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Abstract: Forest aboveground biomass (AGB) is integral to the global carbon cycle and climate
change study. Local and regional AGB mapping is crucial for understanding global carbon stock
dynamics. NASA’s global ecosystem dynamics investigation (GEDI) and combination of multi-source
optical and synthetic aperture radar (SAR) datasets have great potential for local and regional AGB
estimation and mapping. In this study, GEDI L4A AGB data and ground sample plots worked as
true AGB values to explore their difference for estimating forest AGB using Sentinel-1 (S1), Sentinel-2
(S2), and ALOS PALSAR-2 (PALSAR) data, individually and in their different combinations. The
effects of forest types and different true AGB values for validation were investigated in this study,
as well. The combination of S1 and S2 performed best in forest AGB estimation with R2 ranging
from 0.79 to 0.84 and RMSE ranging from 7.97 to 29.42 Mg/ha, with the ground sample plots used as
ground truth data. While for GEDI L4A AGB product working as reference, R2 values range from
0.36 to 0.47 and RMSE values range from 31.41 to 37.50 Mg/ha. The difference between using GEDI
L4A and ground sample plot as reference shows obvious dependence on forest types. In summary,
optical dataset and its combination with SAR performed better in forest AGB estimation when the
average AGB is less than 150 Mg/ha. The AGB predictions from GEDI L4A AGB product used as
reference underperformed across the different forest types and study sites. However, GEDI can work
as ground truth data source for forest AGB estimation in a certain level of estimation accuracy.

Keywords: GEDI L4A AGB product; optical datasets; SAR datasets; ground sample plots; AGB
estimation; RF

1. Introduction

Forest is one of the most important ecosystems on Earth. It plays a vital role in
mitigating climate change through absorbing a significant amount of carbon dioxide and
releasing oxygen. Forest also serves as critical water sources, which contribute to water
cycle maintenance and water quality [1,2]. Forest ecosystems play a crucial role in global
carbon cycling and climate change [3], and they significantly influence changes in carbon
dioxide. Accurate estimation of forest biomass at large regional scales enables accurate
monitoring of global carbon stock changes and global climate changes [4–6]. Traditional
forest inventory sampling is a well-established method for estimating biomass over the past
decades. However, this method is constrained by high costs and spatial limitations. With the
development of remote sensing technology, previous studies explored biomass estimation
at a regional level by combining remote sensing techniques with field surveys. Compared
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to traditional methods, airborne laser scanning can accurately measure important indicators
such as canopy height and profile information [7]. However, it is also limited by regional
estimation with high costs. With the launch and operation of the global ecosystem dynamics
investigation (GEDI), a spaceborne lidar system, it becomes possible to acquire forest
height and forest aboveground biomass (AGB) information regionally and globally. The
introduction of the GEDI level 4A forest AGB product provides an alternative reference
dataset for areas where field inventories are not possible. Meanwhile, ground truth data
replaced by GEDI level 4A products may be more economical and convenient for regional
and global forest AGB and carbon storage estimation [8,9].

In recent years, significant progress has been made for spatially continuous forest
AGB mapping through the combination of different data sources, like combinations of
synthetic aperture radar (SAR) data and optical remote sensing data. SAR, with its higher
penetration capability, can penetrate clouds and fog and enables the continuous monitoring
and acquisition of forest information [10,11]. Optical data, which are mostly free and
available with global coverage, were reported to serve as reliable predictors for AGB
estimation in various forest types. It currently became a frequently used data source with
low-cost, large-scale, and high-precision for forest AGB estimation and mapping [12,13].
SAR data can provide information on forest vertical structure to a certain extent [14], while
optical multi-spectral data can give more texture and horizontal information of forest [15].
To obtain forest AGB at regional scales, combining SAR data and optical data provides
great potential for obtaining accurate forest AGB estimation [16–18]. Previous studies
explored forest AGB estimation using a combination of optical and SAR datasets; however,
most of the performance is based on training and validating the inversion model using
field-collected samples [19,20]. The capability of using GEDI level 4A product of forest
AGB as ground truth substitute data and the difference compared with using field-collected
samples as ground truth data were not fully explored. Moreover, the influence of forest
types on using GEDI level 4A product of forest AGB as ground truth data during the forest
AGB estimation was not addressed yet.

According to the above mentioned research gaps, this study aims to evaluate the
accuracy of forest AGB estimation in Yunnan Province using both GEDI L4A data and
field measurements as ground truth data with optical data, SAR data, and combination
of optical and SAR data sources. The following aspects will be addressed in this study:
(1) To explore the capability of forest AGB estimation using single optical dataset, single
SAR dataset, and a combination of optical and SAR datasets. (2) To assess the difference
between using GEDI L4A data and field measurements as ground truth for forest AGB
estimation through different data sources. (3) To estimate the influence of forest types and
test sites on the prediction accuracy of forest AGB.

2. Materials and Methods
2.1. Study Area Overview and Field Campaign

Two study areas located in Yunnan Province (97◦31′–106◦11′ E; 21◦08′–29◦15′ N) were
considered in this study (Figure 1). Yunnan Province, located at the junction of South
Asia and Southwest China, shares borders with Myanmar, Laos, and Vietnam. It serves
as a gateway for cross-border openness and is an important region for the construction of
the “Belt and Road” ecological community [21–23]. The study area of Yiliang is located
in the central part of Yunnan Province, which is located in the Xiaoshao forest farm of
Yiliang County, Kunming (24◦30′36′′–25◦17′02′′ N; 102◦58′22′′–103◦28′75′′ E). The altitude
of Yiliang County ranges from 1300 m to 2500 m, and the climate belongs to the north
subtropical monsoon climate, with an average annual temperature of 17.2 ◦C. It is rainy
in summer and fall, with an average annual precipitation of 956.7 mm. The study area of
Pu’er is located in the southern part of Yunnan Province, and most of the samples collected
are in the Wanzhangshan forest farm (22◦27′–23◦06′ N; 100◦19′–101◦27′ E). The altitude of
the study area ranges from 578 m to 2155 m. The average temperature is 18.9 ◦C and the
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average annual precipitation is 1487.5 mm. The main forest types in the two study areas
are coniferous forest and broadleaf forest.  

 
Figure 1. Location map of the study areas in Yunnan Province, Southwest of China. The left sub-panel
shows the county locations of two study areas in Yunnan Province, the background is the forest
types product. The edge of Kunming, where Xiaoshao farm is located, is in blue color while the
edge of Pu’er, where Pu’er study area is located, is in black color. The top-right-sub-panel shows the
boundary (red line) of Xiaoshao farm and the distribution of ground-collected samples (red points)
and GEDI footprint points (blue points). The bottom-right-sub-panel shows the boundary (red line)
of Pu’er test site and the distribution of ground-collected samples (red points) and GEDI footprint
points (blue points).

2.1.1. Pu’er Study Area

Ground surveys were conducted in December 2020 in Pu’er. A total of 27 coniferous
forest plots (20 m × 20 m) and 31 broadleaf forest plots (20 m × 20 m) were collected in this
study area. The dominated tree species in coniferous forest is Simao pine (Pinus kesiya). The
locations of four corner points and a central point of each square plot were georeferenced
by a differential global positioning system (GPS). Diameter at the breast height (DBH, DBH
at 1.3 m height) and tree height were collected with trees having DBH greater than or equal
to 5 cm. The AGB values of each tree were calculated and totaled to obtain the AGB total
amount for all trees in each plot, then the area of each sample plot was divided to obtain
the total AGB of each sample plot.

2.1.2. Yiliang Study Area

A total of 40 coniferous forest plots were surveyed in the Yiliang study area with
the angle count method [24]. The dominated tree species here is Yunnan pine (Pinus
yunnanensis). All trees with a DBH greater than 5 cm were recorded. GPS coordinates of
the observation point for each plot, DBH measurements of counted trees, tree height, and
horizontal distance from the tree trunk center to the observation point were collected. The
AGB of each sample plot was obtained through the following steps through two steps: first,
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the volume per hectare was calculated for each plot, and then the conversion from volume
to AGB was performed later [25].

Table 1 shows the related forest detail information of the two study areas. The canopy
projection method was used to calculate the average crown cover and the percentages
were recorded. The equations of AGBs for tree species involved in two study areas were
calculated using the equations presented in Table 2 [26].

Table 1. Statistics for the forest information of two study areas.

Study Area Forest Type Number of Plots AGB (Mg/ha) Average AGB
(Mg/ha)

Average Crown
Cover (%)

Pu’er
Coniferous forest 27 69.61–162.30 120.89 70.00
Broadleaf forest 31 73.26–288.68 141.68 75.46

Yiliang Coniferous forest 40 9.34–78.51 36.13 63.00

Table 2. Forest biomass equations for each tree species in two study areas.

Tree Species Biomass Model

Simao Pine (Pinus kesiya) M = 0.0582DBH0.4668

Chinese Gugertree (Schima superba) M = 0.12045DBH2.06446H0.38265

Farges’s Chinkapin (Castanopsis fargesii) M = 0.1355(DBH2H)
0.817

+ 0.0275(DBH2H)
0.8166

Blue Gum (Eucalyptus globulus) lgM = 0.814lg(DBH2H)− 0.9816
Weeping Cypress (Cupressus funebris) M = 0.010158DBH2.94424H0.41591

Chinese Fir (Cunninghamia lanceolata) M = 0.10301
(

DBH2H
)0.7773

Other broadleaf species M = 0.3507(DBH − 1.1948)2 + (0.03017DBH2.3643 + 0.051)+
(0.01813DBH2 − 0.2477) (Hard and wide category)

Yunnan Pine (Pinus yunnanensis) V = Fg
k
∑

i=1
Zj( f h)i; M = 0.08596V0.8564

DBH is the diameter at breast height, H is the height of the tree, and M is the AGB of each tree; V is the stem
volume, Fg is the basal area factor, Zj is the number of trees at diameter class of j, ( f h)i is the form height at
diameter class of i.

2.2. Satellite Data

Sentinel-2 (S2) optical data, SAR data including C-band Sentinel-1 (S1), and L-band
ALOS PALSAR-2 were used in this study for remote sensing independent variable extrac-
tion. S1, one of a series of radar satellites operated by the European Space Agency (ESA), is
used for Earth observation and environmental monitoring. It was equipped with a C-band
SAR sensor with a wavelength of approximately 5.8 cm. PALSAR-2 is a radar satellite
launched by the Japan Aerospace Exploration Agency (JAXA) and it is used for Earth
observation and environmental monitoring. The PALSAR-2 satellite carries an L-band SAR
sensor, which operates at a longer wavelength (approximately 23.5 cm) and exhibits strong
penetration of forest canopy structure [27].

In this study, all SAR data were collected during the plant growth period from April
to October of 2020 for Pu’er and from April to October of 2019 for Yiliang. All of these
datasets were collected and processed through the Google Earth Engine (GEE) platform
(https://earthengine.google.com/, accessed on 22 September 2023). The features extracted
from the SAR datasets are shown in Table 3.

https://earthengine.google.com/
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Table 3. SAR data modeling factor information.

Variable Type Variable Name Definition

Polarization Information
VV, VH Backscatter coefficients from S1
HH, HV Backscatter coefficients PALSAR-2

Constructed features
VV-VH Polarization Difference
VH+VV Polarization Sum
HH/HV Polarization Ratio

S2 is one of a group of Earth observation satellites launched by the ESA with the
aim of providing high-resolution, multi-spectral remote sensing data. The S2 satellite
was equipped with a multi-spectral imager (MSI). The MSI sensor on S2 captures data in
13 spectral bands, including visible, near-infrared, and shortwave infrared bands. Each S2
satellite has an imaging width of 290 km, enabling wide coverage of the Earth’s surface.
Furthermore, the multiple satellites in the S2 series were operated on different orbits,
providing more frequent data acquisition and faster revisit cycles. In this study, all S2
datasets were acquired from April to October in 2020 for Pu’er and in 2019 for Yiliang. They
were preprocessed on the GEE platform, as well. Vegetation indices extracted from S2 and
their calculation equations are shown in Table 4.

Table 4. Vegetation index calculation equation.

Vegetation Index Calculation Formula Reference

Normalized difference vegetation index (NDVI) NDVI = ρNIR−ρred
ρNIR+ρred

[28]

Green and red vegetation index (GRVI) GRVI = ρgreen−ρred
ρgreen+ρred

[28]

Leaf area index (LAI) LAI = 3.618 × ρNIR1−ρred
ρNIR1+ρred+0.5 [29]

Differential vegetation index (DVI) DVI = ρNIR − ρred [28]
Infrared-red enhanced vegetation index (IRECI) IRECI = ρRE3−ρred

ρRE3
× ρRE2 [30]

Ratio vegetation index (RVI) RVI = ρNIR/ρred [28]
MERIS terrestrial chlorophyll index (MTCI) MTCI = ρRE2−ρRE1

ρRE1−ρred
[30]

Atmospheric resistance vegetation index (ARVI) ARVI = ρNIR − (2×ρred−ρblue)
ρNIR1+(2×ρred−ρblue)

[28]

Red-edge inflection point index (REIP) REIP = 700 + 40×(ρred+ρRE3)
(ρRE2−ρRE1)×(2−ρRE1)

[31]

RE1 has a wavelength of 698–713 nm, RE2 has a wavelength of 733–748 nm, and RE3 has a wavelength of
773–793 nm [32].

GEDI L4A data were downloaded from the Earth data platform of the National
Aeronautics and Space Administration (NASA) at the same time period for two test sites
https://search.earthdata.nasa.gov/, accessed on 23 September 2023). The GEDI LiDAR
system consists of three lasers that generate eight parallel observation tracks. Each laser
emits at a frequency of 242 Hz, and illuminates a 25 m footprint to measure a three-
dimensional structure. The footprints are separated with a track of 60 m and a cross-track
distance of 600 m. GEDI L4A provides estimates of AGB (Mg/ha) for each footprint based
on a three-dimensional measured structure. Footprint AGB was derived from parametric
models which relate simulated GEDI level 2A (L2A) waveform relative height (RH) metrics
to field plot estimates of AGB. Height metrics from simulated waveforms associated with
field estimates of AGB from multiple regions and plant functional types (PFTs) were
compiled to generate a calibration dataset for models representing the combinations of
world regions and PFTs [33].

2.3. Methodology

Individual remote sensing data sources (S1, S2, and PALSAR-2) and combinations of
data sources (PALSAR + S2 and S1 + S2) were evaluated separately in this study. Pixel
values were extracted for plot size (20 m × 20 m) and GEDI L4A footprint (25 m × 25 m).
Four regression models were trained for four forest AGB estimation types, including

https://search.earthdata.nasa.gov/
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random forest (RF), K-nearest neighbor (KNN), gradient boosted regression tree (GBRT),
and linear regression. A 10-fold cross-validation with an average of 10 repetitions was used
to validate the estimation results. Field-collected samples and GEDI footprints of AGB
products were used in this study as AGB references in the forest AGB estimation process.
In order to adjust the pixel values from the different data sources to the plot size and the
observed range of the GEDI foot points, we used a nearest neighbor resampling method
to average the pixel values of the optical and SAR factor images according to the location
of each plot and each GEDI foot point. After resampling, the spatial resolution is unified
as 30 m. This operation helps to maintain data consistency and allows information from
different data sources to be effectively compared and integrated at the same spatial scale. In
the stage of extracting remote sensing features, considering the different properties of the
S1, S2, and PALSAR-2 data, the block statistical analysis was conducted with the window
sizes of 2, 2, and 1, respectively. The flowchart of this study is described in Figure 2.
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2.4. Model Evaluation

The predictive performance of each model was evaluated based on its R2 (Equation (1))
and RMSE (Equation (2)) values. The model with the highest scores (higher R2 and lower
RMSE) was selected to generate the AGB map for the study areas.

R2 = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 (1)
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RMSE =

√
∑n

i=1 (yi − ŷi)
2

n
(2)

where yi is the observed AGB value at pixel i, ŷi is the estimate of AGB, n is the number of
pixels in the field sample, and y is the average AGB in the field plots.

In this study, an algorithm called “scikit-learn” package embedded in Python (version 3.8)
was used for forest AGB estimation. The spatial mapping and analysis were mainly performed
in ArcGIS (version 10.4.1), scattering plots and validation statistics were performed in Python
(version 3.8) and Origin 2022.

The grid search algorithm (GS) divides the parameters to be searched into the grid
with a certain spatial extent, and searches for the optimal parameters by traversing all
points in the grid to obtain the global optimal solution [34]. In the training phase, the hy-
perparameters of the model are tuned using a grid search with cross-validation (CV = 10).
The RF model contains four hyperparameters: the number of decision trees (n_estimators),
the maximum depth of the decision trees (max_depth), the minimum number of sam-
ples in the leaf nodes (min_samples_leaf), and the minimum number of split samples
(min_samples_split). The GS optimizes the remaining hyperparameters to obtain the hyper-
parameter values for each iteration. RMSE was chosen to measure the accuracy of the model
during hyperparameter optimization [35,36]. In this study, after several hyperparameter
optimization trainings, the best parameters of the model appeared before 50 iterations.
After 50 iterations, the RMSE changed slightly and the accuracy of the model could not
be improved any further. Therefore, the optimal hyperparameters are n_estimators: 50,
max_depths: 20, min_samples_leaf: 1, min_samples_splits: 2. The GBRT model contains
three hyperparameters, including n_estimators, max_depths, learning rate (learning_rate).
The remaining hyperparameters are optimized by the GS to obtain the hyperparameter
values for each iteration. When the GBRT model performs hyperparameter optimization,
the RMSE is minimized and the model performs best in the 110th iteration. The optimal
hyperparameters are n_estimators: 300, max_depths: 50, learning_rate: 0.05. For the KNN
model, including the number of nearest neighbors (n_neighbors), weights, distance metric
and algorithm for calculating the nearest neighbors, the grid is used to search for the
optimal combination of these parameters and 10-fold cross-validation is used to evaluate
the performance of each K-value, which ultimately returns the optimal combination of
parameters and the corresponding optimal model [37–40]. The optimal hyperparameters
are n_neighbors: 10, weights: uniform, metric: Euclidean, algorithm: auto.

3. Results
3.1. Performance of the Algorithm

Figure 3 shows the performance of the selected four models used for modeling forest
AGB with five different combinations of three remote sensing data sources. According to
the R2 values, the RF model shows the best performance among all models, regardless of
whether AGB values are based on GEDI L4A data or field measurements. At the plot level,
the combination of optical and C-band SAR data exhibited the highest scores for the RF
model (R2 = 0.80; Figure 3a). When GEDI L4A data were used as a reference, the RF model
also performed best (R2 = 0.45; Figure 3a).
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Figure 4 shows that RF has the smallest prediction error on both AGB reference sources
on average of each data combination. The smallest RMSE value was obtained when using
the field data and the S1 + S2 combination (RMSE = 29.41 Mg/ha; Figure 4a), whereas
the same combination returned a relatively large error when using the GEDI data as the
ground truth value (RMSE = 35.78 Mg/ha; Figure 4a).
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Figure 4. Radar charts for RMSE of the model performance using samples in two study areas with
different combinations of remote sensing datasets (S1, S2, PALSAR, S1 + S2, PALSAR + S2). The
different colors of the polygon indicate the use of different AGB reference sources (green for field
data and purple for GEDI L4A).

3.2. Forest AGB Estimation for Whole Forest Type

Given the better performance of the RF algorithm in forest AGB estimation, RF was
used here for forest AGB estimation over the whole forest types and for each single forest
type. The performance on AGB prediction across the study areas of Yunnan Province
with the whole forest type was assessed by plotting the measured values against the
predicted values for each AGB reference source (Figure 5). Figure 5 demonstrates the
best accuracy obtained using field-collected measurements as training and validation data.
However, the RMSE difference using each data combination is no more than 10 Mg/ha.
The AGB estimates generated using the field measurements as the AGB reference values
show that the S1 + S2 combination performed best with R2 = 0.80 and RMSE = 29.42 Mg/ha
(Figure 5d). For the SAR data source, PALSAR data (R2 = 0.41, RMSE = 46.76 Mg/ha;
Figure 5c) outperformed S1 (R2 = 0.34, RMSE = 49.36 Mg/ha; Figure 5a). When using the
GEDI L4A product as the AGB reference, the C-band SAR data combined with optical
data (S1 + S2, R2 = 0.45, RMSE = 35.78 Mg/ha; Figure 5i) still show better performance
compared to the PALSAR data combined with optical data (PALSAR + S2, R2 = 0.42,
RMSE = 36.59 Mg/ha; Figure 5j).
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Figure 5. Relationships between measured and predicted AGB values for optical and SAR data for all
forest types (all the samples in the two study areas) in the study area of Yunnan Province. The first
row subfigures (a–e) use field measurements as the AGB reference, and the second row subfigures
(f–j) use the GEDI L4A product as the AGB reference. The subfigures (a,f) are for Sentinel-1, the
subfigures (b,g) are for Sentinel-2, the subfigures (c,h) are for PALSAR-2, the subfigures (d,i) are for
Sentinel-1 and Sentinel-2, and the subfigures (e,j) are for PALSAR-2 and Sentinel-2.

3.3. Forest AGB Estimation for Different Forest Types
3.3.1. Broadleaf Forests

The study area was divided into different forest types and forest AGB was modeled
separately for each type. Figure 6 describes the performance of five data combinations in
forest AGB estimation results of broadleaf forests in Pu’er. In the broadleaf forests, using
field measurements as a reference for AGB, the S1 + S2 combination shows the best fit
(R2 = 0.83, RMSE = 12.54 Mg/ha; Figure 6d), and when GEDI L4A data were used as a
reference, the S1 + S2 combination (R2 = 0.47, RMSE = 35.54 Mg/ha; Figure 6i) shows
the best fit. With both field measurements and GEDI L4A as a reference, the single data
source of S2 performed best in all three single data sources (R2 = 0.82, RMSE = 19.86 Mg/ha;
Figure 6b), even better than the performance of the combination of PALSAR + S2 (R2 = 0.78,
RMSE = 26.84 Mg/ha; Figure 6e). The results show that in broadleaf forests AGB estima-
tion, no matter which biomass value worked as the reference value, C-band SAR data
combined with optical data provide the best performance, and the model performance was
improved by about 10%–20% on average. Note that the difference of RMSE values using
field measurements and GEDI L4A as reference was clearly improved when compared with
whole forest types. The greatest difference was 23 Mg/ha using S1 + S2 and the lowest
difference was 5.91 Mg/ha using S2 (Figure 6e,j).
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3.3.2. Coniferous Forests in Pu’er

In the AGB estimation for coniferous forests in Pu’er where the dominated tree species
is Simao pine (Figure 7), the combinations of both S1 and PALSAR with S2 performed
better than single data sources. The highest score was acquired by S1 + S2 (R2 = 0.79,
RMSE = 25.21 Mg/ha; Figure 7d), followed by PALSAR + S2 (R2 = 0.76, RMSE = 26.06 Mg/ha;
Figure 7e). The single data source of S2 still shows the best performance among the three
single data sources (R2 = 0.72, RMSE = 26.90 Mg/ha; Figure 7b). When comparing the
models using the GEDI L4A data as a reference, it was found that similar performance of
each data combination was acquired. The best performance was from S1 + S2 (R2 = 0.41,
RMSE = 37.50 Mg/ha; Figure 7i), next was PALSAR + S2 (R2 = 0.41, RMSE = 37.57 Mg/ha;
Figure 7j), then it was S2 (R2 = 0.37, RMSE = 37.23 Mg/ha; Figure 7d), and the last one
was PALSAR (R2 = 0.35, RMSE = 39.12 Mg/ha; Figure 7h). The AGB estimation difference
between using field measurements and GEDI L4A ranges from 7.88 (S1; Figure 7a,g) to
12.29 Mg/ha (S1 + S2; Figure 7d,i).
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Figure 7. Relationship between measured and predicted AGB values for coniferous forests in the Pu’er
study area. The first row subfigures (a–e) uses field measurements as the AGB reference, and the second
row subfigures (f–j) uses the GEDI L4A product as the AGB reference. The subfigures (a,f) are for
Sentinel-1, the subfigures (b,g) are for Sentinel-2, the subfigures (c,h) are for PALSAR-2, the subfigures
(d,i) are for Sentinel-1 and Sentinel-2, and the subfigures (e,j) are for PALSAR-2 and Sentinel-2.
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3.3.3. Coniferous Forests in Yiliang

In the AGB estimation of coniferous forests in Yiliang, where the dominated tree
species is Yunnan pine (Figure 8), at the sample plot scale, the highest score was the combi-
nation of S1 + S2 (R2 = 0.84, RMSE = 7.95 Mg/ha; Figure 8d), followed by PALSAR + S2
(R2 = 0.82, RMSE = 8.32 Mg/ha; Figure 8e). With both the field measurements and GEDI
L4A data as AGB reference, using combinations of S1 + S2 and PALSAR + S2 performed
better than the performance of single data sources. Among three single data sources, S2
performed best (R2 = 0.78, RMSE = 9.01 Mg/ha; Figure 8b), next was PALSAR (R2 = 0.63,
RMSE = 11.14 Mg/ha; Figure 8c), and the last one was S1 (R2 = 0.62, RMSE = 11.30 Mg/ha;
Figure 8a). However, compared with other forest types, the estimation difference between
using two different references became greater, and ranges from 20.56 (PALSAR; Figure 8c,h)
to 23.46 Mg/ha (S1 + S2; Figure 8d,i).
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Figure 8. Relationship between measured and predicted AGB values of coniferous forests in the Yiliang
study area. The first row subfigures (a–e) uses field measurements as the AGB reference, and the second
row subfigures (f–j) uses the GEDI L4A product as the AGB reference. The subfigures (a,f) are for
Sentinel-1, the subfigures (b,g) are for Sentinel-2, the subfigures (c,h) are for PALSAR-2, the subfigures
(d,i) are for Sentinel-1 and Sentinel-2, and the subfigures (e,j) are for PALSAR-2 and Sentinel-2.

3.4. Forest AGB Mapping and Validation

Based on results from Sections 3.2 and 3.3, the AGB estimation separating forest types
performed better. In this section, forest AGB mapping based on three main forest types
were generated and validated. The estimates from the AGB maps using GEDI L4A as
a reference were validated against the estimates from the AGB maps using the ground
sample plot as a reference.

Figure 9 shows the AGB maps and validation results for the broadleaf forest. Figure 9
shows a clear difference between results from the ground sample plot as reference (Figure 9A)
and GEDI L4A as reference (Figure 9B). The AGB for the former ranges from 90 to 212 Mg/ha,
while the latter ranges from 67 to 170 Mg/ha. The dynamic ranges for both of them are around
100 Mg/ha. It seems that both overestimated AGB with low values and underestimated AGB
with high values. The average value of the estimates for the former is 143.81 Mg/ha, which
is near 141.68 Mg/ha, and is calculated with an average value of field-collected sample plots.
The average value of the estimates for the latter is 127.02 Mg/ha, about 15 Mg/ha lower
than 141.68 Mg/ha. The scatter plot (Figure 9C) describes the point-to-point correlations
between the two estimated AGB results. The R2 value between them is 0.50 and the RMSE is
22.40 Mg/ha. The relative error between two estimated AGB is 15.8%.

Figure 10 shows the AGB maps and validation results for coniferous forests in Pu’er.
Moreover, Figure 10 demostrates an obvious difference between results from the ground
sample plot as reference (Figure 10A) and GEDI L4A as reference (Figure 10B). Compared
with broadleaf forest, the former shows a similar dynamic AGB range with field work (69.61
to 162.30 Mg/ha); however, the overestimation of low AGB is still clear in coniferous AGB
estimation using ground sample plot as reference. The average value of the estimates for
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the former is 145.17 Mg/ha, which is about 25 Mg/ha higher than 120.89 Mg/ha, calculated
with an average value of field-collected sample plots. For the latter, the dynamic range was
around 20 Mg/ha narrower than the field-collected results. It seems to underestimate AGB
with high AGB values; however, the overestimation level is lower than in the broadleaf forest.
Meanwhile, the average value of the estimates for the latter is 113.87 Mg/ha, only around 5
Mg/ha difference with 120.89 Mg/ha. The scatter plot (Figure 10C) describes the point-to-point
correlations between the two estimated AGB results with representative areas (A1 and B1).
The R2 value between them is 0.41 and the RMSE is 33.28 Mg/ha. The relative error between
two estimated AGB is 26.8%.
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Figure 9. AGB mapping of broadleaf forest. (A) AGB map with the sample plot as reference AGB;
(B) AGB map with the GEDI L4A as reference, where (A1) and (B1) represent localized enlargements of
the areas corresponding to (A) and (B), respectively. (C) is the scatter plot with comparisons between the
inversion values from (A,B). The red dashed line in (C) is the fit line of inversion values from (A,B).
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Figure 10. AGB mapping of coniferous forest in Pu’er. (A) AGB map with the sample plot as reference
AGB; (B) AGB map with the GEDI L4A as reference, where (A1) and (B1) represent localized
enlargements of the areas corresponding to (A) and (B), respectively. (C) is the scatter plot with
comparisons between the inversion values from (A,B). The red dashed line in (C) is the fit line of
inversion values from (A,B).

Figure 11 illustrates the AGB maps and validation results for coniferous forests in
Yiliang. Moreover, Figure 11 reveals the clear narrow dynamic ranges for estimated AGB
with ground sample plot as reference (Figure 11A) and GEDI L4A as reference (Figure 11B).
The dynamic range for the former is 49 Mg/ha and for the latter is 44 Mg/ha, while
the dynamic AGB range from the ground-collected results is from 9.34 to 78.51 Mg/ha.
According to Figure 11A, most areas in the map had AGB values from around 20 to
50 Mg/ha, while according to Figure 11B, most areas in the map had AGB values from
around 40 to 60 Mg/ha. The density scatter plot (Figure 11C) of the representative area (A1
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and B1) confirmed the high correlation of the two estimates (R2 = 0.72) and the obvious
overestimation of using GEDI L4A as a reference with RMSE = 19.74 Mg/ha. The relative
RMSE value between the two estimates increased to 54.6%. Note that the average value of
the estimates for the former is 40.32 Mg/ha, for the latter is 59.09 Mg/ha, while the average
AGB value field collected in this study area is 36.13 Mg/ha.
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Figure 11. AGB mapping of coniferous forests in Yiliang. (A) AGB map with the sample plot as
reference AGB; (B) AGB map with the GEDI L4A as reference, where (A1) and (B1) represent localized
enlargements of the areas corresponding to (A) and (B), respectively. (C) is the scatter plot with
comparisons between the inversion values from (A,B). The red dashed line in (C) is the fit line of
inversion values from (A,B).
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3.5. Contribution of Importance of RS Features

The results in Figure 12 demonstrate that the key variables for better performance in
different forest AGB estimations are “ARVI”, “NDVI”, and “VV-VH”. Note that there are
substantial variations in the importance of these variables when different reference data
sources are employed. For example, when referencing GEDI L4A data for AGB, “ARVI”
contributes 20.03% and 16.02% in coniferous and broadleaf forests. Meanwhile, certain
SAR data features consistently exhibit advantages, such as “VV-VH,” which contribute
6.48% and 21% in the broadleaf forest model. Furthermore, the importance scores for the
same variable varied across forest types. For instance, when using GEDI L4A as a reference,
“GRVI” contributes 3.78% and 4.49% to broadleaf and coniferous forests, respectively.
Vegetation indices related to the red-edge bands, namely, “REIP” and “MTCI”, correspond
to the 700–750 nm wavelength range and are linked to chlorophyll content, leaf structure,
and biomass; these features show obvious importance in all forest types according to
Figure 12. Note that the top three positions of all feature contribution sets include a red-
edge vegetation index, albeit with a change in character, i.e., from (a) to (f) REIP, REIP,
IRECI, REIP, MTCI, IRECI.
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Figure 12. Importance of remote sensing feature contribution in forest AGB estimation, (a) is the rank
of remote sensing feature contribution with field as the reference; (b) is the rank of remote sensing
feature contribution with GEDI L4A as the reference.

3.6. Empirical Distribution Functions of Field, GEDI, and Predicted AGB

Figure 13 displays plots of empirical distribution functions and histograms of frequency
distributions for the broadleaf forest model based on field and GEDI data. The mean value
for field AGB is 137.70 Mg/ha, and the predicted AGB mean is 137.37 Mg/ha. Meanwhile,
GEDI AGB has a mean of 125.54 Mg/ha, with the predicted AGB mean at 125.06 Mg/ha.
Regarding frequency distribution, both field AGB and predicted AGB exhibit similar fre-
quency distributions (Figure 13b), concentrated in the range of 100–180 Mg/ha. Conversely,
the frequencies based on GEDI AGB are predominantly in the range of 80–170 Mg/ha
(Figure 13d). The K-S statistic measures the maximum vertical distance between the em-
pirical distribution functions, indicating the magnitude of the difference in distribution
between them. The smaller the K-S value, the smaller the difference, and vice versa. From
the empirical distribution function perspective, the distributions of field AGB and field
predicted AGB (Figure 13a) are similar (K-S = 0.14). In contrast, the distributions of GEDI
and GEDI predicted AGB (Figure 13a) are significantly different (K-S = 0.28). The differences
in field predictions are smaller compared to GEDI AGB predictions.
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Figure 14 displays the empirical distribution function plots and frequency distribution
histograms of the coniferous forest models based on field and GEDI data. The mean value
of field AGB is 109.96 Mg/ha, while the mean value of predicted AGB from the field data
is 109.72 Mg/ha. Similarly, the mean value of GEDI AGB is 101.50 Mg/ha, and the mean
value of predicted AGB from GEDI data is 100.58 Mg/ha. It is observed that the mean
values of both field AGB and field predicted AGB are similar, as are the mean values
of GEDI AGB and GEDI predicted AGB. From the frequency distribution histograms, it
is evident that the distribution of field AGB is more uniform (Figure 14b), whereas the
distribution of GEDI AGB is predominantly concentrated in the range of 50–150 Mg/ha
(Figure 14d). The K-S value between field AGB and field predicted AGB is 0.14 (Figure 14a),
indicating a small difference in distribution between them. Conversely, the K-S value for
GEDI AGB and GEDI predicted AGB is 0.27 (Figure 14c), suggesting a larger distributional
difference between them. Compared to broadleaf forests, the differences in GEDI and field
AGB predictions based on coniferous forests are smaller.
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4. Discussion

In this study, single-source remote sensing datasets Sentinel-1, Sentinel-2, and ALOS
PALSAR-2 and multi-source remote sensing datasets combining Sentinel-1 + Sentinel-2 and
ALOS PALSAR-2 + Sentinel-2 were used for regional forest AGB estimation and mapping.
An optimal regression algorithm was selected based on the performance comparison of four
traditional linear and machine learning models. GEDI AGB products and field-collected
ground sample plots were selected and compared as reference AGB values for forest AGB
estimates and mapping within different forest types.

RF performed better than KNN, GBRT, and linear regression in forest AGB estimation
and was applied for forest AGB estimation and mapping within three different forest types.
RF outperforms most parametric and nonparametric models in forest AGB estimation. Its best
performance was confirmed by several previous studies for forest AGB estimation [40,41].
RF has strong predictive power for more complex datasets [42]. RF has been shown to be
a suitable modeling technique for estimating forest AGB using hyperspectral and LiDAR
data and combinations of hyperspectral and LiDAR data [19,43,44]. For the remote sensing
data sources, combinations of optical and SAR data showed better performance than single
optical and single SAR datasets [41,45–47]. The combination of S1 + S2 and PALSAR + S2
performed almost the same in the results both using ground sample plot as reference and
GEDI L4A as reference. Among single remote sensing data sources, optical data S2 performed
better than SAR data of S1 and PALSAR. According to previous studies [40,41,48,49], the
better performance of the optical data in forest AGB estimation may result from the good
response of integration of optical textures and spectral features to low forest AGB level
(average AGB lower than 150 Mg/ha). The results revealed that in forest areas with lower
AGB, optical features show higher accurate estimation than SAR data. The advantages of
high penetration of C- or L-band in the forest do not necessarily result in better performance
of SAR, when it comes to forest AGB retrieval using machine learning for these test sites.
It has been shown that there is a strong positive correlation between forest biomass and
vegetation index, and the potential of vegetation index in forest biomass estimation has been
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demonstrated [50]. Meanwhile, combining SAR factors is particularly important in estimating
forest biomass [51]. In this study, the combination of S2 + S1 performed better than the S2 +
PALSAR, the phenomenon may result from the forest vertical structures in the test sites. In
the test sites, the average forest AGB is low and the trees are young with low forest height,
since C-band has a lower wavelength than L-band, and more scattering from trunk-like
double-bounce scattering reflected than that in L-band. It may result in the better performance
of C-band than L-band. Moreover, it is possible that the difference in inversion modeling may
result in C-band, which would have better correlation with forest AGB [52]. It is worth noting
that the accuracy of AGB estimation can be improved when remote sensing factors contain
red-edge bands, such as vegetation indices like “IRECI” and “MTCI”, probably because the
red-edge information is related to canopy thickness and leaf area. Horler et al. and Vaglio
et al. had demonstrated the correlation between red-edge information and AGB prediction in
their studies [53,54].

The AGB estimations using GEDI L4A as a reference underperformed compared
to using ground sample plots as a reference. The results were in line with the work of
Kanmegne et al. conducted in West Africa for forest AGB estimation in agroforestry [41].
The difference between them was affected by forest types. In this study, the RMSE values
between the estimates obtained with the ground sample plot and GEDI L4A as reference
are from around 10 to 23.46 Mg/ha, and the relative RMSE ranges from 16.2% to 64.9%.
In the AGB mapping results, the estimation difference between them ranges from 15.8%
to 52.6%. The performance differs between different forest types or the same forest type
but with different dominated tree species. The differences were lower in broadleaf forests
(15.8%) and coniferous forests in Pu’er (26.8%), while a greater difference was shown in
coniferous forests in Yiliang (52.6%). In terms of distributional empirical functions, the K-S
statistic for GEDI in coniferous forests was significantly larger than that for field AGB, and
the variability in sample site estimates was relatively small. The worse performance of
using GEDI L4A as a reference may result from the distribution of the GEDI L4A samples
which cannot show the representative of the forest AGB level in the study areas. For the
higher difference in coniferous forests in Yiliang, it may result from the complicated terrain
and shortage of enough GEDI L4A samples in the study area [55,56], this may lead to a
reduction in the training samples for the model, as well as the lack of the principle of spatial
random distribution of the light patches of GEDI. Second, GEDI signals can be distorted by
topographic conditions within their footprint, leading to uncertainty in estimated forest
AGB. The accuracy of AGB estimation was improved when the slope was <10◦ [57], and
a significant improvement in the accuracy of AGB estimation was observed when the
slope was in the range of 0–40◦ with a decrease in RMSE of 20.83 Mg/ha [58]. Ref. [41]
demonstrated the effect of vegetation type on forest AGB estimates. It demonstrated
that the RMSE values acquired using GEDI L4A samples as reference were found to be
8.94 times higher than those using the ground sample plot as a reference. Previous studies
in forest AGB inversion also stated that distinguishing forest types and AGB levels had a
significant impact on AGB estimation performance [40,59,60]. Stratified approaches based
on forest type and AGB range may have great potential for improving AGB estimation if
an adequate number of sample plots is available [40,41,61].

From 2013 to 2021, China’s forest aboveground biomass products [62] (dataset No.
f48c4983dbd84a4c9c287111ac91c5aa) were published by the China Science Data Center,
covering forest AGB data at a 30 m resolution for China’s land areas. In this study, the
2021 forest AGB map of Yunnan Province was used for spatial analysis to verify the
accuracy of the forest AGB prediction maps in the two study areas of Yiliang and Pu’er.
The product map of forest AGB in China in 2021 is illustrated in Figure 15a,d. Visual
interpretation revealed that the spatial distribution of AGB in this product showed a similar
pattern to the predicted AGB map in this study. In the Yiliang study area (Figure 15b),
the predicted AGB of forests in the sample plots is mainly distributed between 20 and
60 Mg/ha, whereas forest AGB based on GEDI inversion showed the largest proportion of
pixels with AGB values between 45 and 75 Mg/ha (Figure 15c). This is similar to the range
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of China forest AGB products in the Yiliang area, which are mostly distributed between
45 and 85 Mg/ha (Figure 15a). The forest AGB of the field survey in Yiliang area ranged
from 9.34–78.51 Mg/ha, and the range of forest AGB based on GEDI and field plots data
inversion is close to this range. In the Pu’er study area, China forest AGB products are
mainly distributed between 70 and 220 Mg/ha (Figure 15d), which is consistent with the
predicted forest AGB map based on field plots data and showed high values close to each
other. In addition, the predicted distribution of forest AGB based on GEDI is close to that
of China forest AGB products, showing an increasing trend from north to south in the
study area, and the distribution is relatively uniform, with AGB values mainly concentrated
around 75 Mg/ha. The high values in the above three types of forest AGB data are all within
the range of AGB (69.61–288.68 Mg/ha) of the field survey in Pu’er, and the predicted low
values of AGB in the GEDI are close to the values of AGB of the field survey in Pu’er.

GEDI is the significant climatic project from NASA with the objective of improving our
knowledge of the function of forests in global carbon cycle. It delivers forest canopy height
and forest AGB products in global scale. To further validate the accuracy and capability of
these products for calculating accurate forest, carbon storage is necessary and important for
the goal of achieving the neutrality of greenhouse gas emission in future. In this study, we
compared the forest AGB estimation difference that resulted from using GEDI L4A AGB
samples and ground sample plots as true AGB values, respectively. The results revealed the
potential of using GEDI L4A AGB samples as a true AGB value for forest AGB estimation
using different remote sensing datasets. However, only several forest types were involved
in this study, the potability and suitability of GEDI L4A AGB samples working as a true
value in other forest types need to further explored.
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(b,c) represent maps of AGB projections of forests in the Yiliang study area based on sample plots
and GEDI, respectively; and (e,f) represent maps of AGB projections in the Pu’er study area based on
sample plots and GEDI, respectively.

5. Conclusions

This study systematically investigated the AGB inversion of special forest types in
Yunnan Province using single optical, SAR, and multi-sources remote sensing datasets like
the combination of optical and C-band SAR and the combination of optical and L-band
SAR datasets. We explored ground sample plots and GEDI L4A as reference and used an
RF algorithm for forest AGB estimation. Their performance was compared to show the
capability of substituting GEDI L4A for ground sample plots and the influence of forest
types. (1) We found in the forest area with low AGB (lower than 150 Mg/ha) that the
combination of optical and SAR data shows better performance than single optical or SAR
datasets. (2) Among the four selected inversion algorithms, RF performed best in forest
AGB estimation. (3) The AGB predictions from the GEDI L4A AGB product used as a
reference underperformed compared to the ground sample plots used as a reference. The
differences between them are lower in broadleaf forests and coniferous forests dominated by
Simao pine, while they are high in coniferous forests dominated by Yunnan pine. Using red-
edge bands of optical data show clear improvement for the AGB estimation. In summary,
GEDI can work as ground truth data source for forest AGB estimation in a certain level of
estimation accuracy. Note that, in this study, only ground sample plots as reference were
compared with GEDI L4A AGB product as reference, they were not compared with the
airborne LiDAR-derived AGB products since these datasets are not available. Moreover,
the distribution and density of the ground sample plot and GEDI L4A footprints may affect
the estimated AGB results, and need to be further explored in our future studies.
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