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Abstract: The leaf area index (LAI) serves as a crucial metric in quantifying the structure and den-
sity of vegetation canopies, playing an instrumental role in determining vegetation productivity,
nutrient and water utilization, and carbon balance dynamics. In subtropical montane forests, the
pronounced spatial heterogeneity combined with undulating terrain introduces significant challenges
for the optical remote sensing inversion accuracy of LAI, thereby complicating the process of ground
validation data collection. The emergence of UAV LiDAR offers an innovative monitoring methodol-
ogy for canopy LAI inversion in these terrains. This study assesses the implications of altitudinal
variations on the attributes of UAV LiDAR point clouds, such as point density, beam footprint, and
off-nadir scan angle, and their subsequent ramifications for LAI estimation accuracy. Our findings
underscore that with increased altitude, both the average off-nadir scan angle and point density
exhibit an ascending trend, while the beam footprint showcases a distinct negative correlation, with a
correlation coefficient (R) reaching 0.7. In contrast to parallel flight paths, LAI estimates derived from
intersecting flight paths demonstrate superior precision, denoted by R2 = 0.70, RMSE = 0.75, and
bias = 0.42. Notably, LAI estimation discrepancies intensify from upper slope positions to middle
positions and further to lower ones, amplifying with the steepness of the gradient. Alterations in
point cloud attributes induced by the terrain, particularly the off-nadir scan angle and beam footprint,
emerge as critical influencers on the precision of LAI estimations. Strategies encompassing refined
flight path intervals or multi-directional point cloud data acquisition are proposed to bolster the
accuracy of canopy structural parameter estimations in montane landscapes.

Keywords: LAI; UAV LiDAR; montane forests; point cloud attributes; flight paths

1. Introduction

The vegetation leaf area index (LAI), defined as one half of the total all-sided leaf area
per unit ground surface area [1], stands as one of the most crucial biophysical parameters of
vegetation canopy structure, governing biophysical processes in vegetation such as transpi-
ration, photosynthesis, and respiration [2–4]. LAI has found extensive applications across
forestry, agriculture, and ecology [5]. Thus, an accurate estimation of LAI is of paramount
importance for quantitatively assessing the productivity and carbon sequestration functions
of forest ecosystems [6], as well as their responses to climate change [7,8].

Mountainous regions cover approximately 24% of the global land area, and China,
being a mountainous country, has mountainous areas accounting for 66.7% of its total
land area [9]. Mountain vegetation covers a wide area with diverse species, and the topo-
graphical variations result in spatial distribution differences in vegetation types at different
altitudes and slopes. Portable canopy measurement instruments, such as the LAI-2000,
and hemispherical imaging methods based on a fisheye lens are widely recognized as the
primary approaches for obtaining ground-based measurements of LAI. These measurement
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methods are only applicable on overcast days or within narrow time windows around
dawn and dusk. Additionally, light sensors used to measure canopy light intensity require
a spacious area or tower top to synchronously measure the light intensity of both the upper
and lower canopies within a relatively short timeframe [10,11]. From this, it can be seen
that in conducting spatiotemporal monitoring of the forest canopy, LAI incurs significant
labor and time costs to obtain a sample size that meets a specific overall prediction accuracy.
Remote sensing technology, with its advantages of multisource and persistent acquisition
of representative information at various spatiotemporal scales, provides a powerful means
for estimating regional-scale vegetation LAI. However, traditional multispectral remote
sensing techniques have limited applicability in estimating LAI due to saturation phenom-
ena in remote sensing vegetation indices signals in areas with high vegetation cover [12,13].
Moreover, in contrast with flat terrain, the multispectral remote sensing inversion accuracy
of mountainous LAI is primarily influenced by topographic factors, especially variations
in image geometry and spectral characteristics caused by undulating terrain. As remote
sensing advances in complex topographic areas, the topographic effects on indirectly mea-
sured LAI are becoming increasingly apparent [14]. Many studies suggest that under slopes
less than 30◦, topographic effects have minimal impact on LAI measurements and can
be neglected. However, when slopes exceed 30◦, topographic effects become a moderate
source of error in the indirect measurement of leaf area index [15,16].

LiDAR (light detection and ranging) serves as an active remote sensing technique,
capable of capturing the three-dimensional structural information of vegetation. It has
been extensively employed for the inversion of canopy structural parameters such as LAI
and canopy cover [17–19]. Among LiDAR types, discrete LiDAR point cloud data, due
to its straightforward processing, sees more widespread application [20,21]. Currently,
there are two primary methods for LAI inversion based on discrete LiDAR: the first com-
bines ground samples with empirical models based on the statistical characteristics of the
discrete point cloud [18], while the second employs a physical model inversion method
based on the Beer–Lambert Law [22]. The latter uses the ratio of ground point cloud count
(intensity) to the total pulse or total point cloud count (intensity) as an approximation for
canopy gap fraction, which is then converted to LAI through the Beer–Lambert Law [22].
However, when conducting LiDAR scans in mountainous forests, the undulating terrain
can lead to variations in the observed distance between laser pulses and objects. The
flight paths planned by unmanned aerial vehicle (UAV) flight control software often fail
to meet the requirements for high and uniform point cloud density. Insufficient point
cloud density in certain local areas, typically in low-altitude regions, can compromise the
accuracy of extracting terrain and canopy structure parameters [23]. Some researchers,
by setting different observation flight heights for UAV LiDAR (i.e., 100 m, 150 m, and
200 m), have observed that as the flight height increases, point density decreases, result-
ing in a reduction in observed information within the tree canopy and a decline in the
accuracy of the digital terrain model [24,25]. The LiDAR scanning angle is also another
crucial parameter significantly influencing the quantitative estimation of canopy structural
parameters [26]. Traditional airborne LiDAR often employs a scanning angle of 15–20◦

field of view, where a smaller scanning angle increases the chances of vertically incident
beams detecting the ground. However, the narrow angle range also limits coverage width.
With the development of low-altitude UAVs, the point cloud density increases, and larger
scanning angles help optimize costs. Nevertheless, undulating terrain introduces spatial
variability in laser pulse incidence angles. Additionally, the increased distance through
the canopy due to the inclined incident beam angle may offset the advantages of a wide
scanning angle, leading to significant deviations in canopy parameter estimation results
and potentially impacting the robustness of LAI estimation results. Hence, Liu et al. [27]
recommended avoiding large minimum incident angles (>23◦). Currently, there is still
limited research explaining how and why LiDAR metrics vary with incidence angles, and
the specific changes in LAI estimation errors at certain angles remain largely unknown.
Furthermore, slope conditions may result in inaccuracies in individual tree metrics derived
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from LiDAR, potentially distorting the plant area index (PAI) contours and altering the
spatial distribution patterns of plant area density. This effect becomes more pronounced
with increasing slope [28,29].

In summary, drawing on UAV LiDAR and on-the-ground LAI measurements, this
study investigates the impact of mountainous terrain factors (such as slope and slope
position) on pivotal discrete LiDAR point cloud attributes (namely point density, off-nadir
scan angle, and beam footprint) and its implications for LAI estimation. Additionally, the
research examines the potential to enhance LAI estimation accuracy in mountainous forests
by optimizing UAV LiDAR flight routes.

2. Materials and Methods
2.1. Study Area and Field Measurements

The study site is located in the Geshi Castanopsis Nature Reserve in Sanming City,
Fujian Province, China (26◦11′28′′ N, 117◦28′10′′ E), covering an area of 1101.6 ha. The
area experiences a subtropical maritime and continental climate with an annual average
temperature of 19.5 ◦C, annual precipitation of 1546.8 mm, a frost-free period of 300 days, an
average relative humidity of 79%, and an average wind speed of 1.6 m/s. The predominant
soils in the region are yellow soil and red soil, which have been formed primarily from
parent materials such as sandstone and shale. These soils generally exhibit a sandy loam
texture with a depth exceeding 1 m and often have a thick humus layer. The primary
tree species in the community of the study area include Geshi Castanopsis (Castanopsis
kawakamii Hay.), Masson’s pine (Pinus massoniana Lamb.), and evergreen oak (Schima superba
Gardn. et Champ.). The shrub layer is dominated by species such as northern Litsea (Litsea
subcoriacea Yang et P.H.Huang), short-tailed blueberry (Vaccinium carlesii Dunn), and red
myrtle (Syzygium buxifolium Hook. et Arn.).

Field measurements for LAI within the study area were conducted from 30 July to
1 August 2022, during the dawn and dusk under diffuse light conditions [18]. The Li-Cor
LAI2200 plant canopy analyzer (Li-COR Inc., Lincoln, NE, USA) was employed to measure
the LAI (effective LAI) of 49 circular sample plots, each with a radius of 10 m, within the
study site (as depicted in Figure 1b). Measurements were taken with the plot center as the
reference point, specifically at the center point of the plot and at four additional points
located 5 m from the center in the east, south, west, and north directions. The sensor head
was maintained at a height of 2 m above the ground during measurements. Simultaneously,
we employed real-time kinematic (RTK) surveying techniques using GNSS equipment
(South Surveying & Mapping Galaxy 6 RTK) to capture the central coordinates of the plots.
This device integrates signals from four satellite systems—GPS, GLONASS, Galileo, and
BeiDou—achieving horizontal and vertical accuracies of ±8 mm and ±15 mm, respectively,
and is equipped with 336 signal tracking channels. Its precise and rapid positioning ensures
the accurate alignment between ground-measured data and the corresponding point cloud.
The FV2200 software (Version 2.1, Li-COR Inc., Lincoln, NE, USA) was used to calculate the
LAI. Given that some plots were located on steep slopes, only data from the first four rings
were selected for computation to avoid any potential interference from the sloped terrain.

2.2. LiDAR Acquisition and Processing

In this study, aiming to enhance the accuracy of LAI estimation in mountainous forests,
three flight trajectories were established, encompassing both single and multiple flight
lines (Figure 2). A DJI M600 Pro drone equipped with the RIEGL miniVUX-1UAV laser
scanner was employed for data collection on 30 July 2022 (Table 1). Two flight paths were
set along the perpendicular and parallel directions to the mountain orientation to acquire
point clouds in the study area. The point cloud densities were measured at 89 pts/m2 and
78 pts/m2, respectively. During aerial surveying, the flight speed was set at 8 m/s, and the
off-nadir scan angle for emitted pulses was restricted to 60◦. The flight altitude was 57 m
above the highest point of the mountain and 179 m above the lowest ground observation
point in the valley. The spacing between flight lines was set at 60 m. Consequently, the
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single-flight line scan overlap rates in the mountaintop and valley regions reached 70% and
85%, respectively. To invert LAI from the point cloud obtained along the vertical mountain
orientation, and based on ground-truth data, further analysis of LAI estimation errors and
the response of point cloud attributes to changes in topographic factors were conducted. In
order to investigate whether changing flight directions and increasing flight lines could
improve LAI estimation accuracy, this study pre-processed the collected point cloud data
into three LAS files, including two single-directional and one bidirectional flight lines,
named vertical to the mountain’s orientation (VMO), parallel to the mountain’s orientation
(PMO), and cross-track flight lines (CFL), respectively. To compare the accuracy of LAI
estimation among the three flight lines, we performed 50% sparsity processing on the
cross-track flight line point cloud, resulting in a final point cloud density of 80 pts/m2,
which is similar to the density of single-directional point clouds.
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Table 1. LiDAR survey and sensor characteristics, for the RIEGL miniVUX-1UAV sensor used in
this study.

Parameters Value

Wavelength (µm) 1050
Beam divergence (mrad) 1.6 × 0.5

100m from the ground beam Foot (mm) 160 × 50
Pulse rate (kHz) 100

Max. Measuring Range (m) 330
Field of View (◦) 360

Max. Number of Targets per Pulse 5
Accuracy (mm) 15

The preprocessing of point cloud data includes noise removal, filtering, and ground
point classification. Subsequently, the classified ground points were interpolated using
the TIN (triangulated irregular network) algorithm to generate a digital elevation model
(DEM) with a spatial resolution of 0.25 m. The first return points were then interpolated to
produce a digital surface model (DSM). The canopy height model (CHM) was subsequently
derived by subtracting the DEM from the DSM. Moreover, point clouds were normalized
with respect to the DEM. All of these procedures were performed using LiDAR 360 (Digital
Green Earth Company, Beijing, China).

2.3. Beam Footprint and LAI Estimation

Previous studies have shown that, the accuracy of LAI estimation is influenced by the
expansion of the beam footprint when employing a point cloud simulator developed using
the discrete anisotropic radiative transfer model [30]. Taking this effect into consideration,
this study aims to quantify the spatial variability of the beam footprint. The diameter of
the beam footprint is calculated as:

L =

√√√√(
D

cos( θ)

)2
× Ω2

T

4
× 2 (1)

L represents the diameter of the beam footprint, D denotes the vertical distance from
the sensor to the target, θ is the average off-nadir scan angle, and ΩT signifies the laser
divergence angle.

The conventional method for estimating LAI from discrete point cloud data is grounded
in the Beer–Lambert law, following the formula proposed by Richardson et al. [31]:

Gap =
Nground

Ntotal
(2)

LAI =
−cos(θ)
G(θ, α)

× ln(Gap) (3)

where Gap is the gap fraction, calculated from the ratio of ground points Nground to the total
number of points Ntotal using an altitude threshold of 2 m (corresponding to the height at
which the ground-truth LAI is acquired) [32,33]. θ is the angle at which the beam or ray
penetrates the canopy, taken here as the average off-nadir scan angle from LiDAR; (θ, a) is
the extinction coefficient, and for spherically distributed leaves, it is valued at 0.5.

In order to systematically investigate the specific impact of slope position and gra-
dient on LiDAR discrete point cloud features (such as point density, off-nadir scan angle,
and beam footprint) and LAI estimation, the study area was partitioned into three slope
positions determined by elevation: upper slope (395–424 m), mid-slope (366–395 m), and
lower slope (337–366 m). These categories included 20, 14, and 15 plots, respectively (refer
to Figure 3). Furthermore, the plots were classified into three slope grades (0–15◦, 15–30◦,
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and 30–41◦), which resulted in the allocation of measured samples into 14, 18, and 17 plots
for each grade, respectively.
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Figure 3. Schematic representation of slope position classification and UAV LiDAR monitoring in the
study area. According to the elevation, the study area was divided into three slope positions: upper
slope, middle slop, and lower slope. Due to the influence of UAV altitude and slope, there is significant
spatial heterogeneity in the footprint and incident angle of laser beams reaching the ground.

2.4. Accuracy Assessment

We employed the Pearson correlation coefficient (R) to examine the correlation between
the three point cloud attributes and the residual LAI estimation, as well as to assess how
the point cloud attributes respond to changes in elevation. Additionally, we utilized the
coefficient of determination (R2), root mean square error (RMSE), and bias to assess the
accuracy of LAI estimation. The corresponding formulas are as follows:

RMSE =

√
∑n

i=1(xi − x̂i)
2

n
(4)

Bias =
∑n

i=1 (x i − x̂i)

n
(5)

where xi is a reference observation, x̂i is a predicted observation from UAV LiDAR data,
and n is the number of reference observations.

3. Results
3.1. Influence of Elevation on Point Cloud Feature Information and LAI Estimation

In this study, we collected point cloud data along a predefined vertical mountain route,
and quantified the LAI based on the Beer—Lambert law, discrete point cloud transmittance,
and the average off-nadir scan angle of the sample plots (Figure 4a). Our analysis revealed
a substantial linear correlation (R2 = 0.64) between the UAV LiDAR estimated LAI values
and the ground-measured values. However, the UAV LiDAR estimated LAI exhibited a
consistent trend of overestimation, characterized by an error represented by RMSE = 0.84
and Bias = 0.70. As elevation changed, a weak negative correlation (R2 = 0.07) was observed
between the ground-measured LAI and elevation, with a regression slope of −0.011. From
the valley to the ridge, the forest canopy exhibited a trend of transitioning from dense to
sparse. The gridded LAI data generated from the point cloud dataset reveal the vegetation
structure within the study area (Figure 5a). The average LAI predominantly ranges between
4 and 6. Significantly, aside from a small section of bamboo forest in the southwest corner
of the study area (Figure 5b), the DEM in Figure 2 shows that in the secondary mountain
forests, LAI values less than 4 are predominantly found at the mountain peaks (Figure 5a).
Meanwhile, LAI values between 6 to 8, as well as those exceeding 8, are mainly found in the
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valley regions. The competitive environment for sunlight and increased nutrient utilization
rates in the valley resulted in denser tree growth compared to the ridges [34]. Concurrently,
the LAI values estimated using LiDAR showed a more pronounced negative correlation
(R2 = 0.27) with elevation, featuring a regression slope of -0.026 (Figure 4b). This indicates
the influence of elevation on LiDAR parameters when estimating LAI.
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Figure 5. Spatial distribution maps of vegetation structure in the study area. (a) This figure depicts
the spatial distribution of LAI within the study area, offering a visual representation of vegetation
density and distribution. (b) This figure presents the CHM for the same study region, illustrating the
vertical structure and height variations of the vegetation canopy.
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Further analysis uncovered a relationship between LAI estimation residuals and
point cloud feature attributes (Figure 6). The residuals in LAI estimation showed a mild
negative correlation with point density (R = −0.46) and increased as the laser beam footprint
expanded (R = 0.48). In mountainous study areas with constant height measurements by
the LiDAR sensor, the range of laser pulses reaching lower elevations lengthened, causing
the laser beam to diverge and the footprint to expand. Additionally, the average scan
angle of the point cloud within the sample plots emerged as a crucial factor influencing
LAI estimation, demonstrating a moderate negative correlation with estimation residuals
(R = −0.47).
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The scatter plot depicts the changes in three point cloud features with elevation reveals
that plot point density, average off-nadir scan angle, and beam footprint width all vary
with elevation, and the absolute values of the correlation coefficients with elevation have
all exceeded 0.7 (Figure 7). Both point cloud density and average off-nadir scan angle
exhibit positive correlations with elevation, showing correlation coefficients of 0.76 and 0.70,
respectively. In the downhill area, point density can be as low as approximately 50 pts/m2,
while in the uphill region, it can reach as high as 200 pts/m2. The off-nadir angle, denoted
as θ, exhibits significant spatial variability across different plots, showing an increasing
trend with rising elevation. Among these, beams with a small scanning angle are more
likely to penetrate the canopy and reach the ground, especially enhancing the penetration
rate in valley areas. However, due to the spacing between flight lines, ground point
clouds with scanning angles less than 26◦ exhibit significant gaps between the two flight
lines. Point clouds with large scanning angles, as their transmission distance increases,
experience weakened penetration ability or are blocked by the mountain, concentrating
more on the mountaintop. Beams greater than 30◦ can hardly reach the bottom of the valley.
Laser beams with large scanning angles can penetrate to some extent into the interior of the
canopy, especially in the forests on the mountaintop. The complex vertical structure features
of secondary broad-leaved forests are thus portrayed more comprehensively (Figure 8).
However, based on Beer’s Law, with the increase in off-nadir scan angle, the value of cos(θ)
decreases, resulting in a reduced estimated LAI. Conversely, it increases with the opposite
trend. Additionally, there is a significant negative correlation between beam footprint and
elevation (R = −0.98). In the uphill areas, the average footprint diameter is less than 6 cm,
whereas in the downhill regions, it can reach up to 14 cm, representing a twofold difference.
When the footprint diameter increases due to greater sensor-to-ground distance, the energy
distribution area of the laser pulse also enlarges, resulting in decreased energy density.
Consequently, this limitation reduces the pulse’s capability to penetrate the canopy.
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3.2. Comparison of LAI Estimation across Different Slope Positions and Slope Gradient Categories

The influences of elevation and slope gradient distinctly affect the residual error in LAI
estimation. Two-dimensional contour plots reveal an increasing trend in LAI estimation
error as elevation diminishes (Figure 9). The RMSE for LAI estimation increases from
0.63 on the upper slope to 0.86 on the mid-slope, further rising to 1.07 on the lower
slope. The bias also increases from 0.18 on the upper slope to 0.75 on the lower slope,
indicating a significant trend of overestimation in LAI as elevation decreases (Figure 10a).
At the same time, in the mid-to-lower slope regions, the absolute residual error of LAI
estimation increases significantly with the increase of slope, especially in the downhill
position (elevations below 366 m). For plots with a slope gradient exceeding 20◦ in this
region, the relative error (RMSE%) in LAI estimation by LiDAR exceeds 25% (Figure 9).
Additionally, as the slope gradient increases, the correlation between the observed and
estimated LAI values weakens (Figure 10b). Within a 0–15◦ slope gradient range, the R2

value reaches 0.72, with a bias of just 0.4. However, for plots within the 15–30◦ and 30–41◦

slope gradient categories, the R2 values decline to 0.66 and 0.53, respectively. Notably, in
the 30–41◦ slope category, the bias reaches a peak of 0.77.
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Figure 9. Contour plot illustrating the influence of elevation and slope gradient on LAI estima-
tion residuals.
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Figure 10. Comparison of LAI estimation accuracy across different slope positions and slope gradient
classifications. (a) Comparison of LAI estimation accuracy across different slope positions, namely,
upper slope, middle slope, and lower slope. (b) Comparison of LAI estimation accuracy across
categorized slope gradients: 0–15◦, 15–30◦, and 30–41◦.

3.3. Impact of Altering Flight Directions and Increasing Flight Lines on the Accuracy of
LAI Estimation

Comparing the LAI estimation results derived from point cloud data collected during
flights along vertical mountain orientations (Figure 3), the parallel mountain orientation
yielded an R2 of only 0.67 between the estimated and measured LAI values. The bias
decreased from 0.70 to 0.44, indicating that the tendency of LiDAR to overestimate LAI
appeared to be mitigated. However, there was almost no difference in the RMSE between
the two single flight path estimations, with values of 0.84 and 0.85, respectively (Figure 11a).
The LAI estimation accuracy noticeably improved with the cross-track dual flight line
design, with an R2 of 0.70 and an RMSE of 0.75 (Figure 11b). Further breaking down the
results by slope position and gradient, it was observed that the R2 values between the
estimated and actual LAI values for different slope positions using the dual flight lines
were slightly higher than those obtained using single flight lines (Figure 12). There was a
significant reduction in the RMSE, with decreases of 71% and 30% for the upper and lower
slope positions, respectively (Figure 12a). Among different slope gradient classifications,
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the two categories with a gradient less than 30◦ showed increases in R2—of 0.15 and
0.07, respectively—in the dual flight line estimation as compared to the single flight line
results (Figure 12b). For slopes exceeding 30◦, the R2 between estimated and measured LAI
values actually decreased when using the dual flight lines. The RMSE exhibited varying
degrees of reduction. When transitioning from single to dual flight lines, the 15–30◦ slope
gradient category showed only a minor RMSE reduction. However, for the 0–15◦ and
30–41◦ gradient categories, the RMSE decreased by 20% and 8%, respectively.
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Figure 11. LAI estimation comparisons using different flight trajectories. (a) LAI estimations derived 
from VMO and PMO. (b) LAI estimation using the CFL design. 
Figure 11. LAI estimation comparisons using different flight trajectories. (a) LAI estimations derived
from VMO and PMO. (b) LAI estimation using the CFL design.
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Figure 12. Comparison of LAI estimation accuracy for different slope positions and slope gradations
between single and double flight lines. (a) Depicts the comparison of LAI estimation accuracy
between two different flight plans (VMO and CFL) across various slope positions (upper, middle,
and lower slopes). (b) Compares the LAI estimation accuracy of the two different flight plans (VMO
and CFL) across three slope categories (0–15◦, 15–30◦, and 30–41◦).
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4. Discussion
4.1. Terrain Relief’s Effect on LAI Estimation through Uneven Point Cloud Density

The complexity of terrain in mountainous forest regions, particularly the relative
elevation difference, is a primary objective factor leading to significant spatial variation in
point cloud density within the study area. The point cloud density in sample plots ranged
between 58 and 191 pts/m2, exhibiting substantial spatial variability that decreased with
decreasing elevation. The main reasons for this phenomenon are as follows: (1) The energy
of laser pulses decreases with the increase in detection distance. In the case of fixed-altitude
flight for UAV, the energy of laser pulses reaching the canopy decreases, subsequently
reducing the probability of triggering echoes. (2) Low-flying UAV laser beams with large
scanning angles may be obstructed by ridges, leading to lower point cloud density in valley
areas and on slopes without flight lines, resulting in low-density sample plots (Figure 13).
While high point cloud density enables a detailed representation of forest canopy details,
low-density point clouds may increase LAI estimation errors due to missing local canopy
points. The increasing trend of LAI estimation residuals with decreasing elevation in this
study supports this observation. In operations in complex mountainous terrain, UAV flight
lines often fail to meet the requirements for high and uniform point density, resulting in the
coexistence of high-density and low-density regions in the surveyed area [23]. However,
some studies, based on the random subsampling of original point clouds classified by
density, compared the impact of different point densities on canopy structure parameters.
Contrary to expectations, these studies suggested that as point cloud density decreases,
with minimal changes in canopy closure and gap ratio, the impact on LAI extraction is
minimal. This comes at the cost of sacrificing spatial resolution in LAI extraction [35]. Even
at a point cloud density of 16 pts/m2, canopy structure parameters can still be extracted
with 95% accuracy at a sampling scale of 5–20 m [23]. Following the detailed depiction
of the forest canopy in the original high-density point cloud, sparse resampling based on
random principles does not alter the pattern of canopy anisotropic characteristics. However,
the existence of low-density point clouds due to terrain or flight line planning issues leads
to local information gaps in the canopy and insufficient capture of directional gap ratios,
resulting in an overestimation of LAI [36].
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4.2. Impact of Terrain-Induced Beam Scan Angle and Footprint Spatial Heterogeneity on
LAI Estimation

Compared to traditional airborne platforms, UAV LiDAR can achieve a higher point
cloud density, primarily benefiting from not only low-altitude flight paths but also its
wider scanning angle. When flight speed, altitude, overlap, and other parameters remain
constant, expanding the scanning angle in the same area to achieve the specified point
density allows for faster completion of measurement tasks. Alternatively, within the same
time frame, a wide scanning angle can capture a larger area of point clouds. However,
the efficiency advantage of wide scanning may be offset by significant biases in canopy
structure parameter estimation. The data in this study represent a case in which wide
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scanning angles were adopted to balance efficiency considerations. On mountain tops,
more laser pulses with large scanning angles are intercepted, while in valley areas, the
steep slopes on both sides obstruct the large-angle beams, making it challenging for them
to reach the valley floor (Figure 13). This phenomenon is also a primary reason for the
average off-nadir angle of plot point clouds reaching its maximum near ridgelines and
generally being smaller in valley areas. The spatial structural variation of the average
off-nadir angle with increasing elevation will result in systematic errors in LAI estimates
based on Beer’s Law. Meanwhile, the increased deviation of the laser beam from the
nadir leads to a longer path through the canopy, heightening the canopy’s occlusion effect.
This tendency amplifies LiDAR’s underestimation of gap fraction and overestimation of
LAI, especially with wider scanning angles. Consequently, researchers have explored
the impact of scan angles on estimating gap fractions using ALS data and recommended
avoiding off-nadir angles exceeding 23◦ [27]. Brede et al. [37] showed that when the
absolute off-nadir scan angle (ASA) reached 40◦, the occlusion showed a difference of
≤5% compared to ASA = 0◦. Subsequently, occlusion increased linearly until reaching
an ASA of 60◦, after which it increased significantly. Scan angles between 30◦ and 40◦

proved optimal for trunk detection [38]. Avoiding large off-nadir angles enhances gap
estimation, mitigating issues in estimating gaps within heterogeneous stands characterized
by between-crown gaps [37]. Zheng et al. [36] also advised against overlooking scan angle
details in forest canopy parameter retrieval, especially with wide-angle ALS data (−30◦

to 30◦). Quantifying directional gap fraction may reveal canopy anisotropy and deepen
understanding of canopy radiation and reflection. The ongoing discussion on establishing
the maximum LiDAR scan angle persists. A more comprehensive understanding of angle-
induced biases in estimating canopy structure parameters would facilitate quantifying the
balance between cost and predictive bias. Given the typically higher off-nadir angles in
UAV LiDAR, methodologies should account for viewing angles during development.

The footprint size of the laser beam is another crucial instrument parameter that
restricts the penetration of laser pulses through the canopy and accurately captures gap
fraction and LAI. Due to the divergent nature of the laser beam, the UAV LiDAR footprint
size increases with the detection distance. When collecting point clouds at a constant
altitude, the footprint size increases with decreasing elevation. Similar to increasing flight
height over flat terrain, the rated pulse energy is distributed over a larger footprint area.
This results in a decrease in irradiance on the canopy per unit area, and the concentration
of peak pulse power shows a decreasing trend [39]. For a pulse encountering partial
interception, the remaining energy may be insufficient to trigger higher-order return,
leading to the inability to obtain information about the interior of the canopy and the
terrain, and even missing ground point clouds in local areas [35]. Clear evidence from
this study indicates that the estimation error of LAI increases with decreasing elevation
and reaches its maximum at the downslope position (Figure 12a). Additionally, there are
significant differences in the beam divergence among different instruments. For example,
the Reigl VUX-1LR laser has a beam divergence of 0.5 × 0.5 mrad, while the Reigl miniVUX-
1 used in this study has a divergence of 1.6 × 0.5 mrad. At a flight altitude of 100 m, the
footprint size reaches 16 cm × 5 cm. This leads to many gaps within the canopy that are
too small to be detectable, which is a primary reason for the substantial overestimation of
LAI in this study.

4.3. The Impact of Slope on LAI Estimation

This study focuses on mature, typical evergreen broad-leaved forests in the Central
Asian belt, characterized by dense canopies and complex vertical structures. The average
slope of 49 ground-measured plots is 23◦, with an average (LAI of 5.13. The cross-track
collection of point clouds resulted in an LAI estimation RMSE (root mean square error) of
0.75. As the slope grade increases, the correlation between measured and estimated LAI
values decreases. Notably, in plots with a slope greater than 30◦ (17 in number), the RMSE
rises to 0.89, RMSE% ≈ 17%, indicating a higher estimation error than the average for the



Forests 2024, 15, 17 14 of 17

entire study area. Studies demonstrated that LAI products derived from remote sensing in
high-altitude and rugged terrain have significantly lower accuracy compared to flat areas.
Satellite-borne LiDAR (GLAS) also faces substantial challenges in forest LAI inversion in
complex terrains, yielding better results (R2 = 0.69 and RMSE = 0.33) only when the slope
is less than 20◦ [40]. A simulation results based on the DART model also show that the
LAI estimation error on slopes increases significantly as the slope angle increases [41]. Jin
et al. [42] validated the accuracy of the GLASS and MODIS LAI products in the mountainous
regions of Southwest China using high spatial resolution LAI with RMSEs of 1.72 and 1.75
and relative errors of −71% and −67%, respectively. A notable limitation of LAI estimation
using discrete point clouds is that in the process of terrain normalization, the shape of
the canopy and the position of the treetop may be systematically distorted, leading to
reduced complexity in the vertical distribution of the plant area index (PAI). However,
the degree of change in the PAI profile is not solely determined by the steepness and
roughness of the local terrain but is a result of the interplay of local topography and the
distribution of trees on the landscape surface. More complex terrain does not necessarily
lead to more variability [28]. In reality, LAI2000 observations or fisheye images collected
on the ground also face uncertainties due to terrain influences. A direct manifestation of
the terrain effect is that the slope increases the gap fraction down-slope because the path
length is reduced, while the up-slope gap strongly decreases down to the topographic mask
where soil is seen. When computing azimuthally averaged gap values, down-slope and up-
slope effects approximately compensate [15]. Whether terrain effect correction is necessary
remains a subject of debate [14]. For dense forests like those in this study, estimating LAI
based on discrete point clouds is an efficient and accurate method. Although larger slopes
indeed affect the correlation between LiDAR estimates and ground measurements, the
estimation error does not monotonically increase with slope grade. Future slope effect
evaluations may benefit from the “incidence angle normalization” method to enhance the
correlation between LiDAR and ground measurements. This involves dividing ground
measurements taken parallel to the slope by the cosine of the slope angle and adjusting the
LiDAR scanning angle to be relative to the normal of the slope surface, then calculating
LAI based on Beer’s law.

4.4. Optimizing Flight Planning and Prospects for LAI Estimation in Mountainous Forests

In mountainous forest survey areas, the undulating terrain leads to significant spatial
heterogeneity in point density, scanning angle, and laser footprint, which substantially
affects LAI estimation based on UAV LiDAR. High-power, long-range, and small-footprint
airborne laser scanning instruments are preferred for estimating structural parameters in
mountainous forests. Additionally, the design of UAV flight paths is crucial for the quality
of the collected point cloud data. Cross-track dual flight line designs more comprehensively
collect forest canopy gap rates with anisotropic characteristics, facilitating more accurate
LAI estimation. This study aims to investigate the impact of terrain factors on point cloud
attributes and forest LAI under conventional flight path designs. While this is limited to
dense, randomly distributed canopies, it represents one of the most challenging scenarios.
This is a preliminary attempt to optimize flight path design to improve the accuracy of
canopy structural parameter estimation. Although adding flight paths increases the cost
of data acquisition, it also enhances the representativeness of the data [36]. There is still
much experimental work to be done to improve the representativeness of LAI estimates
in mountainous forests through optimized flight path design. Future experiments should
explore whether terrain-following flight paths can homogenize point cloud density and
scanning angles, thereby increasing the robustness of LAI estimation. It is important to
coordinate flight altitude, maximum scanning angle, and overlap rate to capture more
comprehensive canopy characteristics, while also considering data collection efficiency.
In conclusion, fieldwork in near-ground remote sensing studies should be valued. Flight
survey plans should be scientifically and rationally set according to terrain and other
relevant environmental factors, aiming to obtain high-quality point cloud data.
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5. Conclusions

In this study, using UAV LiDAR technology, we explored the influence of terrain factors
on the estimation of LAI in subtropical mountainous secondary broad-leaved forests. Based
on field investigations and data collection in the Castanopsis fargesii Natural Reserve in
Sanming City, Fujian Province, we drew the following conclusions.

The LiDAR estimated that LAIs from the unidirectional UAV flight path display a
strong linear correlation (R2 = 0.64) with ground-measured values in subtropical mountain-
ous secondary broadleaf forests. However, the LiDAR overestimates the ground-measured
values (RMSE = 0.84, Bias = 0.70), and exaggerates the trend of increasing forest LAI with
decreasing altitude. Slope acts as a limiting factor in the correlation between estimated and
ground-measured LAI values. While slopes > 30◦ exhibit higher residuals compared to the
study area average, no clear monotonic relationship exists between LAI estimation error
and slope changes.

Altitude governs the spatial distribution of plots’ point cloud attributes (point cloud
density, average off nadir angle, and average beam footprint diameter), and the LAI
estimation residuals have a significant linear correlation with these attributes. As the point
density and off-nadir angle increase with altitude, the LAI estimation residuals continue to
decrease at first, followed by a transition in LiDAR’s overestimation of LAI measured values
to underestimation. Additionally, with larger beam footprint diameters, LAI overestimation
becomes more obvious. The mountain obstruction leads to an increase in large scan angle
pulses returned from its peak, resulting in a higher average off-nadir angle of the point
cloud on the mountain top. According to the Beer–Lambert law, a lower cos(θ) yields a
smaller LAI value. This simply offsets the overestimation of LAI caused by insufficient
LiDAR penetration in the dense canopy and reduces the estimation residual error of LAI in
the mountaintop area.

UAV flight path design also determines the quality of the collected point cloud. Com-
pared to a single flight path, cross-track dual flight line designs more comprehensively
collect the forest canopy gaps with anisotropic characteristics. This improves the correlation
between estimated and ground-measured LAI values in mountainous forest survey areas,
reducing estimation errors across different slope positions and gradient levels. Further
optimization in flight path design can enhance the representativeness of LiDAR-based
estimation of LAI in mountainous forests. Exploring the impact of terrain-following flights,
optimal scan angle ranges, and overlap settings is essential for refining LAI estimation.
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