.82 0.25

As shown in Table 2, the EPE of Res_Base is 1.65, and with the addition of CAM and
SAM, the EPE becomes 1.21 and 1.1, respectively, resulting in a significant reduction in
error rates. The error rate of disparity values shows that adding AM can significantly im‑
prove the accuracy of disparity prediction, thereby achieving the goal of improving the ac‑
curacy of densemapping inD‑SLAMsystems. When the value of k becomes larger, the EPE
of Res_SAM_kx_Base gradually approaches that of Res_SA_Base, and when k = 512, the
EPEs of both are almost equal, while the inference time of the former changes little which is
significantly faster than that of Res_SA_Base. Thereby, it is proved that the inference speed
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of linear‑attention is significantly faster than that of self‑attentionwhen their error rates are
close. Compared to Res_CAM_SAM_k512_Base, Res_CAM_SAM_k512_Hourglass has a
significant advantagewhich reduces the error rate for thewhole network > 3 px from3.95 to
2.31 and EPE from 0.95 to 0.82.

(2) Comparative experiments on Forest

Severalmainstreammethods are compared in the Forest dataset, and the performance
of each method was evaluated by three evaluation metrics, the proportion of pixels with
prediction errors in all regions of the first frame image (D1‑all), EPE and time. The test
server was 3090GPU, and the image resolution was 1240 × 426.

The results in Table 3 indicate that after fine‑tuning on the Forest dateset, LANet ex‑
hibits better performance than on the SceneFlow dataset, with an EPE reduction from
0.82 to 0.68 and an accuracy improvement of 20.6%. The D1 all and EPE of LANet are
2.15 and 0.68, respectively, which are better than those of the comparative model. The
running speed is 0.35 s, and although it is not the fastest, it is also relatively competitive.

Table 3. Comparative experiments of disparity detection with Forest. The network models for com‑
parison are Matching Cost with a Convolutional Neural Network (MC‑CNN), Geometry and Con‑
text network (GCNet), Learning deep correspondence through prior and posterior feature constancy
(iResNet), Disparity Network (DispNet), a two‑stage convolutional neural network (CRL), Exploit‑
ing Semantic Information for Disparity Estimation (SegStereo), Edge Stereo network (EdgeStereo),
and Pyramid Stereo Matching Network (PSMNet).

Method Runtime (s) D1‑All (%) EPE (px)

MC‑CNN [33] 67.09 4.08 3.96
GCNet [34] 1.01 3.65 2.79
iResNet [35] 0.20 3.58 2.73
DispNet [31] 0.14 3.08 1.96
CRL [36] 0.55 2.75 1.54
SegStereo [37] 0.68 3.12 2.01
EdgeStereo [38] 0.40 2.81 1.68
PSMNet [39] 0.48 2.61 1.25
LANet 0.35 2.15 0.68

Figure 9 shows the visualization of disparity maps generated by LANet, PSMNet and
GCNet with Forest, with the colors representing different disparity values, the farther the
distance the smaller the disparity value, and the black color indicating the distant points,
whose disparity values are so small that they can be ignored.

The rectangular box regionswhere thematching error of eachmethod is large are usu‑
ally found in locations containing fine structures such as branches, trunks, and leaf edges,
as well as weakly textured regions and occluded regions. In column A, there are signifi‑
cant differences in the predictions of each model at the border between the pink trees and
the crimson sky, and PSMNet and GCNet can preserve the main contours of the edges
while the predictions are inaccurate at the fine structures; however, the LANet can better
preserve the fine features of the edges while the predictions are closer to the true value.
In column B, for the prediction of the red trunk, PSMNet and GCNet show missing trunk
pixels, and for the prediction of the pink car’s rear glass, LANet shows few color devia‑
tions, PSMNet shows more color deviations, and GCNet shows more errors in color. In
column C, for the red trunk prediction, LANet shows pixel discontinuity and few missing
pixels, PSMNet and GCNet show larger missing pixels or even missing trunks, and for
the prediction of the purple leaf, LANet is able to retain the edge features better, PSMNet
misses some fine edge structure features, and GCNet has too many edge predictions and
a mismatched pieces.

The attentionmechanism integrates local and global information, seeking correlations
between pixels at different locations to obtain richer feature representations at the pixel
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level, which are beneficial for obtaining stronger semantic feature responses and improv‑
ing feature recognition. Therefore, it can predict more reliable disparity maps in ill‑posed
regions such as thosewithweak texture, poor lighting, and occlusion. After testing, LANet
has shown better performance than the comparative model in terms of accuracy and visu‑
alization, and it is also more competitive in terms of runtime.
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LANet is embedded into the D‑SLAM system, and is lightweighted in order to ensure
the real‑time performance of the system, and the stacked hourglass structure used to opti‑
mize the network is cut off to improve the running speed of the system. For the purpose
of making a balance between accuracy and speed, the Res_CAM_SAM_k512_Base combi‑
nation modules are selected, with an EPE of 0.95 and a running time of 0.19 s, which fully
meets the performance needs of the dense mapping thread of D‑SLAM.

5.2. Experiment on the Location Accuracy of Visual Odometry
In this section, the performance of D‑SLAM will be evaluated for several sequences

on two popular datasets. In order to demonstrate the robustness of the proposed system,
the estimation of camera generated trajectories and maps was compared with the Ground
Truth (GT). In addition, the results are also compared with some advanced SLAM systems
by using the results published by the original author and standard evaluation metrics in
the literature. D‑SLAMexperiments are all conducted on aDell G3 3590 portable computer,
with an Intel Core i7‑9750H CPU, 2.6GHz, 16GB memory, and only the CPU was used.

5.2.1. EuRoC Dataset
The EuRoC dataset [40] contains 11 stereo sequences recorded from a micro aerial

vehicle (MAV) flying around two different rooms and a large industrial environment. The
baseline of the binocular sensor is 11 cm, providing images at 20 Hz. The sequences are
classified into three levels: easy, medium, and difficult based on the speed, illumination,
and scene texture of the MAV.



Forests 2024, 15, 147 19 of 30

(1) Estimated trajectory maps

Figure 10 is the estimated trajectory for nine sequences from EuRoC; by comparison
with the GT, the D‑SLAM system shows better trajectory accuracy on these sequences.
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(2) RMS ATE comparison

As is usual in the field, the accuracy is measured by RMS ATE [41]. The SE (3) trans‑
form is used to align the estimated trajectory with the GT. The result of D‑SLAM is the
average of five executions, while the other results are reported by the authors of each sys‑
tem and compared with GT for all frames in the trajectory.

As shown in Table 4 ORB‑SLAM2 and VINS‑Fusion all get lost in some parts of
V2_03_difficult sequence due to severe motion blur. Even BASALT, a stereo vision‑inertial
odometry system, was not able to complete tracking on this sequence due to the loss of
some frames by one of the cameras. However, due to the use of the binocular image spa‑
tial clue compensation strategy, D‑SLAM could utilize the right image to compensate for
the lost field of view of the camera to a certain extent when the above situations occured,
and it successfully tracked and achieved an error of 0.468 on the V2_03_ difficult sequence.
SVO is a semi direct visual odometry that can run in weak texture and high frequency tex‑
ture environments. However, the pose estimation has significant cumulative error due to
its lack of loop detection and relocation. The system is very dependent on the accuracy
of pose estimation, making it difficult to relocate once tracking fails. It performs well on
easy sequences, while the tracking accuracy decreases rapidly on medium and difficult
sequences, with a larger RMS ATE.
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Table 4. RMS ATE comparison in the EuRoC dataset (RMS ATE in m, scale error in %). The network
models for comparison are ORB‑SLAM2, a general optimization‑based framework for local odome‑
try estimation with multiple sensors (VINS‑Fusion), Semidirect visual odometry for monocular and
multicamera systems (SVO2), Visual‑Inertial Mapping with Non‑Linear Factor Recovery (BASALT),
and D‑SLAM.

Sequence ORB‑SLAM2
[18]

VINS‑Fusion
[42]

SVO2
[43]

BASALT
[44] D‑SLAM

MH_01_easy 0.035 0.540 0.040 0.070 0.032
MH_02_easy 0.018 0.460 0.070 0.060 0.018
MH_03_medium 0.028 0.330 0.270 0.070 0.026
MH_04_ difficult 0.119 0.780 0.170 0.130 0.095
MH_05_ difficult 0.060 0.500 0.120 0.110 0.055
V1_01_easy 0.035 0.550 0.040 0.040 0.032
V1_02_medium 0.020 0.230 0.040 0.050 0.022
V1_03_difficult 0.048 – 0.070 0.100 0.041
V2_01_easy 0.037 0.230 0.050 0.040 0.035
V2_02_medium 0.035 0.200 0.090 0.050 0.030
V2_03_difficult – – 0.790 – 0.468

5.2.2. KITTI Dataset
The KITTI [45] dataset has become the standard for evaluating visual SLAM, which

contains stereo images recorded from a car in urban and highway environment. The base‑
line of the binocular sensor is 54 cm and works at 10Hz with a rectified resolution of
1240 × 376 pixels. The D‑SLAM system was tested on 11 sequences of the KITTI dataset,
and the results are as follows.

(1) Error graph for the 05 sequence of KITTI

The trajectory error is calculated byEvaluationVisualOdometry (EVO) tool. Absolute
Pose Error (APE) calculates the difference between the estimated value of the SLAMsystem
and the ground truth of the camera’s pose, which is suitable for evaluating the accuracy of
the algorithmand the global consistency of the camera trajectory. Relative Pose Error (RPE)
calculates the difference between the estimated pose change and the true pose change at
the same two timestamps, which is suitable for evaluating the drift of the system and the
local accuracy of the camera trajectory.

Because the KITTI dataset contains large outdoor urban and highway scenes, its over‑
all APE error is much higher than that of the indoor dataset EuRoC, and the larger errors
occur near the turns or where no loop closing occurs at the edge of the trajectory, as shown
in Figure 11. In the translation direction of this sequence, the mean of APE is 1.310438
m, the median is 1.184211 m, the rmse is 1.469650 m, and the std is 0.665299. Compared
with APE, RPE is smaller, with a mean of 0.015108 m, a mean of 0.013262 m, a rmse of
0.018214 m, and a std of 0.010172 m.

(2) Comparison of projection trajectories for the 08 sequence on KITTI

Figure 12 shows the comparison between the projection trajectories of D‑SLAM, Large‑
scale direct SLAMwith stereo cameras (LSD‑SLAM) [46], and a stereo SLAM system through
the combination of Points and Line segments (PL‑SLAM) [47] on the KITTI08 sequence and
the GT, from which it can be intuitively observed that the trajectory of D‑SLAM is closer to
the GT compared to the other twomethods, while the trajectory drift of PL‑SLAM is relatively
large. Unlike D‑SLAM, the inferior performance of PL‑SLAM is mainly explained by the fact
that it does not perform LBA in every frame, so the drift along the trajectory is not corrected,
especially in sequences like 08 without a loop closing, resulting in a relatively large final drift
of the trajectory. In addition, the translation and rotation deviations on the y‑axis are relatively
large for the various methods.
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(3) Comparison of relative RMSE of KITTI

The metrics of the average relative translation error (trel) and rotation error (Rrel) are
used to estimated the relative RMSE [41]. The translation error trel is expressed in %, the
rotation error Rrel is also expressed deg/100 m relative to the translation, and the dash
indicates that the experiment failed. The comparison of relative RMSE of KITTI is shown
in Table 5.
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Table 5. Relative RMSE of KITTI.

Sequence
ORB‑SLAM2 LSD‑SLAM PL‑SLAM D‑SLAM

trel Rrel trel Rrel trel Rrel trel Rrel

00 0.70 0.25 0.63 0.26 2.36 0.89 0.67 0.24
01 1.39 0.21 2.36 0.36 5.80 2.32 1.05 0.19
02 0.76 0.23 0.79 0.23 2.35 0.91 0.68 0.21
03 0.71 0.18 1.01 0.28 3.74 1.54 0.65 0.16
04 0.48 0.13 0.38 0.31 2.21 0.30 0.45 0.13
05 0.40 0.16 0.64 0.18 1.74 0.88 0.38 0.15
06 0.51 0.15 0.71 0.18 3.51 2.72 0.45 0.14
07 0.50 0.28 0.56 0.29 1.83 1.03 0.44 0.25
08 1.05 0.32 1.11 0.31 2.18 1.15 0.98 0.30
09 0.87 0.27 1.14 0.25 1.68 0.92 0.75 0.24
10 0.60 0.27 0.72 0.33 1.21 0.99 0.55 0.23
Avg. 0.72 0.22 0.91 0.27 2.60 1.24 0.64 0.20

The two sequences with large errors in Table 5 are 01 and 08, neither of which show a
loop closing. The 01 sequence is the only highway sequence in the KITTI dataset, in which
few near points can be tracked due to the high speed and low frame rate, so it is difficult
to estimate the translation, and the trel of the various methods are large. However, there
are many distant points that can be tracked for long periods of time, and therefore, the
rotation can be accurately estimated. ORB‑SLAM2 is able to achieve a better error with an
Rrel value of 0.21 deg/100 m, while D‑SLAM is even smaller with a value of 0.19 deg/100 m.
Without any loop closing in the 08 sequence, PL‑SLAM is unable to correct the drift of
the trajectory in time for the absence of Local BA, whereas ORB‑SLAM2 and Stereo LSD‑
SLAM, although they perform Local BA for each frame, cannot perform Full BA due to the
absence of loop closing in this sequence, which also results in the global error not being
corrected, leading to a large cumulative error. TheD‑SLAM system is relatively accurate in
the pose estimation of each previous frame, and even without loop closing correction, the
drift will not be too severe. The D‑SLAM system achieved an average trel of 0.64m and an
average Rrel of 0.20, which is more accurate compared to some mainstream stereo systems
and has significant advantages in most cases.

5.3. System Real‑Time Evaluation
In order to evaluate the real‑time performance of the proposed system, the runtimes

of different resolutions of the three datasets are presented in Table 6. Because each of
these sequences contains only one loop closing, the BA and Loop shown in the table are
measurements where the associated task is executed only once.

Because the loop closing of the Psv_02 sequence of Forest contains more keyframes,
the covisibility graph is constructed more densely, resulting in higher costs for loop fu‑
sion, as well as the higher cost of pose map optimization and Full BA tasks. In addition,
the higher the density of covisibility graph, the more keyframes and points the local map
contains, resulting in higher costs for local map tracking and LocalBA.

The two threads of loop closing and Full BA in Table 6 consumemore time, especially
Full BA, for which the D‑SLAM system takes 1.42 s. However, these two operations are
executed in separate threads, so they do not affect the real‑time performance of the other
components of the system. The real‑time performance of the SLAM system ismainly deter‑
mined by the speed at which the tracking thread processes each frame of the RGB image,
while local mapping, dense mapping, and loop closing threads only process key frames
without the need for real‑time operation.

The running time of the system on the three sequences is 139.87 s, 124.9 s and 162.97 s,
respectively. According to the frame rate and time of tracking threads, theD‑SLAMsystem
is able to run at 30 ordinary frames and 3 keyframes per second, which fully meets the
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real‑time requirements of the SLAM system for forest environment location and dense
map construction.

Table 6. Running time of each thread in miliseconds (ms). Where FPS represents Frames Per Second,
Essential GraphOpt. represents Essential GraphOptimization, KFs represents KeyFrames, andMPs
represents Map Points.

Part Detail EuRoC KITTI Forest

Settings

Sequence V2_02 07 Psv_02
Sensor Stereo Stereo Stereo
Resolution 752 × 480 1226 × 370 672 × 376
Camera FPS 20Hz 10Hz 30Hz
ORB Features 1200 2000 1200

Tracking

Stereo Rectification 2.95 – –
ORB Extraction 11.52 21.85 9.69
Stereo Matching 10.54 13.64 8.81
Pose Prediction 2.15 2.25 2.05
Local Map Tracking 9.25 4.21 8.86
Keframe Selection 5.65 6.12 5.29
Total 42.06 48.07 34.70

Local
Mapping

Keyframe Insertion 8.56 10.03 8.24
Map Point Culling 0.24 0.38 0.22
Map Point Creation 35.36 42.26 33.05
Local BA 135.02 66.35 180.14
Keyframe Culling 3.61 0.89 2.14
Total 182.79 119.91 223.79

Dense Mapping

Pcd generation 123.85 138.54 95.37
Pcd registration 18.87 22.36 15.29
Pcd fusion 26.59 33.84 23.68
Pcd filter 32.01 43.35 28.87
Total 201.32 238.09 163.21

Loop Closing

Database Query 3.25 3.59 3.07
SE3 Estimation 0.58 0.87 0.51
Loop Fusion 20.23 79.86 298.25
Essential Graph Opt. 71.36 175.97 268.95
Total 95.42 260.29 570.78

Full BA
Full BA 345.71 1120.51 1420.36
Map Update 3.09 9.65 6.58
Total 348.8 1130.16 1426.94

Map Size
KFs 249 241 354
MPs 14,027 26,074 17,325
Run time 139.87s 124.9s 162.97s

5.4. Dense Mapping
This section will evaluate the dense mapping performance of D‑SLAM on two chal‑

lenging datasets, KITTI and Forest. Six visualized images generated during the densemap‑
ping process are displayed on each dataset. In order to analyze the dense point cloudmore
comprehensively and intuitively, local detail point cloud images obtained from different
perspectives are displayed also. D‑SLAM supports two operating modes: online real‑time
densemapping and bag video dense mapping. In order to facilitate parameter adjustment,
the bag video mode was used for testing in this study.

5.4.1. Dense Mapping on KITTI Dataset
Figure 13 shows the dense map construction of the 01 sequence of the KITTI dataset.

This sequence is a real‑time image of a highway. Due to its high speed and low frame
rate, the camera in this scene has a large translation, little rotation, and no loop closing,
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making it challenging. It can be observed from the Figure 13d that the projection trajectory
has better accuracy in the straight section of the highway, while there is some slight drift
near the turning at the end, which is due to the fact that there is no loop closing for Full
BA, resulting in an increase in the cumulative error of the trajectory and ultimately an
increase in drift. In Figure 13e, red points represent the covisibility observation points of
the covisibility graph keyframes, i.e., reference map points, while black points represent
all map points generated by keyframes. Figure 13f is the overall dense point cloud map
generated after the previous steps of processing, and its local details are shown in Figure 14.
It shows the local dense point cloud maps from different views of the KITTI01, in which
the details of the highway can be clearly seen, including the dotted lines, crosswalks, tree
shadows, and green grass along the highway. The dense point cloudmaps generated from
theKITTI dataset are clearer due to the fact that theKITTI dataset is a high‑resolution image
dataset, coupled with the long baseline of the binocular sensors, and the corrected stereo
images.
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5.4.2. Dense Mapping with Forest Dataset
Forest is a large forest scene dataset with low texture images, the trunk features are

very inconspicuous, and the number of feature points is not large enough, in order to have
enough near point feature points to ensure the tracking accuracy and the effect of dense
mapping, it is necessary to insert as many keyframes as possible, and at the same time
to avoid redundancy, based on which the keyframe selection strategy has been designed
previously for the characteristics of the forest scene. Figure 15 shows the dense mapping
process with the Forest dataset.
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Figure 15. Dense mapping process on Forest, where (a) is the left RGB image, (b) is the visual dispar‑
ity map, (c) is the feature point tracking map, (d) is the estimated trajectory map, which has a loop
closing and the localization of the front end and the accuracy of the back endmapping are improved
after loop closing correction, (e) is the sparse point cloud map, in which the blue boxes represent the
keyframes, the green box represents the current frame, the red box represents the start frame, the red
points represent the reference map points, and the black points represent all map points generated
by keyframes. and (f) is the overall effect of the dense point cloud map.

Because Figure 15f shows the overall effect of the 3D point cloud of the forest scene from
one perspective, the details frommany perspectives are not visible, therefore, Figure 16 shows
the details from different perspectives after being rotated, from which the structure of the
forest scene can be clearly reproduced, including the density, poses and spatial position of
the forest trees; the height, thickness, outline, color and texture of the tree trunks; the color
and density of the leaves; the canopy; and the ground surface, which truly reflect the sample
structure of the forest scene and provides an important basis for forestry exploration.
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6. Discussion
All tests of the D‑SLAM systemwere run on a Dell G3 3590 portable computer, which

was equipped with a ZED2 binocular camera capable of real‑time localization and dense
mapping in the forest scene, supportting both image dataset operation and real‑time forest
scene operation.

In terms of localization accuracy, D‑SLAM can estimate the true scale of maps and
trajectorieswithout drift and achieve a high accuracywith anRMSATEof 1.8 cmonEuRoC
dataset (Table 4), outperforming international mainstream systems VINS Fusion, SVO2,
and BASALT. Especially on the two challenging sequences V1_ 03_ difficult and V2_ 03_
difficult, ORB‑SLAM2, VINS Fusion, and BASALT all failed to track, while the D‑SLAM
system adopted a binocular image spatial clue compensation strategy, which can use the
right image to compensate for the lost field of view of the camera to a certain extent when
the camera rotation angle is too large, so there was no tracking loss on difficult sequences.
In addition, on the 11 sequences of KITTI, the D‑SLAM system achieved relative RMSE
with two average values of 0.64 and 0.2 for trel and Rrel, respectively (Table 5), which is
superior to international mainstream SLAM systems ORB‑SLAM2, LSD‑SLAM, and PL‑
SLAM.Accordingly, D‑SLAM is robust enough to be of great advantage inmost cases. The
error difference between various methods on the EuRoC and KITTI datasets is significant,
which is directly related to the images in the dataset. EuRoC contains indoor small scene
images with a small field of view distance, resulting in smaller errors, while KITTI is an
outdoor highway large scene dataset with a larger field of view, fewer near points, and
more far points, resulting in larger errors, even reaching tens of centimeters to several
meters. In addition, the resolution, acquisition frequency, illumination, texture, and other
factors of the image also have a significant impact on the error.

In terms of the real‑time performance of the system, the dense mapping thread only
processes keyframes, which does not affect the real‑time performance of the system. From
the frame rate and runtime of the tracking thread, it can be inferred that the D‑SLAM
system can run at a speed of 30 ordinary frames and 3 keyframes per second, fully meeting
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the real‑time requirements of SLAM system forest ecological environment localization and
dense mapping.

In termsofdensemapping, the constructionof real‑timedensemaps in three‑dimensional
space generally uses RGBD‑SLAM or LiDAR‑SLAM, which obtain depth information of the
scene through depth sensors or LiDAR sensors. However, they are expensive and not con‑
ducive to the popularization and application in the industry. Moreover, depth sensors cannot
be used outdoors, and laser sensors can only build sparse maps. Visual sensors can overcome
these shortcomings and be applied to outdoor for dense mapping. Visual SLAM is generally
applied to more regular outdoor scenes such as buildings, streets, roads, and parks. How‑
ever, its application in complex forest environments has been rarely reported internationally.
Therefore, dense mapping poses significant challenges in forest scenes with low texture, un‑
even lighting, and severe occlusion. Despite many disadvantages, the experimental results
(Figure 16) show that it is possible to observe the structure of the forest ecological scenes, such
as the density, pose, and spatial position of the tree, and the height, thickness, outline, color,
and texture of the tree trunks, which meets the general needs of forest surveys and provides
an important basis for forestry ecological exploration and forestry management. This work
has innovation in both technology and application, providing important reference value for
related research on forest digital twins.

In terms of image texture, KITTI is a dataset of urban and highway with highly tex‑
tured image sequences. Its binocular images are high‑definition images, with a baseline of
54 cm for binocular sensors, and the binocular images are rectified images with a resolu‑
tion of 1240× 376 pixels, therefore the generated disparity map has high accuracy and the
dense point cloud map constructed is relatively clear. While the Forest dataset is collected
by the ZED2 binocular camera with a baseline length of only 20 cm, which limits the accu‑
racy of its disparity map. There are three types of image resolutions: HD1080:1920× 1080,
HD720:1280 × 720, and VGA: 672 × 376. High resolution images have more pixels and
clearer texture features, which can improve the accuracy of localization and map construc‑
tion; however, at the same time, it will increase the processing time of the front‑end VO
and the construction time of dense point cloud maps, which will slow down the overall
running speed of the system. Moreover, high‑resolution images have high performance re‑
quirements for hardware platforms such as computing speed and storage space, which are
difficult to meet for general consumer level platform configurations. By balancing speed
and accuracy, the VGA is chosen with the smallest resolution, which is equivalent to one‑
half of the KITTI resolution. Forest is a sequence of forest ecological images with low tex‑
ture and large scenes, due to the low image resolutionwith VGA, the trunk features are not
obvious, the similarity of the leaves and bushes is larger, the trees are severely obstructed,
the light is unstable, the forest ecological environment scene is larger, and there are less
nearpoints and more farpoints, resulting in the effect of the dense point cloud maps gen‑
erated from Forest being not as clear as those of the KITTI dataset. However, it still meets
the general needs of forest ecological surveys and forestry management.

This research utilizes visual images from binocular cameras to construct a three‑
dimensional forest map. However, visual sensors are generally affected by light, and the
image quality collected under conditions of high exposure or low light is poor, which af‑
fects the effect of dense mapping. The system is almost unable to work at night, rainy
days, and on snowy days. In addition, the camera’s movement speed should not be too
fast to prevent the system’s processing speed from falling behind, and the camera’s angle
should not exceed 180 to avoid system tracking loss. When the angle of camera rotation
ω ≥ π

2 , the camera almost loses the perspective, at which time the feature points cannot
be matched on the temporal clue causing the camera tracking to fail. The spatial clue com‑
pensation strategy is adopted: the previous frame of the right image of the spatial clue
is used as the clue connection, and is inserted to compensate for the lost field of view of
the temporal clue, continuing the tracking. When the camera rotation angle exceeds 90
degrees, the larger the angle, the greater the challenge. Due to uneven lighting, severe
tree occlusion, large field of view, and fewer features in complex forest scenes, the imple‑
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mentation of the system poses significant challenges. The implementation of the system
in real‑world scenarios should involve drones equipped with binocular cameras and soft‑
ware and hardware platforms, which require lightweight processing. The performance of
the platform also affects the system’s running speed and dense mapping accuracy. If a
high‑performance platform can be configured and GPU acceleration can be used, it will
further improve the system’s running speed and dense mapping accuracy.

Because this researchmainly focuses on forest ecological scenes below the canopy, the
UAV flies under the canopy of the trees and collects data mainly on the trunks, branches,
leaves, bushes, and forest grasses under the canopy, without including canopy informa‑
tion. In future research, satellite remote sensing technology can be combined to collect
canopy information to construct broader and more comprehensive 3D forest ecological
models, which provide powerful basis for fine surveying of forest resources, forest man‑
agement, and forest rescue through visualized digital twins of forest environments.

7. Conclusions
This study explores the use of low‑cost binocular cameras for the accurate 6‑DoF pose

estimation of UAVs in forest ecological spatial environment in a D‑SLAM system, with a
lightweight localization mode that uses only Tracking threads to track unmodeled areas
to achieve zero drift. A dense mapping thread is added to construct dense point cloud
maps of the forest ecological spatial environment. The amount of relative motion between
frames and data association are used as constraints to filter keyframes, and a binocular im‑
age spatial clue compensation strategy is adopted to improve the robustness of tracking in
adverse conditions such as large rotation, fast motion, and insufficient texture. Compared
with the direct methods, the proposed approach can be used for wide‑baseline feature
matching, which is more suitable for 3D reconstruction scenes requiring high depth ac‑
curacy. The D‑SLAM system runs at a speed of 30 ordinary frames and 3 keyframes per
second, achieving location accuracy of several centimeterswith the EuRoCdataset and a lo‑
cal trel average of 0.64m and Rrel average of 0.20 with the KITTI dataset, which outperform
some mainstream sytems in terms of location accuracy and robustness, and have signifi‑
cant advantages in most cases. With a consumer‑level computing platform, the system is
able to work in real‑time on the CPU, and the dense maps constructed can clearly repro‑
duce the structure of the forest ecological interior scenes, meeting the requirements of the
UAV’s localization and mapping in terms of accuracy and speed. Moreover, the system is
more reliable in the case of a signal blockage and can be a powerful complement and al‑
ternative solution to the current expensive commercial GNSS/Inertial Navigation System
(INS) navigation systems. However, the system is greatly affected by light, and the loca‑
tion and dense mapping results are poor under conditions of high exposure or low light.
In addition, the system will lose tracking when the camera moves too fast and the rotation
angle is too large. In the future work, various sensors such as Inertial Measurement Unit
(IMU) and LiDAR can be integrated to compensate for the limitations and shortcomings
of the system. Neural networks can also be used to replace some or all modules of the sys‑
tem, solving the problem of limited system applications to a certain extent. In addition, it
is possible to combine high‑altitude remote sensing to capture broader forest images and
construct a more comprehensive and extensive three‑dimensional map of forest ecology.
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