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Abstract: The study explores the use of convolutional neural networks (CNNs) and satellite remote
sensing imagery for walnut analysis in Ganquan Township, Alar City, Xinjiang. The recent growth
of walnut cultivation in Xinjiang presents challenges for manual data collection, making satellite
imagery and computer vision algorithms a practical solution. Landsat-8 satellite images from Google
Earth Engine underwent preprocessing, and experiments were conducted to enhance the ResNet
model, resulting in improved accuracy and efficiency. Experiments were conducted to evaluate
multiple CNN models and traditional methods, and the best detection method was chosen through
comparisons. A comparison was drawn between traditional algorithms and convolutional neural
network algorithms based on metrics such as precision, recall, f1-score, accuracy, and total time.
The results indicated that although traditional methods were more efficient compared to CNN, they
exhibited lower accuracy. In the context of this research, prioritizing efficiency at the cost of accuracy
was deemed undesirable. Among the traditional algorithms employed in this study, k-NN produced
the most favorable outcomes, with precision, recall, f1-score, and accuracy reaching 75.78%, 92.43%,
83.28%, and 84.46%, respectively, although these values were relatively lower than those of the CNN
algorithm models. Within the CNN models, the ResNet model demonstrated superior performance,
yielding corresponding results of 92.47%, 94.29%, 93.37%, and 93.27%. The EfficientNetV2 model
also displayed commendable results, with precision, recall, and f1-score achieving 96.35%, 91.44%,
and 93.83%. Nevertheless, it is worth noting that the classification efficiency of EfficientNetV2 fell
significantly short of that of ResNet. Consequently, in this study, the ResNet model proved to be
relatively more effective. Once optimized, the most efficient CNN model closely rivals traditional
algorithms in terms of time efficiency for generating results while significantly surpassing them
in accuracy. Through our studies, we discovered that once optimized, the most efficient CNN
model closely rivals traditional algorithms in terms of time efficiency for generating results while
significantly surpassing them in accuracy. In this study, empirical evidence demonstrates that
integrating CNN-based methods with satellite remote sensing technology can effectively enhance
the statistical efficiency of agriculture and forestry sectors, thus leading to substantial reductions in
operational costs. These findings lay a solid foundation for further research in this field and offer
valuable insights for other agricultural and forestry-related studies.

Keywords: walnut; convolutional neural networks; remote sensing; classification; residual network
(ResNet)
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1. Introduction

As urbanization continues to accelerate, large-scale agriculture is experiencing rapid
transformation. The costs of relying solely on manual labor for essential crop-related tasks
have been steadily increasing [1]. The relentless advancement and widespread adoption of
smart agriculture have led to the use of technologies like artificial intelligence, which can
now perform tasks that were previously conducted only by humans [2,3].

Walnut (Juglans regia L.) is a deciduous tree that can reach heights of 20–25 m [4,5]. The
distribution of walnut-growing regions, including the United States, China, France, and
Turkey, is primarily influenced by climatic and soil conditions. Different varieties of walnuts
exhibit varying classifications based on their geographical origins, with Juglans regia, also
known as the common walnut or Persian walnut, being one of the most widely cultivated
and consumed species, with its origin tracing back to Asia, particularly in regions like Iran
and China. At the same time, each variety has unique growth requirements typically found
in specific geographic regions [6,7]. Adequate and evenly distributed rainfall during the
growing season is essential for walnuts. Furthermore, a cold winter climate is conducive to
walnut dormancy, and regions experience dry climates throughout the year [8]. Walnuts
typically prefer neutral to alkaline soils with a pH range of 6.0 to 7.5, which aligns with
the pH levels of many Xinjiang soils, making them suitable for walnut cultivation [9,10].
Additionally, due to the extensive utilization of drip irrigation in Xinjiang, the region can
ensure an abundant water supply for sectors such as economic crop cultivation [11,12].
Consequently, Xinjiang represents the largest walnut-producing region in China and stands
as one of the world’s largest walnut-producing areas [13,14].

Walnuts, also an important economic crop in China, are cultivated in Xinjiang, where
their cultivation plays a significant role in the economic and agricultural development of
the region [15]. Furthermore, the cultivation of walnuts contributes to soil conservation
and water resource management, effectively combating desertification and promoting
environmental protection [16,17]. This multifaceted impact underscores the vital role of
walnut cultivation in not only economic development but also environmental sustainability
in Xinjiang.

Research efforts in the fields of agriculture and forestry have increasingly turned
towards the exploration of machine learning, cloud computing, and remote sensing, reflect-
ing a significant level of enthusiasm [18]. Remote sensing imagery, a critical component
of these efforts, holds extensive applications in environmental monitoring, agriculture,
urban planning, geological exploration, and weather forecasting, among other fields. This
comprehensive geographical information facilitates informed decision-making and analy-
sis, proving particularly valuable for resource management and environmental protection.
Typically stored in raster format, each pixel in remote sensing imagery provides specific
geographic information, enabling diverse analyses such as image classification, change de-
tection, and feature extraction [19,20]. An illustration of the significance of remote sensing
technology in agriculture and forestry is found in several notable studies. Yifan Bo et al.
investigated the integration of cloud computing and Internet of Things technologies into
the agricultural and forestry sectors, highlighting the feasibility, applications, and prospects
of this fusion [21]. In another study, Shanwen Zhang et al. utilized deep belief networks
(DBNs) to develop a predictive model for winter jujube pest and disease forecasting, achiev-
ing an impressive 84% accuracy rate [22]. Weijia Li et al. achieved a remarkable 96%
accuracy rate in oil palm tree detection and counting through the integration of deep learn-
ing with high-resolution remote sensing imagery [23]. Remote sensing, as a technology that
acquires information about the Earth’s surface from distant sensors like aircraft or satellites,
has been a focal point of extensive research [24]. An illustration of this is the study by
Nicholas F. McCarthy et al., who employed deep learning techniques to enhance the clarity
of geostationary satellites, providing crucial support for decision-making in the context
of high-impact wildfires [25]. These developments highlight the growing importance of
remote sensing in driving advancements in agriculture and forestry, as well as its potential
to revolutionize decision-making processes in these fields.
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Google Earth Engine is a cloud platform developed by Google with the purpose of
supporting large-scale geospatial data analysis and visualization. By integrating remote
sensing imagery, geospatial data, and computing capabilities, it provides a vast collection
of Earth observation data. Additionally, GEE supports the processing and analysis of
multispectral and hyperspectral data, which makes it applicable to tasks such as remote
sensing, vegetation monitoring, and land use change analysis. Moreover, interactive map
visualization capabilities are offered by GEE, enabling immediate inspection and explo-
ration of geospatial data, thereby enhancing users’ ability to gain a deeper understanding
and interpretation of analytical outcomes [26,27]. The system finds extensive applications
and potential in the fields of geospatial data science, environmental research, and sustain-
able development [28–31]. It has notably addressed the issue of insufficient resolution in
satellite imagery, especially in the proliferation of relevant research areas and large-scale
agricultural models worldwide.

In recent years, the continuous advancements in artificial intelligence, cloud comput-
ing, and other technologies have enabled computers to gather a vast amount of information
from remote sensing images, surpassing the direct capabilities of human eyes [32]. This
progress in technology, coupled with the ongoing enhancement in image resolution, has led
to a steady growth in the information extracted via computers. As a result, there is now a
solid foundation for employing diverse methods to achieve more refined classification and
recognition of remote sensing images [33]. Many researchers have conducted studies in
this area by combining relevant algorithms with satellite imagery, showcasing the potential
for further advancements in the field [34].

Our previous research focused on the extraction of walnut areas and growth moni-
toring through the integration of satellite remote sensing imagery, vegetation indices, and
machine learning techniques, which yielded favorable results [35]. While our earlier study
heavily relied on band data and time series analysis, the current research places primary
emphasis on remote sensing imagery, feature extraction, and the associated algorithms. In
this study, we combined satellite remote sensing imagery with convolutional neural net-
work algorithms. We began by obtaining relevant satellite remote sensing images through
the necessary operations on the Google Earth Engine (GEE) platform. Subsequently, these
images were processed further to prepare for the application of relevant algorithms in
the classification of walnut images. During the study, we employed convolutional neural
network models, including AlexNet, Visual Geometry Group (VGG), GoogleNet, ResNet,
and EfficientNetV2, for image classification. Moreover, we utilized traditional methods,
such as BP neural network, k-NN, PCA, LDA, and SVM, to classify walnuts and compared
the results with those obtained using convolutional neural networks. Ultimately, this study
was able to identify the relatively superior classification methods.

The application of convolutional neural networks (CNNs) in conjunction with satellite
remote sensing imagery for walnut classification demonstrates significant agricultural
potential, given the advancing technologies and the increasing prevalence of large-scale
farming. The approach harnesses remote sensing and deep learning technologies for wal-
nut classification, enhancing land and resource management and advancing the automa-
tion of agricultural practices, thereby promoting sustainable agriculture. The Landsat-8
satellite provides multispectral remote sensing imagery, and convolutional neural net-
work (CNN) models effectively capture intricate vegetation features, thereby improving
classification accuracy and furnishing valuable insights into land cover and vegetation
health. This methodology is not limited to walnut classification but can be readily ap-
plied to the classification and monitoring of a wide range of crops, underscoring its broad
practical utility.

The experiment aimed to classify walnut plants in Landsat-8 remote sensing images to
automate monitoring and classification. This can relieve the burden of manual classification,
increase efficiency, and potentially positively impact agricultural management in large-scale
walnut production areas. Additionally, it allows for precise field management, providing a
scientific basis for agricultural production, optimizing agricultural resource utilization, and
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improving yield and quality, thus supporting environmental protection and sustainable
agriculture. The second part describes the research area and methods used; the third part
presents the experimental results; the fourth part discusses the research findings, further
analyzing the experiment’s strengths, limitations, and future research directions; and the
fifth part reviews the research results, explaining the research significance and future work.

2. Materials and Methods
2.1. Research Area and Image Acquisition
2.1.1. Research Area

Ganquan Township, situated in Awati County, Aksu Region, Xinjiang, is under the ju-
risdiction of the Nongyi Division of Alar City (latitude 40◦22′30′′ N, longitude 80◦03′45′′ E)
on the northwest edge of the Taklamakan Desert. It is governed by the First Agricultural
Bureau of Aral City. The region experiences arid, temperate, continental, and desert cli-
mates, which are characterized by abundant sunshine, significant thermal resources, and
large diurnal temperature variations. The annual average temperature is 11.53 ◦C, with a
maximum temperature of 43.9 ◦C and a minimum temperature of −28.8 ◦C. The average
frost-free period lasts for 195 days, with an annual accumulated temperature of 4620.8 ◦C.
Furthermore, the annual average solar radiation is 142 kcal/square centimeter, and the
annual average wind speed is 21 m per second. This area also receives an annual average
of 2793.4 h of sunshine, 73.5 mm of precipitation, and 1748.75 mm of evaporation. Figure 1
depicts the geographical characteristics of the area.
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2.1.2. Data Information and Experimental Environment

The research area was meticulously surveyed on-site in the pursuit of data collection,
with the employment of Global Positioning System (GPS) equipment for precise geolocation.
Relevant data from remote sensing imagery was used to subdivide the entire agricultural
and forested landscape of the research area into a grid of plots. Data points were then
collected at random locations within each grid, utilizing GPS devices. Field sampling
commenced in June to account for the unique nature of crops within the agricultural and
forest categories, ensuring the consistency of the cultivated crops throughout the study
period and guaranteeing the accuracy of the sampling process.

The Landsat-8 Level-2 data, with a 30 m resolution, covering different areas of Gan-
quan Town, Alar City, in the Xinjiang Uygur Autonomous Region, were used within this
study. Originally, consideration was given to incorporating Sentinel-2 satellite data into
the research. However, issues emerged during the acquisition and preprocessing of the
Sentinel-2 imagery, leading to missing image data and associated spectral information
within the study area. Despite attempts to obtain and process relevant imagery from the
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European Space Agency and the Google Earth Engine (GEE) platform for experimenta-
tion, the final results varied significantly when compared to Landsat-8 data. As a result,
it was decided to continue the experiments using Landsat-8 imagery. The study area’s
intricate nature, comprising encompassing diverse environmental imagery, led to initial
experiments using only a subset of spectral bands, resulting in subpar classification results.
Consequently, seven spectral band images (B2, B3, B4, B5, B6, B7, and B9) were collected
and utilized for subsequent classification research. Given the presence of various distur-
bances in the study area, such as rivers, canals, buildings, deserts, and diverse vegetation,
individual spectral band combinations yielded unsatisfactory results, prompting the se-
lection of multiple spectral band images for the study. Ultimately, it was discovered that
four specific bands, B2, B5, B6, and B7, exhibited higher sensitivity, significantly enhancing
detection accuracy when combined with the B3 band. Furthermore, the inclusion of other
bands also contributed to improvements, albeit to a relatively lesser extent. The selected
imagery from August to September 2022 corresponds to the rapid lipid conversion phase
and fruit maturation period of walnuts [36]. Precise delineation of all walnut areas in
Ganquan Town and non-walnut areas within the research region was conducted, and corre-
sponding vectors were drawn and integrated using the combination bands of Landsat-8
satellites in Google Earth. The selected band images were merged in the study area using
Google Earth Engine. Cloud removal and correction operations were subsequently carried
out to enhance the image quality. The resultant images were partitioned into a grid of
256 × 256 pixels, each with a 30 m resolution, for further analysis [37]. All data related to
walnut crops, other vegetation, and architectural water flows within the study areas were
meticulously collected through manual field surveys and mapped accordingly. Following
calibration and adjustment, satellite remote sensing images from different spectral bands
were merged to generate corresponding images. Ultimately, a total of 3369 experimental
images were obtained from August to September 2022, comprising 1352 images depicting
walnut orchards and 2017 images representing interfering factors. These images were
meticulously categorized into distinct training, validation, and test sets, serving the pur-
pose of the research. Owing to the intrinsic complexities found within the imagery, such as
regions entirely bereft of walnut trees or densely populated with them, as well as disruptive
elements like cloud cover, coupled with the varying tile and row values across different
latitudinal and longitudinal study zones, the acquired image count exhibited fluctuations.
The tile count ranged from 4 to 16, while the row count spans from 13 to 24. Due to data
constraints, the image classification ratio was set at 6:1:3.

2.1.3. Methodological Models Used in the Study

The research in this study involved using convolutional neural network algorithms
in conjunction with satellite remote-sensing imagery. Initially, the imagery underwent
radiometric calibration, atmospheric correction, cloud removal, and other preprocessing
tasks using the Google Earth Engine (GEE). Subsequently, the annotated images were
generated based on ground-truth information obtained in the field. Some of these labeled
images are presented in Appendix A, Figure A1.

Following image preprocessing, various models, including AlexNet, Visual Geometry
Group (VGG), GoogleNet, ResNet, and EfficientNetV2, were developed for image classifi-
cation. In addition to CNN models, traditional methods such as BP neural networks, k-NN,
PCA, LDA, and SVM were incorporated for walnut classification. The performance metrics
of these methods were then compared to identify the most optimal approach.

2.2. Convolution Neural Network

One of the representative algorithms of deep learning, a convolutional neural network
(CNN), is a type of feedforward neural network with a deep structure that incorporates
convolution calculations [38,39]. The CNN model is designed with specific layers: an input
layer, a convolution layer, a pooling layer, a fully connected layer, and an output layer.
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This study utilizes various CNN models, enhancing and refining them to maximize the
classification accuracy of the relevant data.

2.2.1. AlexNet

AlexNet, designed by Alex Krizhevsky et al. [40], has been a pioneering model in
the development of deep learning, particularly in the field of computer vision. This deep
convolutional neural network (CNN) has profoundly influenced subsequent deep learning
models, with its design principles and architecture demonstrating the effectiveness of
deep CNNs and laying the foundation for subsequent research [41]. The original code for
the program can be accessed at https://paperswithcode.com/method/alexnet (accessed
on 1 March 2023). The AlexNet model made an early appearance in the landscape of
convolutional models, but it marked a significant milestone as the first model to successfully
incorporate techniques such as ReLU activation, Dropout, and LRN within the realm of
CNNs. These innovations not only distinguished AlexNet but also served as a rich source
of inspiration for numerous subsequent models seeking improvements. In our research,
we optimized the model through adjustments, making it a valuable reference point for
comparative analysis in this study. Significantly, compared to traditional shallow networks,
AlexNet adopts a deeper architecture that allows the network to learn more complex and
abstract feature representations. Additionally, AlexNet enhances performance by increasing
the width of the network through the addition of more neurons. It introduces large-sized
filters to capture local features in images and, for the first time, incorporates the rectified
linear unit (ReLU) as the activation function, achieving notable results. However, the
performance of the original model was unsatisfactory in this study, leading to adjustments
in the model and resulting in the final model structure, as illustrated in Figure 2. The
input image size used for the experiments is 256 × 256, with a convolution kernel of 3
and a step size of 1. In the model, an initial ZeroPadding2D operation was applied to
mitigate information loss, adding one row of zero pixels to the input image horizontally and
vertically, along with one column of zero pixels on the right side and bottom. Subsequently,
convolutional layers, pooling layers, a flattening layer, a Dropout layer, and dense layers
were incorporated. In the initial convolution, 48 convolution kernels of size 11 × 11 and
a stride of 4 were employed using the rectified linear unit (ReLU) activation function.
Subsequent adjustments were made in the following pooling and convolution layers,
predominantly using 3 × 3 and 5 × 5 convolution and pooling kernels. The activation
function employed throughout was ReLU, with a dropout rate of 0.2 in the dropout
layers. Finally, the output was obtained using the Softmax activation function, aiming to
enhance the extraction of pertinent features and achieve superior classification performance.
The algorithm was fine-tuned with a learning rate of 0.0005 and a batch size of 32, and
performance stability was observed after approximately 280 training iterations.
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2.2.2. VGG

The Visual Geometry Group (VGG) is a deep convolutional neural network (CNN)
architecture proposed by the Visual Geometry Group [42]. It is characterized by its depth
and the use of very small convolutional kernels for its convolutional operations, distin-
guishing it from previous network architectures. This design choice increases the network’s
depth and allows for the stacking of multiple small-sized convolutional kernels to capture
richer image features. In addition, VGG incorporates max-pooling layers to reduce the
spatial size of feature maps and extract more salient features [43]. The original code for the
VGG program can be accessed at https://paperswithcode.com/method/vgg (accessed on
1 March 2023).

The experiment utilized the VGG19 architecture, where the feature extraction layers
were created using the “feature” function, followed by the application of ReLU activation
and a dropout rate of 0.4. The final output was obtained by applying the Softmax activation
function. Within the feature extraction layers, 3 × 3 kernels with “SAME” padding were
utilized, and ReLU activation was applied. The algorithm was fine-tuned with a learning
rate of 0.0001 and trained with a batch size of 32. Performance stability was observed after
approximately 220 training iterations.

2.2.3. GoogleNet

GoogleNet, a deep convolutional neural network (CNN) architecture proposed by the
Google team [44,45], aims to tackle the challenges of parameter count and computational
complexity in deep networks while also improving network performance.

GoogleNet introduced the Inception module, a multi-scale convolutional structure
that processes input feature maps with different scale convolutional kernels in parallel
and then concatenates the results. This approach enhances the network’s representa-
tional capacity by enabling the learning of features at different levels. A key aspect of
GoogleNet’s architecture is the extensive use of 1 × 1 convolutional kernels to reduce
the number of network parameters. By employing 1 × 1 convolutions, the network
is able to efficiently reduce the feature map channels, resulting in a reduction of the
computational load in subsequent layers. The availability of the original code for the
program can be found at https://paperswithcode.com/method/googlenet (accessed on
1 March 2023).

The architecture of GoogleNet, including the design principles and the introduction
of the Inception module and 1 × 1 convolutional layers, has significantly advanced sub-
sequent deep learning models. This approach effectively constructs deeper and wider
network structures while maintaining a balance between the number of parameters and
computational complexity. The model used in this study is shown in Figure 3 and entails
the construction of the GoogLeNet model. The experiment involves using relevant im-
ages as input, employing 3 × 3 convolutional kernels with ReLU activation, and defining
Inception modules that include convolution and pooling operations. The InceptionAux
class incorporates average pooling, convolution, batch normalization, ReLU activation,
fully connected layers, and Softmax activation. For the experiment, a batch size of 32 is
utilized, with the learning rate set to 0.0004. The model stabilizes after approximately
200 training epochs.

https://paperswithcode.com/method/vgg
https://paperswithcode.com/method/googlenet
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2.2.4. ResNet

In 2015, Microsoft Research introduced ResNet, a deep convolutional neural network
(CNN) architecture [45] designed to alleviate the problems of vanishing gradients and
degradation in deep networks, thereby facilitating easier training and optimization of
the network.

ResNet, a deep learning architecture, addresses the vanishing gradient problem in
traditional convolutional networks by incorporating residual blocks with skip connections,
also known as shortcut connections. These skip connections enable the direct addition
of the input feature mapping to the output feature mapping within each residual block,
thereby facilitating the easier propagation of information. Consequently, the network is
capable of skipping certain layers when necessary, thus avoiding information loss and
degradation. The use of residual blocks in ResNet allows the network to have increased
depth, reaching dozens or even hundreds of layers without facing degradation issues,
making it easier to extend the network’s depth. Following the final residual block, the
architecture typically employs global average pooling to convert the feature map into
a vector, complemented by a fully connected layer for classification or regression tasks.
This design not only ensures the network’s simplicity but also reduces the number of
parameters [46]. The original code for the implementation of ResNet can be found at
https://paperswithcode.com/method/resnet (accessed on 1 March 2023).

The significant impact of the design principles and architecture of ResNet in address-
ing the issue of vanishing gradients and degradation in deep networks has been widely
acknowledged. The success of ResNet has not only demonstrated the feasibility of con-
structing deeper and more powerful networks through the use of skip connections but has
also established itself as a cornerstone for subsequent deep-learning models. The emer-
gence of continuous improvements and variants of ResNet, such as ResNet-34, ResNet-50,
and ResNet-101, has further solidified its standing, showcasing outstanding performance
in various computer vision tasks. For this study, three variants of ResNet—ResNet-34,
ResNet-50, and ResNet-101—were chosen for experimentation. The final model of ResNet

https://paperswithcode.com/method/resnet
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utilized in this experiment is illustrated in Figure 4a, while the structure of the sequential
model is depicted in Figure 4b. The experimental setup involved the implementation
of the BasicBlock and Bottleneck classes with specific configurations. In the BasicBlock,
adjustments were made to the convolutional kernel size to 3 with a stride of 1, along with
the application of the ReLU activation function. Conversely, the Bottleneck class incorpo-
rated multiple convolutional layers with varying strides, applying batch normalization
after each convolution to ensure normalized activations, which in turn stabilized training
and improved convergence performance. Throughout the experiment, ReLU activation
was consistently employed, and downsampling was implemented in subsequent layers
to maintain a consistent channel and shape between input and output. The experiment
also incorporated a dropout rate of 0.5, a batch size of 16, and a learning rate of 0.0002.
Convergence was achieved after approximately 110 training iterations.
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2.2.5. EfficientNet

In 2019, the Google Brain team proposed EfficientNet, an efficient convolutional neural
network architecture aimed at improving performance and computational efficiency by
balancing network depth, width, and resolution. This architecture introduces a compound
coefficient that scales the depth, width, and resolution of the network simultaneously,
allowing for balanced expansion under different resource constraints. EfficientNet uti-
lizes MBConv (Mobile Inverted Residual Bottleneck) blocks as its basic building units,
which include depthwise separable convolutions, pointwise convolutions, and skip con-
nections, resulting in highly efficient computation with fewer parameters and effective
feature representation learning. The network structure comprises multiple repeated stages,
each containing several MBConv blocks. As the network depth increases, the resolu-
tion of the feature maps gradually decreases while the number of channels increases.
Consequently, this progressive design enables the network to effectively learn features
from images of different resolutions. The original code for the program is available at
https://paperswithcode.com/method/efficientnet (accessed on 1 March 2023).

The main focus of this study was to experiment with EfficientNet-V2, an improved
version of EfficientNet. EfficientNet-V2 combines training-aware neural architecture search
(NAS) and scaling techniques, resulting in a smaller size and faster speed compared to
previous networks [47]. It also introduces progressive learning, which adaptively adjusts
the regularization strength based on image size, accelerating training while enhancing
accuracy. To conduct the experiments, EfficientNet models were created using the Keras
library. These models were configured with various parameters, including zero-padding in
2D convolutions, the definition of inverted residual blocks, specified width and depth, and
the use of separate functions for experimentation. A learning rate of 0.01 and a dropout
rate of 0.2 were employed in the process. For the experimentation with EfficientNet-V2,
adjustments were made to the convolutional kernels in the SE layer, MBConv layer, and
stem layer. The primary kernel size utilized was 3, and the MBConv layer was expanded to
improve accuracy. Additionally, the learning rate was set to 0.01, and a dropout rate of 0.2
was utilized. It is noteworthy that training stabilized after approximately 380 iterations.

2.3. Traditional Methods

In addition to the CNN algorithm, this study utilizes several traditional approaches
for the classification of walnuts using satellite remote sensing. These traditional approaches
include principal component analysis (PCA) [48], linear discriminant analysis (LDA) [48],
backpropagation neural network (BP) [49], support vector machine (SVM) [50], and
k-nearest neighbor classification (k-NN). Despite the excellent classification performance
demonstrated by traditional methods, they have been incorporated alongside CNN in this
study to achieve a comprehensive evaluation of classification approaches in satellite remote
sensing for walnuts.

(1) The PCA algorithm is a method for feature extraction that utilizes orthogonal trans-
formation to convert the observed data, initially represented by linearly correlated variables,
into a reduced set of linearly independent variables known as principal components. The
formula for PCA, as shown in Equation (1), involves several key variables: xi represents the
original sample point, zij represents the coordinate projection, wi represents the standard
orthogonal basis vector, zi represents the projection of xi in the low-dimensional coordinate
system, zij represents the j-dimensional coordinate of xi in the low-dimensional coordinate
system, and const represents the constant value of xixi

T.

zij = wT
i xi

m
∑

i=1
||

d′

∑
j=1

zijwi − xi|22 =
m
∑

i=1
zT

i zi − 2
m
∑

i=1
zT

i wTxi + const

→ tr(wT(
m
∑

i=1
xixi

T)w)

(1)

https://paperswithcode.com/method/efficientnet
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The LDA algorithm is a classical binary classification method that encompasses tech-
niques such as the gamma function, binomial distribution, conjugate distribution, Gibbs
sampling, and other statistical methods. It performs dimensionality reduction by map-
ping all samples to a one-dimensional coordinate axis, followed by the establishment of a
threshold to distinguish the samples.

The binomial distribution is a discrete probability function that characterizes the
number of successes in n independent experiments, each with a probability of p.

(2) The fundamental model of the SVM algorithm is a linear classifier with the largest
margin defined in the feature space, making it a two-classification model. Its learning
strategy is focused on maximizing this margin, and this objective can be mathematically
formulated as solving convex quadratic programming. This is also equivalent to minimiz-
ing the regularized hinge loss function. The learning algorithm of SVM is thus centered
around solving convex quadratic programming through optimization techniques. A cru-
cial aspect of SVM lies in determining geometric spacing and addressing the issue of
linear separability.

(3) This study utilizes the backpropagation (BP) and k-nearest neighbor (k-NN) clas-
sification algorithms. The BP algorithm encompasses two primary processes, namely,
the forward propagation of signals and the backpropagation of errors. The error back-
propagation algorithm has gained widespread usage in training multilayer feedforward
networks, leading to the multilayer feedforward network being commonly referred to as the
BP network.

The k-NN algorithm involves identifying the K instances closest to the new input
instance in the training dataset and classifying the input instance into the majority class of
the K instances.

2.4. Evaluation of Precision and Efficiency

In this study, precision evaluation metrics such as f1-score, precision, recall [51], and
accuracy were utilized (Equations (2)–(5)) to assess the performance. These metrics are
computed by taking into account the number of correctly detected targets (TP), incorrectly
detected targets (FP), and targets that were not detected at all (FN), as represented in
the equations.

F1 = (2 × P × R)/(P + R) (2)

P = TP/(TP + FP) (3)

R = TP/(TP + FN) (4)

Acc = (TP + TN)/(TP + FP + FN + TN) (5)

When selecting different algorithms, it is important to consider not only their perfor-
mance in achieving optimal results, but also their detection efficiency and the number of
training iterations required. This comparison should take into account the average time
required per training, the number of training iterations, testing time, and the total time.
Different algorithms may require varying numbers of training iterations to achieve optimal
results, making it essential to include this consideration in the evaluation process.

3. Results
3.1. AlexNet Results

The AlexNet algorithm initially performed poorly due to issues with the original
model’s parameters and structure. Consequently, modifications were made to the model
in an attempt to improve its performance. Despite tuning the corresponding parameters,
the final accuracy remained unsatisfactory, prompting further adjustments to the model’s
architecture. To mitigate underfitting during classification, additional convolutional layers
were incorporated, while pooling and dropout layers were introduced after the convolu-
tional layers to address overfitting. Furthermore, dense layers were added to strengthen
the connections between relevant feature values. As a result of these modifications, the
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precision, recall, f1-score, and accuracy improved to 96.81%, 87.57%, 91.96%, and 91.58%,
respectively. For detailed results, the improved AlexNet model’s confusion matrix can be
referred to in Appendix A, Figure A2, included herein.

3.2. VGG Results

In this study, it was observed that the original parameters of the VGG model yielded
unsatisfactory performance. As a result, adjustments were made to the model’s parameters
using the experimental images. Subsequently, fine-tuning the parameters led to a substan-
tial improvement in the classification results, as indicated by the precision, recall, f1-score,
and accuracy values of 90.98%, 87.98%, 89.46%, and 89.41%, respectively. The specific
outcomes of the enhanced VGG model’s confusion matrix can be found in Appendix A,
Figure A3.

3.3. GoogleNet Results

After conducting initial experiments using the original GoogleNet model, it was found
that the model’s performance was suboptimal. Consequently, adjustments were made to
the model’s structure by incorporating additional convolutional layers and two inception
layers at the end of the original architecture. As a result of these modifications, a notable
enhancement in the model’s fitting performance was observed. However, it became appar-
ent that overfitting was occurring post-adjustment, leading to a subsequent introduction
of flattening, dense, dropout, and pooling layers to mitigate this issue. The subsequent
experiments yielded promising outcomes, with the precision, recall, f1-score, and accuracy
values achieving 87.10%, 95.23%, 90.98%, and 90.99%, respectively. A comprehensive break-
down of the enhanced GoogleNet model’s confusion matrix is provided in Appendix A,
Figure A4.

3.4. ResNet Results

The initial classification study of walnuts in the ResNet model yielded only mod-
erate performance, prompting adjustments to the relevant model parameters based on
experimental data. Subsequent experiments were conducted using ResNet34, ResNet50,
and ResNet101 models, with the latter demonstrating the best performance, albeit still
comparably inferior to the other models. To rectify this, modifications and adjustments
were made to the sequential model, accompanied by the addition of an extra sequential
structure. Following multiple experiments, the final results exhibited increased stability
and improved performance. Specifically, the precision, recall, f1-score, and accuracy values
were measured at 92.47%, 94.29%, 93.37%, and 93.27%, respectively. The detailed results of
the enhanced ResNet model’s confusion matrix are presented in Appendix A, Figure A5.

3.5. Efficientnet Results

In experimental trials using the EfficientNet model, it was evident that the use of
EfficientNetV2 led to notably superior outcomes compared to the original EfficientNet
model. The performance of the original model in the experiments was subpar, necessitating
modifications to the model’s architecture. To enhance classification outcomes, the model
was enhanced by the addition of five Fuse-MBConv modules and thirty extra MBConv
modules. As a result, the model achieved improved precision, recall, f1-score, and accuracy
values of 96.35%, 91.44%, 93.83%, and 93.47%, respectively. For a detailed breakdown of the
enhanced EfficientNet model’s confusion matrix, please refer to Appendix A, Figure A6.

3.6. Convolutional Neural Network Classification Efficiency Summary

Table 1 presents the classification efficiency results for different convolutional neural
network models. The data shows that the ResNet and AlexNet models achieved the highest
efficiency, while the EfficientNetV2 model showed relatively lower efficiency.
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Table 1. Summary of classification efficiency.

Model Average Length of Time
Per Training Session (s)

Number of
Trainings

Test
Duration (s)

Total
Duration (s)

AlexNet 12 70 6 846
VGG 19 180 7 3427

GoogleNet 21 70 8 1478
ResNet 23 30 8 698

EfficientnetV2 10 460 11 4611

3.7. Results of Traditional Classification Methods

In the experimentation with the backpropagation (BP) neural network, superior out-
comes were achieved by first adjusting pertinent parameters such as the learning rate,
activation function, and weights, followed by numerous iterations of experiments. Simi-
larly, the k-nearest neighbors (k-NN) algorithm underwent adjustments primarily to the
value of K, distance metric, and weighting, ultimately resulting in the selection of K = 5 and
the utilization of the Euclidean distance metric, which produced the optimal outcomes. The
experiments involving the PCA and LDA algorithms shared similar controlled variables
due to the resemblance between the two methods, as both algorithms execute classification
operations through dimensionality reduction techniques. Furthermore, in the classification
experiments with the SVM algorithm, utilizing SVM in isolation led to unsatisfactory
results. As a resolution, a fusion of SVM with PCA and LDA algorithms was implemented,
resulting in the attainment of the highest performance. All findings of the traditional
classification methods are displayed in Table 2.

Table 2. Summary of results.

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%)

BP 71.99 87.74 79.09 80.89
k-NN 75.78 92.43 83.28 84.46
PCA 58.70 94.89 72.53 77.72
LDA 73.44 90.35 81.02 83.07
SVM 68.74 93.40 79.19 81.58

The classification efficiency results of traditional methods are shown in Table 3. The
table data indicates that the k-NN and SVM algorithms are highly efficient, while the others
have moderate performance.

Table 3. Classification efficiency results of traditional methods.

Model Training Duration (s) Test Duration (s) Total Duration (s)

BP 2378 12 2390
k-NN 178 11 189
PCA 338 11 349
LDA 569 12 581
SVM 127 11 138

3.8. Comparative Summary of Results for Different Methods

Upon conducting experiments, we compared convolutional neural network (CNN)
models with traditional methods, followed by an analysis of the results based on precision,
recall, f1-score, accuracy, and total time. The findings, presented in Table 4, were comple-
mented by the corresponding remote sensing image shown in Appendix A, Figure A7.
From the data in the table, it was observed that AlexNet and EfficientNet-V2 exhibited
relatively high precision, while GoogleNet and ResNet demonstrated higher recall values.
Additionally, ResNet and EfficientNet-V2 showed relatively high f1-score and accuracy.
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Notably, when not considering precision, k-NN, and SVM displayed higher efficiency, with
ResNet standing out for higher efficiency when precision was taken into account.

Table 4. Summary table comparing results of different methods.

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%) Total Time

AlexNet 96.81 87.57 91.96 91.58 846
VGG 90.98 87.98 89.46 89.41 3427

GoogleNet 87.10 95.23 90.98 90.99 1478
ResNet 92.47 94.29 93.37 93.27 698

EfficientnetV2 96.35 91.44 93.83 93.47 4611
BP 71.99 87.74 79.09 80.89 2390

k-NN 75.78 92.43 83.28 84.46 189
PCA 58.70 94.89 72.53 77.72 349
LDA 73.44 90.35 81.02 83.07 581
SVM 68.74 93.40 79.19 81.58 138

4. Discussion

In this study, we employed satellite remote sensing images obtained and preprocessed
through the Google Earth Engine (GEE) platform to achieve walnut image classification.
Both CNN models and traditional image classification methods were utilized to conduct
experiments. By combining convolutional neural networks (CNNs) with remote sensing
data, we aimed to enhance the accuracy and efficiency of walnut image classification [28].

In recent years, numerous researchers have conducted studies using remote-sensing
images to examine various aspects of walnuts. For example, Albatrni et al. offered a
comprehensive review of walnut shell adsorbents [52]. Ji et al. studied the genetic inher-
itance of walnuts and related factors [53]. Madrid et al. conducted real-time detection
research on walnuts [54]. Hao Fei et al. studied cotton classification by employing multiple
features and the random forest feature selection algorithm [55]. The ongoing expansion
and shift towards large-scale farming in walnut planting areas have created a growing
need for accurate and efficient methods for monitoring and analyzing cultivation areas.
Despite the increasing scale of agricultural development, research on the use of satellite
remote sensing methods for monitoring walnut planting areas remains relatively scarce.
Traditional manual statistical methods, previously used for this purpose, have become
impractical in light of the expanding cultivation areas. However, the utilization of satellite
remote sensing techniques has emerged as an effective solution to address the challenges of
monitoring and analyzing walnut planting areas in the context of the evolving agricultural
landscape [56].

In this study, we selected BP, k-NN, PCA, LDA, and SVM as the traditional methods,
considering their well-established nature and proven effectiveness in addressing a variety
of problems. These algorithms have a demonstrated track record of delivering reliable re-
sults across diverse applications, as evidenced by previous research findings. For example,
Yanbiao Xi et al. achieved a maximum accuracy of 84.19% by utilizing Sentinel-2 satellite
data and various machine-learning algorithms for detailed tree species classification [57].
Rui He et al. also attained commendable accuracy, reaching 85%, by exploring the feasi-
bility of tree species classification in the southwestern province of Sichuan, China, using
Landsat satellite composite imagery [58]. To improve and train our models, we selected
classic and versatile convolutional neural network (CNN) models such as AlexNet, VGG,
GoogleNet, ResNet, and EfficientNetV2, covering a wide range of research in CNNs, includ-
ing lightweight convolutional neural networks [59]. During the training process, we made
specific adjustments to AlexNet, VGG, and EfficientNetV2 models. For AlexNet, we added
convolutional and pooling layers and adjusted corresponding parameters. Similarly, we
introduced dropout layers to prevent overfitting in the VGG model, leading to the relevant
results. For EfficientNetV2, we mainly added Fuse-MBConv and MBConv modules, yield-
ing relatively superior experimental outcomes. However, more adjustments were made
to the GoogleNet and ResNet models. In GoogleNet, we modified the structure within
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the inception module, added convolutional and pooling layers, and incorporated dropout
layers to address overfitting, achieving satisfactory results. Similarly, in ResNet, we made
modifications and additions to the sequential model structure, ultimately achieving positive
outcomes. Xingrong Li et al. identified abandoned jujube orchards with an accuracy of
91.1% using multi-temporal high-resolution imagery and machine learning techniques,
showing a significant enhancement in accuracy compared to other moderate-resolution
satellite images [60]. However, our experimental approach, employing CNN-based mod-
els, clearly demonstrated superior performance compared to these established traditional
methods and previous research findings.

The inaccurate classification of walnut areas in this study can be attributed to several
reasons. Firstly, the low resolution of Landsat-8 imagery posed a significant challenge in
a large-scale agricultural setting. While the use of the Sentinel-2 satellite did not yield
satisfactory results due to issues with the satellite’s resolution, it is important to note that
this outcome does not necessarily imply that higher-resolution imagery would have no
impact on improving accuracy. Higher-resolution images contain more detailed infor-
mation and have a higher revisit frequency, providing more choices for research data.
Therefore, from a comprehensive perspective, higher accuracy can be achieved through
appropriate noise reduction processes. Furthermore, the study relied on robust and gen-
eralizable algorithms. Exploring and fine-tuning algorithms that are better suited to
address the specific problem from an algorithmic perspective is expected to enhance ac-
curacy. Additionally, leveraging diverse data sources such as unmanned aerial vehicle
data, ground-based hyperspectral data, and image data could be considered from the
standpoint of precision agriculture and smart farming. However, it is important to note
that in addressing the issue of improved accuracy, the trade-off between data volume and
model complexity must be carefully considered to mitigate the potential impact on the
experiment’s efficiency.

In this study, the classification efficiency of traditional methods was found to be
higher than that of various convolutional neural network (CNN) models based on the
experimental results. However, due to the large number of farm images to be detected for
the classification problem addressed, the accuracy of walnut orchard detection becomes
more crucial. Notably, throughout the research process, it was consistently observed that
various CNN models achieved significantly higher accuracy than traditional classification
methods. Moreover, they demonstrated superior performance in precision and f1-score
parameters. Although in some cases, the recall values were relatively higher for the
CNN models compared to traditional methods, when these values were accompanied by
relatively low precision and f1-score values, it indicated relatively poorer performance.
Thus, it is evident that in the classification of walnut remote sensing images, convolutional
neural networks outperformed traditional methods.

Upon analyzing various convolutional neural network models, it becomes apparent
that ResNet and EfficientNet-V2 demonstrate comparatively higher accuracy. Conversely,
AlexNet and EfficientNet-V2 exhibit relatively higher precision, while GoogleNet and
ResNet show relatively higher recall. In addition, ResNet and EfficientNet-V2 also display
relatively higher f1-scores. Consequently, it can be deduced that ResNet and EfficientNet-
V2 outperform other models in the classification of walnut remote sensing images. When
considering efficiency, although EfficientNet-V2 achieves faster training speeds, it neces-
sitates more training iterations to attain optimal accuracy, thereby resulting in a longer
total training time in this study. Notably, this study integrated a substantial number of
Fuse-MBConv and MBConv modules into the EfficientNet model to ensure detection accu-
racy, leading to a decreased efficiency of the lightweight algorithms. However, reducing
these modules significantly resulted in a notable drop in accuracy. Thus, in this study,
a significant reduction in the number of modules in EfficientNet-V2 while maintaining
accuracy was unattainable. Consequently, ResNet outperformed EfficientNet-V2 in terms
of effectiveness in this study.
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A comprehensive comparative analysis between CNNs and conventional algorithms
demonstrates the superior performance of CNNs, affirming the prevailing consensus within
the field. Despite this, the efficiency aspect should be acknowledged, as traditional al-
gorithms are generally favored, particularly in scenarios where precision requirements
are not paramount. However, recent research endeavors have focused on developing
lightweight CNNs aimed at expediting processing speed, reflecting the growing inter-
est in addressing efficiency concerns associated with CNNs [61,62]. It is essential to
note that this study utilized Landsat-8 satellite imagery at a 30-m resolution, which is
widely suitable and well-suited for remote sensing applications in extensive agricultural
landscapes. Nevertheless, challenges may arise when identifying small-scale agricul-
tural plots with this resolution. Moreover, the utilization of higher-resolution satellite
imagery has the potential to increase the computational complexity of corresponding
algorithms, with uncertain impacts on detection efficiency. Furthermore, this study pri-
marily concentrated on the integration and examination of core algorithmic components of
lightweight models, such as EfficientNet-V2, without delving into detailed adjustments
within these modules. As part of our future research agenda, we intend to explore re-
finements within these model modules to enhance detection efficiency while maintaining
precision standards.

This investigation has demonstrated that the implementation of the ResNet model
has resulted in comparable efficiency to traditional algorithms while maintaining a high
level of precision. Furthermore, our approach has shown notably superior performance
in contrast to classification outcomes obtained from other deep learning algorithms, thus
enabling effective and accurate large-scale crop classification. The significance of this
achievement is widespread, carrying implications that are relevant for both practical
applications and prospective research endeavors. It is important to highlight that the
use of satellite remote sensing imagery in this study has enabled the rapid acquisition
of comprehensive and timely information, surpassing the capabilities of ground-based
remote sensing. This attribute makes it highly suitable for agricultural detection and
assessment purposes. Furthermore, the application of such data extends its utility beyond
governmental and corporate realms to encompass a promising role in advancing individual
pursuits, particularly in tasks related to detection, regulation, and related domains.

Remote sensing imagery has been widely used in previous research on walnut analysis.
In these studies, researchers focused on extracting walnut planting areas and conducting
growth analysis and monitoring using vegetation indices in conjunction with Google Earth
Engine (GEE). These studies primarily emphasized the investigation of time series, feature
bands, and vegetation indices [35]. In this study, we have taken the approach of integrating
remote sensing imagery, leveraging convolutional neural networks (CNNs) and machine
learning techniques to extract image features and achieve effective classification outcomes.
There is potential for future research to combine these methods to achieve more efficient
and precise detection. Furthermore, our future research aims to explore the acquisition of
higher-resolution satellite imagery or resampling existing imagery, prioritizing efficiency
while maintaining accuracy.

By observing and analyzing the experimental results, it is evident that the experiment
successfully demonstrated the effectiveness of convolutional neural networks in walnut
classification. This method not only reduces the burden on agricultural workers and im-
proves classification efficiency but also provides a scientific basis for precision agriculture
management. Optimizing agricultural resource utilization is expected to increase walnut
yield and quality, thus generating positive impacts on the economy and ecology. Further-
more, in future research, there should be a focus on improving model performance and
considering the integration of multi-source remote sensing data to enhance classification
accuracy and reliability.
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5. Conclusions

Amidst the era of expanding large-scale and mechanized agriculture, traditional
manual census methods are encountering growing challenges attributable to time and labor
constraints. The utilization of satellite remote sensing imagery in this study has emerged
as a vital tool, facilitating the rapid acquisition of comprehensive and timely information,
surpassing the capabilities of ground-based remote sensing. This characteristic makes
it highly feasible for agricultural detection and assessment purposes, demonstrating its
potential to address the limitations of traditional methods. Furthermore, the application of
such data extends its utility beyond governmental and corporate spheres to encompass a
promising role in advancing individual pursuits, particularly in tasks related to detection,
regulation, and related domains. The successful combination of CNNs with satellite remote
sensing for precise walnut classification in this study offers valuable insights into addressing
these challenges and provides potential solutions to enhance agricultural monitoring
and management.

This study is a significant interdisciplinary endeavor in the realms of agriculture
and forestry as it has harnessed the capabilities of remote sensing and deep learning
technologies to achieve precise classification of walnuts. This accomplishment notably
enhances the automation level in agricultural and forestry production, thereby reducing
labor costs and improving production efficiency. The precise classification of walnut trees
harmonizes seamlessly with agricultural cycles, coupled with the inherent periodicity of
satellite imagery. As a result, farmers gain the ability to enhance land and resource man-
agement, thereby reducing waste and promoting agricultural sustainability. The research
leveraged high-resolution multispectral remote sensing images provided by Landsat-8
satellite, yielding valuable information pertaining to land cover and vegetation health,
which contributes to achieving accurate classification and further propels the development
of precision agriculture and smart farming. Furthermore, the study reinforced the utiliza-
tion of deep learning models, including CNN, and has achieved commendable results,
proving highly effective in the classification of remote sensing images in the agricultural
domain. Through practical application, this approach adeptly captures fine-grained vegeta-
tion features, thereby enhancing classification accuracy. Moreover, the applicability of this
method extends beyond walnut classification, showcasing its versatility in the classification
and monitoring of various crops and offering guidance and inspiration for related research
endeavors in the field.
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