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Abstract: The Dendrolimus houi, a phytophagous pest, displays a broad range of adaptations and often
inflicts localized damage to its hosts. Cupressus funebris, an indigenous timber species in China, is
significantly impacted by D. houi. Investigating the suitable habitat distribution and changes in D. houi
and its host plant, C. funebris, within the context of climate warming, is essential for understanding D.
houi’s development and providing novel insights for managing D. houi and conserving C. funebris
resources. In this study, MaxEnt was employed to simulate the distribution of D. houi and its host
plant, C. funebris, in their suitable habitats, evaluating the influence of environmental factors on
their distribution and determining changes under a warming scenario. MaxEnt model parameters
were adjusted using the Kuenm data package based on available distribution and climatic data. The
minimum temperature of the coldest month emerged as the primary environmental factor influencing
the distribution of a suitable habitat for D. houi and C. funebris, with a percentage contribution of
environmental factors over 60%. There was a substantial similarity in the suitable habitat distributions
of D. houi and C. funebris, with varying degrees of expansion in the total habitat area under different
temporal and climatic scenarios. Intersection analysis results indicated that the 2041–2060 period,
especially under low (SSP1-2.6) and high (SSP5-8.5) emission scenarios, is a critical phase for D. houi
control. The habitat expansion of D. houi and C. funebris due to climate change was observed, with
the distribution center of D. houi shifting northeast and that of C. funebris shifting northwest.

Keywords: MaxEnt model; environmental variable; Dendrolimus houi; Cupressus funebris; suitable
habitat

1. Introduction

Dendrolimus houi Lajonquiere (D. houi) is an insect belonging to the genus Dendrolimus
of the family Lasiocampidae in the order Lepidoptera, commonly known as dead leaf moths.
It ranks among the top 100 insect pest species in terms of its geographical distribution [1].
This pest is widely prevalent in various regions of China, including Zhejiang, Fujian,
Sichuan, Yunnan, Guangxi, Guangdong, Hunan, Guizhou, and other provinces [2]. D. houi
primarily parasitizes trees such as Cryptomeria japonica and Cupressus funebris (C. funebris)
and has a notable presence across an expansive area of 100,000 to 200,000 hm2 [1]. C.
funebris, as a key species for reforesting barren hills in southwestern China, plays a pivotal
role in activities such as water conservation, soil preservation, and climate regulation.
Studies have indicated that C. funebris is a particularly favorable host for D. houi, surpassing
other potential hosts except for C. japonica [3]. D. houi, a broad-feeding phytophagous pest,
exhibits robust adaptability across various host plants. Its larvae consume the needles and
young leaves of C. funebris, thereby impeding the growth of C. funebris plants. This extensive
feeding negatively impacts the growth rate of C. funebris, resulting in substantial economic
losses and ecological damage. These detrimental effects place significant constraints on the
production and development of C. funebris. In areas where infestation occurs, hosts often
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suffer damage in patches. The impact ranges from the loss of needles and shoots in milder
cases to the consumption of entire branches in severe instances. Current research on D.
houi predominantly focuses on biological control and monitoring [4,5], with less attention
directed towards understanding how D. houi and its host plants may respond to future
climate changes.

The climate plays a pivotal role in shaping species distribution, population dynam-
ics, and biological interactions [6–8]. As greenhouse gas concentrations continue to rise,
the resulting increase in average surface temperatures is profoundly impacting global
biodiversity [9]. Many species are rapidly responding to these climate changes [10]. Over
the past century, numerous observations have confirmed significant alterations in Earth’s
climate, primarily characterized by global warming. The Intergovernmental Panel on
Climate Change (IPCC) stated in its Fifth and Sixth Assessment Reports that global surface
temperatures have risen by approximately 1 ◦C since 1850–1900. It further projects an
average surface temperature increase of 0.3 ◦C to 4.5 ◦C by 2100. These assessments also
highlight that climate change trends in China align with global patterns [11,12]. Climate
change is diminishing the habitat suitability for various species, resulting in shifts in plant
ranges. Lele Lin et al. conducted a study on 12 pine species within the Pinus genus, demon-
strating that factors such as temperature and precipitation play a pivotal role in expanding
or contracting the suitable habitats for Pinus [13]. Notably, temperature emerges as the
most significant environmental factor affecting the population dynamics of insects [14].
Global warming may exacerbate pest issues and potentially expand the geographical range
of insect pests. Yan Y et al.’s species distribution modeling of 76 pest species revealed that
climate change could lead to an expansion in pest population distributions [15]. These
findings underscore the profound influence of climatic factors on the range of pests and
their host plants, emphasizing the urgency of predicting trends in both plants and the pests
and diseases that affect them.

Phillips et al. pioneered the development of MaxEnt software, which features a
self-checking function that autonomously generates ROC curves, Jacknife test results,
and assessments of environmental factor contributions. The MaxEnt model, based on
maximum entropy, predicts species distribution within a study area using known data
points of species occurrence (>5) along with corresponding environmental variables [16].
This data-driven approach utilizes collected distribution points to analyze the ecological
preferences of a species [17], quantified as a probability representing the species’ habitat
preference. MaxEnt models have become increasingly prevalent in recent years and find
widespread application in various fields, including pest and disease control, the assessment
of species invasions [18], medicinal plant studies [19], and the conservation of endangered
species [20,21]. One of the key advantages of the MaxEnt model is its ability to yield
accurate predictions even when species distribution information is incomplete and when
correlations between climate and environmental factors are unclear. This makes it a valuable
tool for species distribution modeling and habitat suitability assessment.

Drawing from the existing distribution data of D. houi and C. funebris, this study
employs the MaxEnt model to explore both the present and prospective habitat suitability
and the primary environmental factors affecting D. houi and its host, C. funebris. The investi-
gation aims to anticipate alterations in their distribution patterns under scenarios of climate
change. The study seeks to offer insights into the effective management of D. houi in China
and to provide a scientific foundation for the preservation, introduction, and expansion of
C. funebris resources.

2. Materials and Methods

This study is structured into three main steps. The initial step involves gathering
data points and environmental factors related to species occurrence. Effective occurrence
points are selected, and highly correlated environmental factors are eliminated. Optimal
parameter combinations are determined using the Kuenm data package [22], and the chosen
parameters are incorporated into model construction.
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Moving to the second step, the model construction phase begins. The selected effective
distribution points and environmental factors, following the screening process, are input
into the model. Seventy-five percent of these distribution points are designated as the
training set, with the remaining 25% allocated as the test set. The process is repeated
ten times, with parameters set to the combinations exhibiting the smallest AIC values,
as identified in the previous step.

In the third step, analyze Maxent output to determine model simulation capabilities
and key environmental factors. The layers generated by the MaxEnt model are converted
using ArcGIS [23] to perform delineation of current and future fitness zones, analysis of
distribution changes, analysis of fitness zone centers, and intersection analysis. The full
workflow on which analyses were based is summarized in Figure 1.

Data collection

Occurrence records for 

D.houi and C.funebris Valid occurrence records

Selection of environmental factors

Training set 75%

Test set 25%

Current and future 

projections

ROC curve/AUC 

tese/Jackknife 

test/Environmental 

percentage contribution

Suitable habitat 

distribution

Distributional 

changes

Suitable habitat 

center

ASCII to Raster 

and Reclassify

Intersecting 

regions

Key environment 
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Environmental factors ……

Regularizatio multiplier(RM) :0.1~4

Feature combination(FC):L、Q、

H、P、T

Pearson Correlation 

Coefficient <0.8
Percentage contribution≠0

ArcGIS

Minimum AIC value

Repeat 10 times

Step1:Data collection and pre-processing

Step2:Model construction and accuracy testingStep3:Analysis of results

Create 1160 

candidate models

Optimal MaxEnt 

model

MaxEnt

ENMToos

ENMToos

Figure 1. Workflow of this study. This research is divided into three steps. The first step is to conduct
data collection and pre-training, the second step is to carry out model construction and accuracy
testing, the third step involves results analysis.

2.1. Data on the Geographical Distribution of Species

This study collected geographical distribution data of D. houi from the China Ani-
mal Theme Database (http://zoology.especies.cn/ accessed on 26 April 2023), the Global
Biodiversity Information Facility (https://www.gbif.org/ accessed on 26 April 2023),
and CNKI (https://www.cnki.net/ accessed on 26 April 2023). Geographic distribu-
tion data for C. funebris was collected from the Global Biodiversity Information Facility
(https://www.gbif.org/ accessed on 30 April 2023), National Plant Specimen Resource
Center (https://www.cvh.ac.cn/ accessed on 30 April 2023), National Specimen Informa-
tion Infrastructure (http://www.nsii.org.cn/2017/home.php accessed on 30 April 2023).
The latitude and longitude of the distribution data were supplemented by the Baidu
coordinate picking system, from which duplicates and distribution points with unclear
information were eliminated. The geographical distribution data for D. houi and C. funebris
were processed using ENMTools [24]. This tool can automatically match the grid size of
environmental factors, eliminate redundant data within the same raster, and ensure the
retention of only one valid distribution point per raster. The environmental factor data in
this study utilized a grid size of 5 km × 5 km. Following the screening process resulted in

http://zoology.especies.cn/
https://www.gbif.org/
https://www.cnki.net/
https://www.gbif.org/
https://www.cvh.ac.cn/
http://www.nsii.org.cn/2017/home.php
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a dataset of 57 valid distribution points for D. houi and 348 valid distribution points for C.
funebris (Figure 2).

Dendrolimus houi
Cupressus funebris

0 20001000 km

²

Figure 2. Geographical distribution of D. houi and C. funebris.

2.2. Environmental Data

Climate and elevation data were obtained from the World Clim database (https:
//worldclim.org/ accessed on 29 September 2023), and future climate data were simulated
using the World Clim v2.1 data, which uses the Global Climate System model of the
International Coupled Model Comparison Programme Phase 6 (CMIP6) to simulate future
climate change. Future Climate [25] has chosen the sustainable development pathway SSP1-
2.6, the representative concentration pathway SSP2-4.5, and the conventional fossil fuel-
dominated pathway SSP5-8.5. The BCC-CSM2-MR model proposed by the Beijing Climate
Centre of the China Meteorological Administration has a good simulation performance
in East Asia [26], the BCC-CSM2-MR model data were therefore selected to simulate the
distribution range of D. houi and C. funebris.

2.3. Environmental Factors Pre-Treatment

Handling multicollinearity in species distribution modeling is crucial to ensuring the
reliability of the model’s results [27]. Pearson correlation tests the environmental variables
using ENMTools; this helps identify which variables are highly correlated with each other,
and the results of the Pearson correlation test are shown in Figure 3. The model was
constructed using the MaxEnt default parameters and the full range of environmental
factors to obtain the percentage contribution of all environmental factors, excluding envi-
ronmental factors with a contribution of 0. These variables may not significantly impact the
model’s predictions; retained variables have a correlation coefficient of less than 0.8, and
this threshold helps ensure that only moderately correlated variables are retained. When
the absolute value of the correlation coefficient of the environmental variables exceeds 0.8,
the most suitable variable is chosen, since highly correlated variables can lead to multi-
collinearity issues. Screening through the above steps resulted in the selection of seven
environmental variables for subsequent studies (Table 1). This enhances the model’s ability
to accurately predict a suitable habitat and reduces the risk of multicollinearity, affecting
the model’s performance.

2.4. Model Construction and Evaluation

Initially, the model was constructed using the default parameters of MaxEnt and
included all environmental factors. Subsequently, the environmental factors with significant
contribution rates were identified and chosen for participation in the model optimization
process. The regularization multiplier (RM) and feature combination (FC) parameters of the
MaxEnt model were then adjusted by utilizing the Kuenm package. The model’s complexity
was compared under various parameter combinations, and the parameters yielding the

https://worldclim.org/
https://worldclim.org/
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lowest complexity were selected for further model optimization [28]. The complexity of the
MaxEnt model is significantly influenced by the regularization multiplier (RM) and feature
combination (FC) parameters. The RM is used to control the complexity of the model and
prevent overfitting. It introduces a penalty term in the log-likelihood function to balance the
model’s fit to the training data with the model’s complexity. MaxEnt currently incorporates
five FCs: linear (L), quadratic (Q), hinge (H), product (P), and threshold (T). Products are
products of all possible pair-wise combinations of covariates, allowing simple interactions
to be fitted. Threshold features allow a “step” in the fitted function; hinge features are
similar, except they allow for a change in the gradient of the response [29]. The Kuenm
data package assesses the complexity of the model through the AIC (AICc) values of the
MaxEnt model, corrected for different parameter conditions. The AIC (Akaike Information
Criterion) informativeness criterion serves as a metric for evaluating the goodness of the
model fit, it involves balancing the complexity of the estimated model against the quality of
the data used for fitting, the AIC informativeness criterion favors models with the smallest
AIC values [30]. AIC can be expressed by Equation (1) [31]:

AIC = 2k − ln(L), (1)

where k is the number of parameters and L is the likelihood function. This criterion
balances model simplicity (smaller k) with accuracy (larger L). In the context of model
selection, where there are multiple candidate models (n), the AIC values for all models can
be computed simultaneously. The model associated with the minimum AIC value is then
prioritized for selection.

Table 1. Environmental factors selected for this study.

Type Environmental Factors Description of Environmental Factors

Description of Environmental Factors

Bio1 Annual Mean Temperature
Bio2 Mean Diurnal Range

Bio3 * Isothermality
Bio4 * Temperature Seasonality
Bio5 * Max Temperature of Warmest Month
Bio6 * Min Temperature of Coldest Month
Bio7 Temperature Annual Range
Bio8 Mean Temperature of Wettest Quarter
Bio9 Mean Temperature of Driest Quarter

Bio10 Mean Temperature of Warmest Quarter
Bio11 Mean Temperature of Coldest Quarter

Precipitation

Bio12 * Annual Precipitation
Bio13 Precipitation of Wettest Month
Bio14 Precipitation of Driest Month

Bio15 * Precipitation Seasonality
Bio16 Precipitation of Wettest Quarter
Bio17 Precipitation of Driest Quarter
Bio18 Precipitation of Warmest Quarter
Bio19 Precipitation of Coldest Quarter

Terrain elev * Elevation

The environmental factors labeled with * are the environmental factors for which the screening was completed for
subsequent studies. Bio4: Temperature Seasonality (Temperature Seasonality is the ratio of the monthly average
temperature to the standard deviation of the monthly average temperature. An increase in the Temperature
Seasonality indicates a gradual increase in temperature difference).
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Figure 3. Matrix of environmental factor correlation coefficients. Larger circles in the graph indicate
higher correlation and smaller circles indicate lower correlation.

In this study, the Kuenm packet selects the model with the smallest delta AiCc value
as the optimal solution from 1160 models created with parameter settings involving 40
regularization multipliers [0.1–4] and 29 feature combinations [L, Q, P, T, H, LQ, LP, LT, LH,
QP, QT, QH, PT, PH, TH, LQP, LQT, LQH, LPT, LPH, QPT, QPH, QTH, QTH, LQPT, LQPH,
LQTH, LPTH, LQPTH].

The distribution point data and environmental factor data for D. houi and C. funebris
were meticulously screened and imported into the MaxEnt model software. To set the
RM and FC for the MaxEnt model when the model complexity is lowest, with 75% of the
distribution point data randomly chosen for modeling and the remaining 25% for model
validation. The number of model iterations was set to ten, and the average of these iterations
was taken to demonstrate the model’s simulation capability. The iteration run type was
set to “Subsample”, and default parameters were used for all other settings. Subsample
refers to randomly selecting a subset of samples from the original dataset for training.
The purpose of this process is to enhance training speed, reduce computational costs,
and prevent overfitting. The Receiver Operating Characteristic (ROC) curve, along with
the Area Under the Curve (AUC) value, is effectively used to evaluate the precision and
effectiveness of a model. AUC values typically range from 0.5 to 1. A model with an AUC
value of around 0.5 indicates poor predictive performance, A model with an AUC value
between 0.7 and 0.9 is considered to have good predictive effectiveness. A model with an
AUC value greater than 0.9 is considered excellent, indicating high accuracy in predictions.
The relative contribution of each environmental factor to the model was evaluated according
to the percentage contribution of the environmental factors output from the MaxEnt model,
and the dominant environmental factors affecting the geographical distribution of D. houi
and its hosts were selected. The output of the MaxEnt model is a raster layer in ASC format,
and the default adaptive index interval is [0, 1]. The adaptive index p is obtained by the
natural breakpoint grading method, and the threshold of the adaptive zone is determined
by this method. The adaptive zones of D. houi and C. funebris are reclassified by ArcGIS,
and the adaptive zones are divided into four grades: unsuitable habitat (0–0.1), poorly
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suitable habitat (0.1–0.3), moderately suitable habitat (0.3–0.5), and highly suitable habitat
(0.5–P).

2.5. Analysis of Results

The MaxEnt model was utilized to simulate the present and future distribution of
D. houi and C. funebris under different climate scenarios, including SSP1-2.6, SSP2-4.5,
and SSP5-8.5. This involved mapping the geographic distribution for the current, 2050s
(2041–2060), and 2070s (2061–2080) time periods. The Spatial Distribution Modeling (SDM)
tool within the ArcGIS software was employed to simulate changes in the suitable habitat
distribution of D. houi and C. funebris under various climate scenarios, along with the
shifting of their habitat centers. This was accomplished by overlaying the current and
three future climate scenario layers to assess changes in the suitable habitat distribution
for both species. Migration routes of suitable habitat centers for D. houi and C. funebris
were simulated, taking into consideration different time frames and climate scenarios.
To compare and analyze differences, the intersection analysis tool in ArcGIS was used after
converting all data formats of the plotted layers.

3. Result
3.1. Model Optimisation and Accuracy

By default, the MaxEnt model is set with RM = 1 and the feature combinations include
linear (L), quadratic (Q), product (P), and threshold (T). The optimized model achieved
the delta.AICc value of 0, which is the most likely to be the optimal model. This indicates
that the optimized model has the lowest complexity and provides the best fit for the data
(Table 2). For the D. houi optimization model, the smallest delta.AICc value was obtained
with RM = 3.4 and an FC of Q, T, H. In the case of the C. funebris optimization model,
the smallest delta.AICc value was achieved with RM = 0.5 and an FC of L, Q.

Table 2. Optimizing evaluation metrics for MaxEnt models using Kuenm packets.

Species Type RM FC delta.AICc

Dendrolimus houi
Default 1 LQPH 269.46

Optimisation 3.4 QTH 0

Cupressus funebris
Default 1 LQPH 132.67

Optimization 0.5 LQ 0

RM: Regularization Multiplier; FC: Feature Combination; L: linear; Q: quadratic; P: product; T: threshold; H:
hinge; AICc: Akaike Information Criterion; delta.AICc: Differences between AICc values of different models, a
smaller delta. AICc suggests a higher probability that the corresponding model is the best fit.

The accuracy of the MaxEnt model was assessed using ROC curves. Figure 4 illustrates
the mean training AUCs (Area Under the Curve) for the predicted D. houi and C. funebris
models. The mean of the AUCs, calculated over 10 training iterations for both species,
exceeded 0.9. This outcome suggests that the model’s level of fit is highly accurate, and it
can effectively simulate the suitable habitat distribution for D. houi and C. funebris.

3.2. Critical Environmental Factors

In the simulated suitable habitat models for D. houi, the percentage contribution, which
measures the predicted impact of environmental factors on the species’ fitness zone, was
highest for the Min Temperature of Coldest Month (BIO6), Temperature Seasonality (BIO4),
and Isothermality (BIO3), with a combined contribution of 94.3%. These factors played a
crucial role in constructing the model. For the simulated suitable habitat model of C. funebris,
the Min Temperature of Coldest Month (BIO6) made the most significant contribution,
accounting for 91.2% of the total contribution (refer to Table 3). These environmental
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variables were the primary factors in model construction. Results from the Jackknife
method test of the MaxEnt model (refer to Figure 5) indicate that the Min Temperature
of Coldest Month (BIO6), Annual Precipitation (BIO12), and the Temperature Seasonality
(BIO4) had the highest impact on model performance in simulating the suitable habitat
for both D. houi and C. funebris. This suggests that these three environmental factors alone
contain the most valuable climatic information compared to other factors.

(a) Dendrolimus houi

(b) Cupressus funebris

Figure 4. ROC curves for suitable habitat simulation models of (a) D. houi and (b) C. funebris.
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(a) Dendrolimus houi

(b) Cupressus funebris

Figure 5. Results of the Jackknife test for environmental variables (a) D. houi (b) C. funebris. bio3:
Isothermality; bio4: Temperature Seasonality (Temperature Seasonality is the ratio of the monthly
average temperature to the standard deviation of the monthly average temperature. An increase in
the Temperature Seasonality indicates a gradual increase in temperature difference.); bio5: Max Tem-
perature of Warmest Month; bio6: Min Temperature of Coldest Month; bio12: Annual Precipitation;
bio15: Precipitation Seasonality; elev: Elevation.

Table 3. Contribution of each environmental factor to the simulated species distribution model.

Variable Environmental Variable
Perecent Contribution

Dendrolimus houi Cupressus funebris

Bio3 Isothermality 4.54.54.5 3.13.13.1

Bio4 Temperature Seasonality 242424 1.81.81.8

Bio5 Max Temperature of Warmest Month 0.7 1.7

Bio6 Min Temperature of Coldest Month 65.865.865.8 91.291.291.2

Bio12 Annual Precipitation 3 0.4

Bio15 Precipitation Seasonality 0.1 0.4

Elev Elevation 2 1.4

3.3. Suitable Habitat for D. houi and Its Host under Current Climate Scenarios

MaxEnt predictions indicate the current geographical distribution of D. houi and C.
funebris, as depicted in Figure 6. The total suitable habitat area for D. houi is approximately
236.82 × 104 km2, with a highly suitable habitat covering 55.92 × 104 km2. For C. funebris,
the total suitable habitat area is about 262.97 × 104 km2, and the highly suitable habitat
encompasses 88.83 × 104 km2. These suitable habitats are primarily located in Tibet,
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Yunnan, Sichuan, Chongqing, Guizhou, Guangxi, Guangdong, Fujian, Hunan, Jiangxi,
and Zhejiang. The combined total suitable habitat for both species constitutes 24.67% and
27.39% of the total land area in China, respectively. Furthermore, the highly suitable habitat
represents 23.61% and 33.78% of the total suitable habitat area. The consistency between
the suitable habitat distribution and existing literature records indicates that the model
developed in this study effectively simulates the suitable habitat distribution of D. houi and
C. funebris.

Cupressus funebris

0 20001000 km

1:40,000,000

²

Unsuitable habitat
Poorly suitable habitat
Moderately suitable habitat
Highly suitable habitat

0 20001000 km

1:40,000,000

²
Dendrolimus houi

Unsuitable habitat
Poorly suitable habitat
Moderately suitable habitat
Highly suitable habitat

Figure 6. Distribution of suitable habitat for D. houi and C. funebris during the present period.

3.4. Suitable Habitat for D. houi and Its Host under Future Climate Scenarios

Under the three future climate scenarios, the regions with the most overlapping
highly suitable habitats for D. houi and C. funebris are situated to the south of the Qinling-
Huaihe River. While the highly suitable habitat for D. houi remains relatively stable,
the overall suitability area extends further north of the Qinling-Huaihe River. Notably,
the low suitability area (0.1 < p < 0.3) is projected to expand into Xinjiang for the first time
in the 2070s. The highly suitable habitat for C. funebris expands over time, correlating
with increasing greenhouse gas emissions. By the 2050s, the highly suitable habitat for C.
funebris nearly encompasses the entire southern part of China and continues its expansion
towards the north and northwest. Remarkably, in the 2050s, the highly suitable habitat for
C. funebris is expected to make its inaugural appearance in Xinjiang (p > 0.5) (Figure 7).

Future climate change is influencing the distribution of D. houi and C. funebris, with the
total suitable habitat area for both species showing a tendency to increase across all periods
and concentration pathways under future climate scenarios, compared to the current period.
The most favorable climate scenario for D. houi is SSP5-8.5, where the total suitable habitat
reaches 287.26 × 104 km2 in the 2070s, reflecting a 21.30% increase compared to the current
period. The area of highly suitable habitat, on the other hand, was highest in the SSP1-
2.6 scenario in the 2050s, reaching 91.83 × 104 km2. For C. funebris, the SSP5-8.5 climate
scenario stands out as the most suitable in the 2070s, with the total suitable habitat area
expanding to 426.17 × 104 km2, indicating a substantial 62.06% increase compared to the
current period. The highly suitable area covers an area only ×104 km2 less than the total
area of the current suitable habitat area (Figure 8).

The suitable habitat of D. houi remains stable while expanding northwards in re-
sponse to climate change, with contraction areas identified in Shaanxi, Gansu, and Taiwan
provinces. Notably, the contraction regions are smaller in size compared to the expanses of
the newly established areas. In contrast, the potential habitat distribution for C. funebris is
more dynamic. The contracted area is situated at lower latitudes along the southern edge
of the overall suitable region, encompassing Yunnan, Guangxi, and Guangdong provinces.
There are significant changes in expansion areas, stretching extensively from west to east
across nearly the entire Chinese region (Figure 9).
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2070s SSP1-2.62050s SSP1-2.6

2050s SSP2-4.5 2070s SSP2-4.5

2050s SSP5-8.5 2070s SSP5-8.5

2070s SSP1-2.62050s SSP1-2.6

2050s SSP5-8.5 2070s SSP5-8.5

2050s SSP2-4.5 2070s SSP2-4.5

Unsuitable habitat Poorly suitable habitat Moderately suitable habitat Highly suitable habitat0 20001000 km

²

Dendrolimus houi  Cupressus funebris

Figure 7. Distribution of D. houi and C. funebris suitable habitat under future climate scenarios.

 C u r r e n t     2 0 5 0 s     2 0 7 0 s

� � �

� ��

Figure 8. Changes in the area of suitable habitat for D. houi and C. funebris under current and
future climatic conditions. In the figure, “Total” represents the total area of suitable habitat, “Poorly”
represents the poorly suitable habitat, “Moderately” represents the moderately suitable habitat,
“Highly” represents the highly suitable habitat. Figures (A–C) show statistics on the area of suitable
habitat for D. houi, and Figures (D–F) show statistics on the area of suitable habitat for C. funebris.
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0 20001000 km Gain Unsuitable habitat Suitable Loss
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2050s SSP2-4.5 2070s SSP2-4.5 2050s SSP2-4.5 2070s SSP2-4.5
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Figure 9. The changes in the distribution of suitable habitats of D. houi and C. funebris under different
climate scenarios.

3.5. The Shift of Suitable Habitat Center

The current center of D. houi’s habitat is located at 110◦7′ E, 27◦50′ N in Hunan
Province. Under different climate scenarios, the center of D. houi’s habitat exhibits varying
shifts (Figure 10): In the SSP1-2.6 climate scenario, by the 2050s, it moves northeast to
110◦30′ E, 28◦23′ N, and by the 2070s, it shifts southwest to 110◦24′ E, 28◦18′ N. In the
SSP2-4.5 climate scenario, by the 2050s, the center moves northeast to 110◦39′ E, 28◦53′ N,
and by the 2070s, it moves north to 110◦39′ E, 28◦57′ N. In the SSP5-8.5 climate scenario,
by the 2050s, the center shifts northeast to 110◦35′ E, 28◦40′ N, and by the 2070s, it continues
northeast to 110◦29′ E, 29◦4′ N.

As for C. funebris, the current center of its habitat is situated at 110◦25′ E, 29◦ N
in Hunan Province. Under different climate scenarios, the center of C. funebris’ habitat
undergoes significant shifts: In the SSP1-2.6 climate scenario, by the 2050s, it moves from
109◦21′ E, 29◦55′ N to 108◦50′ E, 30◦8′ N and, by the 2070s, it is at 108◦1′ E, 30◦50′ N. In
the SSP2-4.5 climate scenario, by the 2050s, it shifts from 108◦4′ E, 30◦35′ N to 105◦8′ E,
31◦51′ N. In the SSP5-8.5 climate scenario, the center moves significantly northwestward
from 108◦4′ E, 30◦35′ N in the 2050s to 105◦8′ E, 31◦51′ N in the 2070s. It is noteworthy
that D. houi and C. funebris share a common pattern in the direction of migration: possible
migration to higher latitudes.
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Figure 10. The shift of (A) D. houi and (B) C. funebris suitable habitat center. The arrows in the figure
indicate the direction of potential habitat suitability center migration.

3.6. Changes in Intersecting Regions

C. funebris, as one of the most suitable host plants for D. houi, exhibits a distribution
pattern that closely aligns with the suitable habitat of D. houi. The spatial distribution of the
suitable habitat for D. houi and C. funebris is depicted in Figure 11. The regions of potential
infestation where their habitats intersect are primarily situated in parts of Tibet, Yunnan,
Sichuan, Chongqing, Guizhou, Guangxi, Hunan, Guangdong, Jiangxi, and Fujian, while
Xinjiang, Qinghai, Gansu, Shaanxi, Shanxi, and other regions are less affected by D. houi.

0 30001500 km

²

1—1
1—2
1—3
1—4

2—1
2—2
2—3
2—4

3—1
3—2
3—3
3—4

4—1
4—2
4—3
4—4

Dendrolimus houi- Cupressus funebris

文本

Current 2050s SSP1-2.6 2050s SSP2-4.5

2070s SSP1-2.6 2070s SSP2-4.5

2050s SSP5-8.5

2070s SSP5-8.5

Figure 11. Changes in the suitable habitat distribution of D. houi and C. funebris intersections under
different climate change scenarios. (“1” indicates unsuitable habitat, “2” indicates poorly suitable
habitat, “3” indicates moderately sitable habitat, “4” indicates highly suitable habitat, the number
before the hyphen represents the potential habitat suitability level for D. houi, and the number after
the hyphen represents the potential habitat suitability level for the C. funebris).

4. Discussion
4.1. Reliability of Simulation Results

In this experiment, the Kuenm data package was employed to optimize the selection
of MaxEnt model parameters. Based on the analysis of AUC evaluation criteria, the AUC
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values for both D. houi and C. funebris prediction models using MaxEnt exceeded 0.9,
indicating an excellent model performance. This suggests that the predicted suitable
habitat distribution of D. houi and C. funebris aligns well with the suitable habitat class.
The outcomes of this study hold significant reference value for research on the spatial
geographical distribution of D. houi and C. funebris.

4.2. Influence of Climatic Factors

The impact of global warming on insects has been extensively documented, with rising
temperatures observed across much of the Northern Hemisphere [32]. Additionally, future
droughts in China have been projected [33]. Dale et al. conducted experiments confirming
that elevated temperatures and drought can enhance the fitness and abundance of the
tree pest, Melanaspis tenebricosa [34]. Tang et al. used the MaxEnt model to simulate the
suitable habitat distribution of Bursaphelenchus xylophilus and its hosts, demonstrating that
global warming favors the activity of Bursaphelenchus xylophilus vectors and significantly
intensifies the damage caused by pine wood nematode disease [35]. The environmental
response curves generated by the MaxEnt model illustrate the relationship between changes
in environmental variables and the probability of species occurrence. Presence probabilities
exceeding 0.5 indicate that such environmental conditions represent key features of a highly
suitable habitat for the species. The contribution of environmental factors indicated that
temperature was the primary factor affecting the suitable habitat distribution of both D.
houi and C. funebris. For D. houi, the presence probability exceeded 0.5 in conditions such as
the Min Temperature of Coldest Month (Bio6) ranging from 0.1 to 10 ◦C, the Temperature
Seasonality (Bio4, Temperature Seasonality is the ratio of the monthly average temperature
to the standard deviation of the monthly average temperature. An increase in the Tempera-
ture Seasonality indicates a gradual increase in temperature difference) from 141 to 648,
and of Isothermality (Bio3) from 44 to 57. Similarly, for C. funebris, presence probability
exceeded 0.5 in conditions including a Min Temperature of Coldest Month (Bio6) from
−2 to 5 ◦C, a Temperature Seasonality (Bio4) from 573 to 841, and an Isothermality (Bio3)
from 14.5 to 28.5. Areas where environmental conditions within the suitable habitat match
these ranges may be more susceptible to significant pest outbreaks (Figure S1). The ma-
jority of highly suitable areas for C. funebris and D. houi are situated to the south of the
Qinling-Huaihe River, characterized by mild winters and low precipitation. Specifically,
the average temperature in January exceeds 0 ◦C, aligning with the temperature conditions
conducive to the highly suitable habitats for both species. The intersection analysis results
of C. funebris and D. houi suitable areas indicate potential large-scale infestations in the
middle subtropical and northern subtropical regions. The central subtropical region typi-
cally experiences abundant annual precipitation and maintains a mean annual temperature
of 16–20 ◦C. The mean temperature of the coldest month ranges from 5–10 ◦C, ensuring
a relatively warm winter. Given that D. houi’s egg period spans from mid-September to
mid-April of the following year [36], the coldest month’s temperature in these areas is
favorable for the normal growth and development of D. houi eggs, contributing to the
occurrence of large-scale infestations [37]. Under the SSP2-4.5 climate scenario, the highly
suitable area for D. houi and C. funebris extends to most of the Hanzhong Basin in the
northern subtropics, characterized by mild winters and low rainfall. This climate facilitates
the smooth growth and development of D. houi. The climatic characteristics of the central
and northern subtropics align with the environmental conditions required during D. houi’s
egg stage. Therefore, under a warming climate scenario, these temperature zones become
crucial areas for control measures.

4.3. Changes of Suitable Habitat

The total suitable habitat area for both D. houi and C. funebris steadily increases with
rising greenhouse gas concentrations, peaking in the 2070s. Over time, D. houi’s suitable
habitat expands, raising the risk of large-scale infestations. It is crucial to identify suitable
time frames for proactive human intervention and prevention measures. The majority of
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the high habitat area for D. houi is concentrated in southwest China, aligning with the dis-
tribution of its host plant. Without effective prevention and control measures, the potential
for unforeseeable forest disasters in this region becomes a significant concern. The suitable
habitat for C. funebris continues to expand, with distribution occurring everywhere except
in the northeast region. Under the SSP5-8.5 climate scenario for the period 2061–2080, it is
projected to reach 252.75 × 104 km2. This expansion presents an opportunity for ecological
construction in the Northwest region, landscaping initiatives, and the cultivation of C.
funebris as a timber species. Regions such as Xinjiang, Qinghai, Gansu, Shaanxi, and Shanxi,
which experience less severe damage from D. houi, could be designated as protected areas
for introducing and planting C. funebris. The stable and suitable habitats of both D. houi
and C. funebris exhibit a high degree of overlap. Analyzing the direction of the center of
mass movement reveals a shared tendency for expansion towards the north. Therefore,
special attention should be given to the protection of C. funebris resources in the northern re-
gions. Considering that D. houi has numerous host plants, the potential exists for increased
pressure on these host plants over time in the northern regions.

The analysis of intersecting areas of D. houi and C. funebris (Table S1) reveals a declin-
ing trend in the area of unsuitable habitat where both species can simultaneously survive
in China. This reduction is expected to reach its minimum during the period of 2061–2080
under the SSP5-8.5 climate scenario, with a decrease of 24.44% compared to the present
period. This suggests that climate change in China does not significantly impact the coexis-
tence of D. houi and C. funebris. Moreover, the expanding unsuitable habitat for D. houi and
the highly suitable habitat for C. funebris indicate that, in the absence of D. houi’s influence,
favorable climate conditions in China play a crucial role in the expansion of C. funebris’s
suitable habitat. The high suitability zones for both D. houi and C. funebris have shown
varying degrees of expansion compared to the present period (19.76 × 104 km2), potentially
transformed from regions with medium suitability for D. houi and high suitability for C.
funebris. Notably, the SSP1-2.6 and SSP5-8.5 climate scenarios both peak during the period
of 2041–2060, reaching 58.14 × 104 km2 and 56.52 × 104 km2, respectively. In the SSP2-4.5
climate scenarios, the suitable habitat areas for D. houi and C. funebris gradually increase
during the periods of 2041–2060 and 2061–2080, with the latter period tripling compared
to the present. This suggests a potential risk of a large outbreak of D. houi in the period
from 2061 to 2080. Therefore, it is essential to prioritize D. houi control efforts during the
2041–2060 period to prevent extensive infestations.

4.4. Implications for Conservation Planning

Our study offers a comprehensive prediction and analysis of the current and future
potential distribution of D. houi and C. funebris. We have thoroughly explored the influence
of climate and altitude factors on the distribution of these species, identifying key envi-
ronmental factors. We found that the three crucial climatic factors, namely Isothermality
(Bio3), Temperature Seasonality (Bio4), and Min Temperature of Coldest Month (Bio6),
simultaneously impact the potential distribution of D. houi and C. funebris. This discovery
has significant implications for D. houi control and the conservation of C. funebris resources.
It underscores the necessity of considering climate factors in pest control and the conserva-
tion of tree resources. Our results also reveal a shift in the suitable habitat centers of D. houi
and C. funebris toward higher latitudes in the future. While C. funebris demonstrates a slight
difference by moving towards higher latitudes and altitudes, D. houi favors high-latitude
areas as its expansion grounds. To prevent the rapid expansion of D. houi, it is crucial to
enhance monitoring, prevention, and prediction efforts in the host forests located in high-
altitude areas. Simultaneously, high-latitude and high-altitude regions offer an opportunity
to introduce C. funebris as a favorable tree species for local development, benefiting timber
production, ecological construction, and environmental beautification. Our study also iden-
tifies highly suitable habitat areas where D. houi and C. funebris intersect, primarily located
in Tibet, Yunnan, Sichuan, Chongqing, Guizhou, Guangxi, Hunan, Guangdong, Jiangxi,
and Fujian. The period from 2041 to 2060 may witness a potential outbreak of D. houi.
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Therefore, we recommend prioritizing the protection of C. funebris forests in these regions,
allocating more funds and resources for their preservation. This approach could have a
positive impact on reducing the damage caused by D. houi infestations. In conclusion, our
study advances our understanding of the potential distribution of D. houi and C. funebris
and contributes to the conservation of biological resources.

5. Conclusions

This study employed the optimized MaxEnt model to simulate the current spatial
distribution of D. houi and C. funebris, explore the crucial environmental factors influencing
their distributions, simulate suitable habitat distributions under future climate change
scenarios (SSP1-2.6, SSP-2.5, SSP5-8.5) for the 2050s and 2070s, and conduct intersection
analyses. Findings indicate that temperature plays a pivotal role in influencing the po-
tential distribution of D. houi and C. funebris. As a consequence of climate warming, their
distribution is anticipated to expand towards higher latitudes and altitudes. Future climate
change will expand the area of potential habitat for D. houi and C. funebris. Furthermore, D.
houi is likely to cause the most severe damage to C. funebris between the years 2041 and
2060. Timely preventive and control measures should be implemented during this period.
This study not only predicts the potential future occurrence trends of D. houi but also offers
a theoretical foundation for the effective control of this pest.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f15010162/s1, Figure S1: Response curves of 7 environmental
variables in a suitable habitat distribution model of D. houi and C. funebris; Table S1: D. houi and C.
funebris intersection area statistics.
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