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Abstract: As remote sensing transforms forest and urban tree management, automating tree species
classification is now a major challenge to harness these advances for forestry and urban management.
This study investigated the use of structural bark features from terrestrial laser scanner point cloud
data for tree species identification. It presents a novel mathematical approach for describing bark
characteristics, which have traditionally been used by experts for the visual identification of tree
species. These features were used to train four machine learning algorithms (decision trees, ran-
dom forests, XGBoost, and support vector machines). These methods achieved high classification
accuracies between 83% (decision tree) and 96% (XGBoost) with a data set of 85 trees of four species
collected near Krakow, Poland. The results suggest that bark features from point cloud data could
significantly aid species identification, potentially reducing the amount of training data required by
leveraging centuries of botanical knowledge. This computationally efficient approach might allow
for real-time species classification.

Keywords: urban forest inventory; tree species classification; bark features; machine learning; point
cloud data; LiDAR scanning

1. Introduction

The identification of tree species is a fundamental aspect of measuring and monitoring
forests and urban trees, providing critical insights into ecosystem dynamics, species-specific
ecosystem services, and economic considerations such as timber values. Accurately identi-
fying tree species is crucial for making informed decisions, ecological conservation, and
sustainable resource management in urban and rural environments. With the growing
adoption of remote sensing technologies in the fields of forestry and urban forestry, the
task of automatic species classification has gained paramount importance.

Traditionally, species identification for inventories has relied on labor-intensive field
surveys and manual observations by trained foresters or botanists. However, the emergence
of remote sensing technologies has revolutionized this process by enabling large-scale non-
invasive data collection. In this context, the automatic classification of tree species has
become a critical challenge and a focus of extensive research efforts.

To date, several methods have been successfully employed for tree species classifica-
tion, with many of them primarily relying on RGB images as the primary data source. While
these methods have yielded promising results, they often overlook valuable information
contained within the point cloud structure of a tree’s stem. Point clouds, generated through
LiDAR (Light Detection and Ranging) or photogrammetry, offer a three-dimensional repre-
sentation of the forest environment, including the stems of individual trees, when using a
terrestrial platform [1].
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Laser scanning is used in forestry and urban forestry for various applications, in-
cluding forest inventory, tree mapping, and monitoring of individual tree characteristics.
In forestry, laser scanning techniques, such as Airborne Laser Scanning (ALS), Terres-
trial Laser Scanning (TLS), including mobile LiDAR systems such as handheld systems,
and Mobile Laser Scanning (MLS), have been widely investigated for applications in
forest inventory [2,3]. These techniques provide efficient means for acquiring detailed
three-dimensional (3D) data from vegetation, enabling the extraction of tree and forest
parameters such as tree height, crown dimensions, and biomass [4–16].

In urban forestry, laser scanning is used for mapping and monitoring single tree
characteristics, providing a convenient tool for measuring tree attributes in cities and urban
forests [12,17–20]. ALS can be used to generate high-resolution spatially explicit maps of
urban forest structure, including the detection, mapping, and characterization of individual
trees [21]. TLS has also been applied in urban forestry for capturing detailed 3D tree
structures and monitoring tree growth and health [22,23].

Tree species classification using LiDAR data is typically based on extracting specific
features from the point cloud data, such as geometric, radiometric, and full-waveform
features [24]. These features can be used to differentiate between tree species based on their
unique structural and reflectance properties. Researchers have developed various methods
for tree species classification using LiDAR data, including deep learning models [25–29],
individual tree segmentation and shape fitting [30], and also combined LiDAR with data
from other sensor types like hyper- or multispectral data [31].

For example, a study using a 3D deep learning approach achieved an overall accu-
racy of 92.5% in tree species classification directly using ALS point clouds to derive the
structural features of trees [27]. Another study proposed a method based on the crown
shape of segmented individual trees extracted from ALS point clouds to identify tree
species [30]. These and other studies, e.g., [24–26,28,31–58], demonstrate the potential of
LiDAR technology in providing accurate and efficient species classification in forestry and
ecological applications.

However, individual tree segmentation and shape fitting methods using LiDAR data
for species classification can face challenges in dense forests [32], be sensitive to data qual-
ity [59], have limitations in capturing species-specific features [47], and require significant
computational resources [60]. Integrating additional data sources and developing algo-
rithms that are more advanced can help address these drawbacks and improve the accuracy
and efficiency of tree species classification using LiDAR data.

While textural features of tree organs like leaves or flowers vary notably because
of seasonal change, the morphology of tree bark remains constant across seasons. Most
previous work has been based on RGB images of tree stems. While this approach has been
very successful, reaching accuracies well above 90% [61,62], the quality of such images
can vary with contrasting or insufficient lighting conditions of the trunk, and such images
can only be acquired during daylight hours. Although LiDAR point clouds should not
be affected by lighting as much as RGB images are and can be collected even at night, the
potential of utilizing structural bark characteristics derived from LiDAR point cloud data
for tree species identification remains largely untapped.

While [44,63] have already used structural bark features, this paper tries to address
this critical gap by exploring the utility of structural features traditionally used by experts
to identify tree species based on their bark and stem characteristics. Apart from bark
color, botanists use structural features like ridges, fissures, peeling, or scales, which have
been described, amongst others, in [64]. To our knowledge, this is the first attempt to
describe these structures mathematically and to derive features for machine learning from
this description.

We test whether machine learning models can differentiate between various common
Central European tree species (Acer platanoides L., Fraxinus excelsior L., Robinia pseudoacacia
L., Larix decidua Mill., Fagus sylvatica L.). Our study goes beyond the conventional reliance
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on RGB images and demonstrates the potential of adding LiDAR point cloud information
to enhance the automatic classification of tree species.

If successful, this approach has the potential to make a significant contribution to the
field of remote sensing applications in forestry and urban forestry. Providing an additional
tool for accurate tree species identification will have implications for improved forest
management, conservation efforts, and sustainable urban planning.

2. Materials and Methods
2.1. Trees and Scanning

LiDAR point clouds of 85 trees (Table 1) were acquired from mature trees in forests
around Krakow by the company ProGea 4D, Poland, using a Faro laser scanner.

Table 1. Number of individuals sampled per species.

Species n Mean Diameter, m

Acer platanoides 18 0.29 ± 0.06
Fraxinus excelsior 14 0.22 ± 0.05

Robinia pseudoacacia 17 0.59 ± 0.15
Larix decidua 17 0.30 ± 0.05

Fagus sylvatica 19 0.72 ± 0.29

TLS point clouds were not very noisy. There were no moving objects in the scans (e.g.,
people or animals), and the scanning was performed on a windless day. The only noise
that was created was probably in the tree canopy, at the edges of the leaves. Filter tools
available in the Faro Scene 2023 software were completely sufficient to avoid processing
the TLS cloud in external software (e.g., SOR filter in Cloud Compare 2.12.4).

All trees had fully developed mature bark features.

2.2. Feature Creation

The bark analysis method for tree species identification that is presented here is based
on set theory and algebraic mathematical methods. The bark is characterized by several
parameters. These parameters form a model of the bark. More precisely, it is a vector space
that is provided with a distance measure, a metric space (X, d) [65–67].

Each tree and its associated bark structure are represented as a vector in a vector space.
The elements of a vector are the parameters listed in Table 2.

Further information exists for each point, which is determined using LiDAR scanning.
This includes, for example, time stamps and color values. However, these are of secondary
importance for the bark analysis. The tree species therefore form a real subset of X. Each
tree species has a number of comparable elements per vector. The metric d of the vector
space is required to enable the tree species sets to be separated by a distance value.

To analyze tree bark surfaces using digital point clouds, they must be described and
quantified through standardized methods. This project aims to propose a method for
standardization that evaluates the parameters of rib structure, spacing, spatial orientation,
and appearance.

Definition 1. Ribs are elevations that differ from a “smooth” bark surface by an additive positive
value ε as the difference value.

The clusters represent open subsets. This is the case because a cluster does not contain
all accumulation points. The general concept of a vector space can therefore be made more
precise. It is a topological space M in which the separation axiom T2 [68], the Hausdorff
separation axiom, applies. This means that no cluster exists that is identical to either its
predecessor or its successor. Mathematically speaking, a point cloud in which only disjoint
clusters exist is a Hausdorff space.
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Table 2. Features derived from point clouds.

Parameter Acronym Explanation

Geometric description

Follow cluster left/right CL-LR The subsequent cluster of the rib is oriented to the right or left.

Follow clusters form diagonal left/right CL-D The sum of the subsequent clusters of a rib form diagonals that run to
the right or left.

Follow clusters vertical CL-V The subsequent cluster of a rib is located vertically below
its predecessor.

Follow clusters horizontal CL-H The subsequent cluster of a rib is located horizontally next to
its predecessor.

Follow clusters branched CL-B The subsequent clusters of a rib form a branch.

Follow clusters in right angle left CL-AL The angle formed between a subsequent cluster (to the left of the
perpendicular) and a perpendicular that intersects the predecessor.

Follow clusters in right angle right CL-AR The angle formed between a subsequent cluster (to the right of the
perpendicular) and a perpendicular that intersects the predecessor.

Rib characteristics

Horizontal behavior The horizontal proportion of gradients, slopes, and horizontal
components in a bark grid.

Rib spacing The distance between two rib clusters.

Roughness The roughness is defined by the sum of all cluster points with a higher
or lower ε value of a rib.

Proportion of smooth surface Proportion of smooth to rough (ribbed) surface.

These clusters must be adjacent, i.e., they must be spatially close to each other and
parallel to the trunk diameter, the abscissa axis. A point, as defined in this model, is a 15-
dimensional vector. An important element is the cluster size CSize. This specification makes
it possible to form clusters with similar properties that satisfy the following conditions:

CSize
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(1)

with x ∈ trunk diameter, y ∈ bark depth, z ∈ trunk length, and

ymin
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∑n
i=1(yi − yi−1) > 0

n
(2)

The direction of x, y, and z coordinates is illustrated in Figure 1. By using clusters
with similar sizes and properties, it is possible to trace structures along z. All clusters with
similar structures represent elements of a meta-cluster, which in turn represents the bark
rib. The clustering of the meta-cluster and the analysis of the bark structure is carried out
using the AI software Dylogos 2.0. With the help of the software, it is possible to analyze
the individual data of a point cloud.

For the study of the similarity of ribs, the following properties are considered:

• Rib width;
• Depth between two adjacent ribs;
• Distance between the ribs;
• Shape of the ribs, fissures, roughness, etc.

In the model described here, 11 evaluation criteria are defined which serve to classify
the species (see Table 2).

These 11 evaluation criteria plus the three spatial axes and the cluster size form the
15 elements of the vector and thus of the cluster.
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The following cluster axioms constitute the model:

• Axiom 1: Each model has at least one cluster.
• Axiom 2: Every model has no zero cluster.
• Axiom 3: More than one successor cluster can exist.
• Axiom 4: Each cluster contains information about its predecessors.
• Axiom 5: If no subsequent cluster exists, the number of predecessors defines the length

of the ridge. This forms the 15th element of the cluster vector.
• Axiom 6: All clusters with similar properties and a spatial proximity form elements of

a bark rib.
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Figure 1. Illustration of the orientation of x, y, and z coordinates.

Figure 2 (Figures 2 and 3 are visualizations of the clusters identified by Dylogos) of
Robinia bark will explain this in more detail. It shows the bark structure as a cluster cloud.
Based on this, axioms 1–6 will be shown in the following. Axioms 1 and 2 are fulfilled. The
first cluster in the red circle has several successors (axiom 3 and 4).

The cluster A is the last cluster of the row (axiom 5) and is the end element of the rib
(axiom 6). The elements of the green circle form a meta-cluster structure. By this structure,
we can also recognize the spatial orientation. In this case, it is diagonal. The clusters in the
yellow circle are examples of horizontal as well as vertical structures. The middle cluster
in the second row of the red circle is an example of branching. Structures that are more
complex may have a combination of features. Each bark is individual, like a fingerprint,
but shows characteristic relationships per species. These are shown in the figure below
as an example for a Robinia pseudoacacia. The data shown therein are an excerpt from the
training data.
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In Figure 3, which is based on Figure 2, the diagonal and vertical alignments as well
as the branching have been highlighted.
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Areas without cluster points are areas that lie below the average bark surface. These
points are suppressed in the display but are taken into account for the evaluation of
roughness. The average bark surface is determined using average values from the decision
grid and forms a meta-level for the entire trunk.

Figure 3 shows all clusters that have a positive distance from the average bark surface,
the ϵ value. Figure 4 shows a section of Figure 2, in which the meta-plane, the average bark
surface, and an example of ε are plotted.
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Point − α > 0
with α = mean value and MCluster ⊆ Point The mean value represents the average roughness
of the meta-cluster, i.e., the reference bark. The circle is the graphical representation of the
mean value of the meta-cluster. The blue bark curve, which is shown as a deviation from
the mean value of the meta-cluster, is not formed by individual points but by clusters. The
clusters represent a large number of points. All cluster elements that lie above the meta
level are considered for the analysis; these are the elements of the set MCluster. All cluster
elements are determining elements of the evaluation and recognition of the bark using this
method. The only value that has no reference to the meta-level is that of the gradient. This
value is an evaluation of the surface of each individual ridge. The evaluation consists of
looking at each rib cluster and its orientation in space in comparison to its predecessor and
successor. The number of successor clusters that show positive, negative, or no change
along the Y-axis is decisive for the evaluation.

The LiDAR data were available as LAS files. For the bark analysis, a trunk section
of 2 m was used, which was divided into 40 × 40 cm grids. These grids were used to
determine an average bark grid and thus an average bark pattern. All parameter values
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were determined from this grid. If the bark is evenly comparable over large parts or the
entire trunk, all grids are combined into one grid.

The evaluation was carried out using the AI software Dylogos 2.0. The Dylogos soft-
ware transforms the LAS data into XYZ data. These are then clustered into the two groups:

1. Geometric description of the bark;
2. Rib characteristics.

The features created in this way were further analyzed with R.

2.3. Machine Learning

For the quality of the decision making, the clustering of the training data is of particular
importance. In the following, the four methods applied in this study and their structural
differences will be applied to the bark model. These are as follows:

• Decision trees;
• Random forests;
• XGBoost;
• Support vector machines.

Their results can be characterized by two parameters. These are the accuracy and the
predictive power of the trained system. The way of calculating the accuracy by means of
the confusion matrix is identical for all four methods. A confusion matrix is a 2 × 2 matrix
scheme. The elements of the matrix are as follows:

• True Positive (TP);
• False Positive (FP);
• True Negative (RN);
• False Negative (FN).

All four elements are taken into account in the machine learning process.
Here, the evaluation of a condition and its future development is judged. The as-

sessment can be true or false, and the respective expression can turn out to be positive
or negative for the assessment model in the future. The rows are filled with the actual
condition and the columns with the predicted condition.

Each data set is now classified into one of the four elements (classes) of the matrix
according to the model generated using the training data. The accuracy value is determined
as follows:

Accuracy =
TP − TN

TP + TN + FP + FN
(3)

The accuracy value is between 0 and 1. A value > 0.9 is a good value. A value > 0.7 is
good, and 0.7 is a fair result.

The four methods differ in the prediction condition. The decision tree and random
forests methods use the roc auc value (Compute Area Under the Receiver Operating
Characteristic Curve) to parameterize the prediction. The roc auc value is between 0 and 1.
A value of 0.5 represents a random estimate.

The XGBoost and the support vector machine methods use κ (kappa) for the quality
of the prediction. κ or Cohen’s kappa is a measure of interrater reliability and thus a
parameter that reflects the agreement or disagreement between two observers on a de-
cision. The authors of [69] suggest that κ < 0 = “poor agreement”, 0 < κ < 0.2 = “slight
agreement”, 0.21 < κ < 0.40 = “fair agreement”, 0.41 < κ < 0.60 = “moderate agreement”,
0.61 < κ < 0.80 = “substantial agreement”, and κ > 0.81 = “almost perfect agreement”.

Table 2 shows the parameters used. This structure corresponds to the generated
evaluation database. They are divided into two blocks:

• Geometric description of the bark;
• Rib characteristics.

These give the geometry of the bark, a description of the bark’s appearance, and the
description of the individual ribs.
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The machine learning methods we investigated differ not only in their functionalities,
which will be discussed in more detail, but also in the different weighting and therefore
relevance of the various parameters. The type and number of parameters taken into account
vary from method to method.

2.3.1. Decision Trees

The decision tree method is based on the assumption that all information important
for a decision is available in the training data sets. The trees have a uniform structure in
the form that the leaves of the tree describe classes and the branches form conjunctions of
features that then lead to a class.

Decisions are thus better structured. The path of a decision is not a linear path but
has nodes with branches. The choice of which branch to select is made by means of a
decision function that is derived from the training data. In most cases, the decision function
separates within a cluster whether values are larger or smaller than a target value.

2.3.2. Random Forests

In the random forest method, the samples used to determine the tree structure are
randomly selected from the training data. After a new node is created, the samples are
added back to the training set. At each node, a randomly selected subset of criteria from
the entire set of criteria is used to make a decision (branch). The selection of features is
performed to minimize the impurity of the overall model. Due to the randomness, multiple
decision trees are created per training set, forming a decision forest. The predictions of the
individual trees are then aggregated to produce an overall prediction.

2.3.3. XGBoost

In the XGBoost model, the fitting of a tree structure is performed using a loss function.
The tree structure is generated, starting from a starting point, by means of the Newton
method. Each new node is considered as a new model and optimized by a loss function.

2.3.4. Support Vector Machines

A support vector machine (SVM) is a discriminative machine learning model that uses
a hyperplane to separate training data into two classes. Unlike the DBSCAN clustering
method, which searches for the elements with the smallest distance to the hyperplane,
SVMs search for the elements with the widest distance to the hyperplane. This results in
data clusters with sharp boundaries.

The analyses were implemented in R [70]. Models were fitted with 10-fold cross-
validation on a training data set of 75% of the samples and tested on the remaining
25%. Features with near-zero variation and closely correlated features were removed
prior to analysis. When necessary, features were Yeo-Johnson transformed. All features
were normalized.

Finally, Figure 5 illustrates the entire process as a workflow for greater clarity.
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3. Results
3.1. Features

The calculation of the features was computationally very efficient and was conducted
on a recent desktop PC (DELL Latitude, CPU Intel Core i5-6300, 8,00 GB Ram).

Some of the proposed features were correlated, e.g., roughness and smoothness
(r = 0.81), behavior and smoothness (r = 0.91), or behavior and CL-LR (r = 0.85). Only
one of each pair was used for further analyses. Before transformation, the distributions of
most features were highly skewed.

Fagus sylvatica had the most distinctive set of bark features. It was the species with the
smoothest bark (Figure 6a) and the lowest spacing between ribs (Figure 6b).

3.2. Machine Learning

The decision tree (Figure 7) performed less well than the other approaches and reached
an accuracy of 83% and a roc auc score of 94%. R. pseudoacacia with its very distinctive bark
was the first species that was split from the others in this model.

The remaining three methods performed equally well, with accuracies between 92%
and 96% even for this small data set of 85 trees (Table 3 and Figure 8).
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The green area represents the proportion of members of the test sample set (not used in the training
of the models) classified correctly, while red represents false classifications.

The other more complex methods achieved 96% accuracy in predicting the species of
the test population. However, the predictions of the random forest model were compar-
atively poor for F. excelsior (Figure 8b). Overall, the XGBoost model had the best results
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(Table 3 and Figure 8d). The difference between the accuracy value and κ, the value of the
prediction, is the smallest of all the presented models.

The ranking of feature importance was not similar for all models. The most important
feature for the XGBoost model was “Cluster cluster left/right” (CL-RL), followed by
“clusters vertical” (CL-V) and bark roughness (Figure 9). The decision tree, on the other
hand, used only the features “CL-V”, “CL-B”, and “Spacing” to classify species (Figure 7).
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4. Discussion

Trees provide a wide range of ecosystem services in urban areas, including air and
water purification, noise reduction, and temperature regulation [71]. Up-to-date tree
inventories are essential for effective tree management and monitoring of their ecosystem
services [72]. Terrestrial Laser scanning (TLS) can make tree inventory data collection
much more efficient than traditional methods [73], but species identification from TLS point
clouds is still challenging.

In this study, we hypothesized that bark features traditionally used by botanists, like
ridges, crevices, and smoothness, could be described mathematically and applied to species
identification from TLS point clouds. The approach we presented differs from the very few
other recently published approaches, such as that of [44], in the kind and number of bark
features considered.

Since different machine learning methods are structurally different, we tested the
performance of several approaches. The accuracy of all methods was high, despite the
rather small data set used. Our results suggest that the mathematical description of bark
features used by botanists could be used to complement, or even provide advantages over,
the black-box approaches used so far.

Correct species identification is essential for tree inventories, as it is the basis for,
amongst other things, ecosystem services calculations, tree maintenance, and tree risk
management. Our method will complement other approaches to identify tree species
based on remote sensing data, will help to increase overall accuracy, and thus, will support
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the more efficient creation of tree inventories. This assumption is based on a timesaving
potential as well as the future possibility of the partial automation of this process.

However, our study has some limitations. First, the number of trees and tree species in
our data set was relatively small. Secondly, we only used trees with fully developed mature
bark characteristics. This means that the trees examined had diameters corresponding
to the age class. Future research should focus on increasing the size and diversity of the
training data set to improve the accuracy and robustness of the machine learning models.
Additionally, the models should be tested on younger trees because the bark structure can
change significantly during the lifetime of a tree [74]. Although present on some trees,
we did not study the effects of epiphytes growing on the bark on the accuracy of species
identification. Furthermore, the models should be integrated into existing tree inventory
workflows to assess their feasibility for practical use.

5. Conclusions

This study provides promising evidence that explainable bark features can be used
to identify species from TLS point clouds. A model of bark features based on expert
knowledge could potentially reduce the number of required samples in comparison to
black-box approaches. This could result in more efficient and accurate collection of tree
inventory data, which is crucial for the effective management and monitoring of their
ecosystem services in urban areas. This computationally efficient approach might allow for
real-time species classification.
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