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Abstract: The identification of tree species is very useful for the management and monitoring
of forest resources. When paired with machine learning (ML) algorithms, species identification
based on spectral bands from a hyperspectral sensor can contribute to developing technologies that
enable accurate forest inventories to be completed efficiently, reducing labor and time. This is the
first study to evaluate the effectiveness of classification of five eucalyptus species (E. camaldulensis,
Corymbia citriodora, E. saligna, E. grandis, and E. urophyla) using hyperspectral images and machine
learning. Spectral readings were taken from 200 leaves of each species and divided into three dataset
sizes: one set containing 50 samples per species, a second with 100 samples per species, and a third
set with 200 samples per species. The ML algorithms tested were multilayer perceptron artificial
neural network (ANN), decision trees (J48 and REPTree algorithms), and random forest (RF). As
a control, a conventional approach by logistic regression (LR) was used. Eucalyptus species were
classified by ML algorithms using a randomized stratified cross-validation with 10 folds. After
obtaining the percentage of correct classification (CC) and F-measure accuracy metrics, the means
were grouped by the Scott–Knott test at 5% probability. Our findings revealed the existence of distinct
spectral curves between the species, with the differences being more marked from the 700 nm range
onwards. The most accurate ML algorithm for identifying eucalyptus species was ANN. There
was no statistical difference for CC between the three dataset sizes. Therefore, it was determined
that 50 leaves would be sufficient to accurately differentiate the eucalyptus species evaluated. Our
study represents an important scientific advance for forest inventories and breeding programs with
applications in both forest plantations and native forest areas as it proposes a fast, accurate, and
large-scale species-level classification approach.

Keywords: computational intelligence; artificial neural networks; spectral bands; remote sensing

1. Introduction

Brazil is one of the most significant countries in the global forestry sector. Approxi-
mately 7.84 million hectares are covered by forestry plantations in Brazil, the world’s major
producer and exporter of cellulose, of which 5.7 million hectares are eucalyptus planta-
tions [1]. Among the factors contributing to the successful establishment of eucalyptus in
the country, the relatively short cutting cycle, good adaptation to Brazil’s soil and climate
conditions, and genetic improvement stand out [1,2].
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From the perspective of assessing large forest areas, the use of remote sensing (RS)
is an excellent tool for temporal and spatial analysis of canopy features and forestry area
dynamics, providing fast, accurate, and large-scale information [1]. Franklin [2] highlights
that with regard to obtaining data and analyzing forest conditions, RS has wide applicability
for forestry studies as it can be used to assess forest management at different scales. RS
tools provide data that can be extensively applied in studies for predicting nutritional
status [2], growth, and yield [3] in eucalyptus plantations. However, studies differentiating
eucalyptus species by RS approaches are still limited in the literature. Mapping vegetation
at the species level can help monitor their growth characteristics and spatial distributions
and design specific modeling for different tree species existing in an area.

RS is based on the principle that the characteristics of targets are strongly linked to their
interaction with the electromagnetic spectrum. In this way, leaves are the most important
organs for spectral characterization of vegetation as they reflect the conditions of the plant
and contain substances that characterize spectral curves (also called spectral signatures),
such as chlorophyll, the main substance indicating the plant’s phenolic conditions [3]. The
spectral signature of vegetation in the electromagnetic spectrum, comprising the visible
and infrared regions, results in a characteristic reflectance curve. These reflectance curves
emitted by the plant canopy can be used to discriminate forest species, which is especially
useful in forest plantation management, genetic improvement programs, forest inventories,
and mapping of native vegetation areas [3]. The spectral signature of vegetation can be
obtained by hyperspectral sensors, which allow continuous sampling of the electromagnetic
spectrum from the visual region to the short-wave infrared region (350–2500 nm) and have
proven to be more effective than multispectral sensors for this purpose [4–6]. However,
previous studies using hyperspectral sensors have been focused on discrimination of native
forest species [4,7–10]. Studies determining spectral behavior and differentiating eucalyptus
species using hyperspectral sensing have not been reported in the literature.

Given the importance of forest species discrimination, particularly in large forest areas,
several classification methods have been developed over the last two decades, especially for
processing data obtained from multi- and hyperspectral sensors [7–9,11]. Machine learning
(ML) algorithms speed up and automate image analysis by improving the processing of
sensor data [8]. This is because the use of ML enables the development of algorithms to be
used on large datasets and with complex information (such as spectral image data) that
requires integration between them [12,13].

Among the algorithms used to process data obtained by RS, artificial neural network
(ANN), and random forest (RF) have stood out [12,13]. ANNs are computational models
inspired by the human brain, whose learning and generalization capabilities make them
capable of solving complex problems, such as cultivar classification studies using imaging
processing in different crops [14]. Studies have demonstrated that the ANN and RF
algorithms used to process spectral data can also be used to estimate the diameter at
breast height and total height of eucalyptus trees, making this a promising approach
contributing to the inventory and management of planted forests [15,16]. Ref. [17] reported
that application of RF algorithms to spectral data is also an appropriate approach for
recognizing growth patterns in different eucalyptus species.

In light of this, the identification and mapping of different eucalyptus species using
hyperspectral variables and ML algorithms is a functional and innovative approach as it
allows information to be obtained in a fast, nondestructive, accurate, and large-scale way,
which is essential for large plantation areas. To the best of our knowledge, this is the first
study to carry out species-level discrimination in eucalyptus using hyperspectral sensor
data. The objectives of this study were to (i) estimate the spectral signature of different
eucalyptus species, (ii) verify the accuracy of eucalyptus species discrimination using
hyperspectral variables and ML algorithms, and (iii) determine the most suitable sample
size (number of samples per species) for the proposed species discrimination analysis.
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2. Material and Methods
2.1. Experimental Area

The field experiment was carried at the experimental area of the Federal University
of Mato Grosso do Sul, located in the municipality of Chapadão do Sul (18◦41′33′′ S,
52◦40′45′′ W, with an altitude of 810 m), State of Mato Grosso do Sul, Brazil. According
to the Köppen classification, the region’s climate is tropical humid (Aw) with a rainy
season from October to April and a dry season between May and September. Average
rainfall ranges from 750 to 1800 mm year−1, and the average annual temperature ranges
from 20 to 25 ◦C [18]. Soil in the area is classified as a medium-textured red Latosolo.
Crowning, weeding, ant control, and herbicide applications (glyphosate) were carried out
when necessary.

The experimental area consisted of a plantation of different species of eucalyptus with
10 years of implantation. The experimental design adopted was a randomized block with
four replications and 28 plants in each experimental plot using spacing of 3 m between rows
and 1.5 m between trees. The treatments consisted of five species of eucalyptus: Eucalyptus
camaldulensis Dehnh, Corymbia citriodora Hook, E. saligna Smith, E. grandis (Hill) Maiden,
and E. urophyla Black.

2.2. Acquiring Spectral Data

Leaves were collected for spectral readings in August 2022 and January 2023. A total
of 50 leaves of each species were randomly collected from each experimental unit, totaling
200 samples in each collection. The leaves were removed from the upper part of the canopy
using a pruning hook attached to an adjustable height handle. The samples were packed
in plastic bags and taken to the laboratory for subsequent hyperspectral data collection,
which took place up to 12 h after collection.

The readings were taken with a low-cost hyperspectral sensor from Ocean Insight®,
model STS-VIS (Ocean Insight, Orlando, FL, USA). The reflectance range covered by the
sensor was 335.14 to 820.80 nm. For this study, values corresponding to the visible range,
comprising the spectral range from 400 to 700 nm, and the near-infrared range, covering the
spectral interval between 701 and 820 nm, were selected. The spectral bands adopted were
0.45 nm in length each, totaling 1024 spectral bands, which were used as input variables in ML
algorithms for classifying different eucalyptus species. The average spectral curves for each
species were plotted on a graph using the ggplot2 package in the R software version 4.1.0.

2.3. Sample Size and Machine Learning Models

Three datasets with different sample sizes (n) were evaluated: one set containing
50 samples per species, a second set with 100 samples per species, and a third set with
200 samples per species (total samples collected per species). The 1024 bands obtained by
the hyperspectral sensor were used as input variables in five classification models, while
the five eucalyptus species evaluated were used as output variables. Figure 1 illustrates the
methodology used for acquisition, the sample size, and the classification models adopted.

The ML models tested for classifying the eucalyptus species were artificial neural
network (ANN), decision trees (J48 and REPTree algorithms), and random forest (RF).
The conventional logistic regression (LR) technique was used as a control model. De-
fault settings of the Weka software were used to define the parameters of all models,
except for ANN, in which two hidden layers containing 10 neurons in each layer was the
architecture adopted.

ANN consisted of a multilayer perceptron using a backpropagation algorithm for
adjusting the weights of the neural network connections with a learning rate equal to 0.3,
momentum rate equal to 0.2, and 500 epochs. The J48 model is an adaptation of the C4.5
classifier that can be used in classification problems with additional pruning steps based on
an error reduction strategy [19]. In the J48 algorithm, the pruning procedure was adopted,
and the minimum number of instances to allow at a leaf node was equal to 4. REPTree
uses decision tree logic and creates several trees at different interactions. It then selects
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the best tree using information gain and performs error reduction pruning as a splitting
criterion [20]. REPTree Weka’s default uses minimum total weight of the instances in a leaf
equal to 2.0 and no restriction for maximum tree depth. The RF model produces several
prediction trees for the same dataset and uses a voting scheme among all the learned trees
to predict new values [21]. RF was built using the number of trees equal to 100, number of
execution slots (threads) to use for constructing the ensemble equal to 1, and the default
settings of the Weka software for the remaining hyperparameters.
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Figure 1. Diagram of the data analysis steps and procedures for classifying eucalyptus species using
hyperspectral sensing and machine learning algorithms.

The eucalyptus species were classified using the five models in a stratified random
cross-validation with k-fold = 10 and 10 repetitions. In the k-fold cross-validation, the input
data are divided into subsets of data called k-folds. The ML model is trained on all but
one fold (k-1), and it evaluates the model on the dataset that was not used for training.
A random cross-validation sampling strategy with k-fold = 10 and 10 repetitions (total of
100 runs for each model) was applied. The parameters obtained to evaluate the performance
of the models and dataset size (n = 50, n = 100, and n = 200) were the percentage of correct
classifications (CC, %) (Equation (1)) and F-measure (Equation (2)). All ML analyses were
carried out on the Weka 3.9.4 software [22] on an Intel® CoreTM i7 CPU with 16 Gb RAM.

CC =
TP

TP + FN + FP
× 100 (1)

Fmeasure =
2 × TP

2 × TP + FN + FP
(2)

where TP is the true positive classification, FB is the false negative classification, and FP is
the false positive classification.

2.4. Statistical Analyses

After obtaining the CC and F-measure statistics, an analysis of variance was carried out
using a completely randomized design with 10 replicates (folds). The CC and F-measure
means for the different dataset sizes and ML algorithms were grouped using the Scott–
Knott test at a 5% probability. Bar graphs containing standard errors were constructed
for each parameter (CC and F-measure) to express the results graphically. All statistical
analyses were carried out using ExpDes.pt and ggplot2 packages of the R software [22].
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3. Results

Hyperspectral curves for each species of eucalyptus (Figure 2) for each collection
period showed the difference between each species was remarkable. In the visible region, E.
camaldulensis showed the highest reflectance in the first collection. However, in the second
collection, E. grandis showed greater reflectance in this period. From 700 nm onwards, it
behaved very similarly to E. urophylla, which maintained low reflectance throughout the
curve. In the visible range, E. citriodora, E. grandis, and E. saligna species had very similar
spectral behavior, with a marked difference from 700 nm onwards in both periods. It is
important to highlight that the behavior of the spectral curve of the species across the
spectrum remained similar throughout the two data collections.
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Figure 2. Spectral reflectance of five eucalyptus species (Eucalyptus camaldulensis, Corymbia citriodora,
E. saligna, E. grandis, and E. urophyla) in August 2022 (A) and January 2023 (B) assessed by a hyper-
spectral sensor.

Classification accuracy for the five eucalyptus species considering the different ML
algorithms and dataset size is graphically expressed in Figure 3 and Table 1. There was
no difference between the accuracy metrics for MLs and dataset size in the two periods.
Therefore, the results presented demonstrate an average obtained for the two collections.
The results indicated accurate discrimination, with values above 75% and 0.75 for CC and
F-measure, respectively.

When analyzing the dataset with 50 leaf samples of each species, the ANN algorithm
outperformed the other algorithms; however, RF produced the best results when using
100 samples. Finally, when using 200 samples, the RF, RL, and ANN algorithms showed
the highest accuracy. Evaluating the dataset size and ML algorithms interaction, J48 and
RL achieved the best results with the maximum number of samples evaluated. REPT
performed similarly with 100 and 200 samples. RF and ANN performed well regardless of
the dataset size used.

ANN provided the highest F-measure when 50 leaf samples were used. Using
100 samples, ANN and RF outperformed the other algorithms. When using 200 samples,
ANN, RF, and RL performed well. Evaluating each algorithm, J48, REPT, and RF performed
well with both 100 and 200 samples. RL showed higher accuracy for the F-measure using
200 samples. ANN showed high accuracy values regardless of the dataset size.
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Table 1. Grouping of means for the classification percentage (CC) and F-measure for the discrimina-
tion of five eucalyptus species using different machine learning (ML) algorithms and dataset sizes
(n = 50 samples of each species, n = 100 samples of each species, and n = 200 samples of each species).

ML
50 100 150

CC (%)

J48 84.92 cB 83.56 dA 87.04 bA
REPT 78.64 dB 83.90 dA 84.64 cA

RF 92.62 bA 93.08 aA 93.09 aA
LR 91.60 bB 88.76 cC 94.06 aA

ANN 97.08 aA 91.50 bC 93.60 aB

F-measure

J48 0.89 cB 0.94 bA 0.92 bA
REPT 0.81 eB 0.92 bA 0.92 bA

RF 0.92 bB 0.95 aA 0.94 aA
LR 0.86 dB 0.86 cB 0.93 bA

ANN 0.95 aA 0.95 aA 0.95 aA
Lowercase letters compare ML algorithms for the same sample size, while uppercase letters compare the n for the
same ML algorithm by the Scott–Knott test at 5% probability.
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Figure 3. Bar graph for correct classification percentage (CC) and F-measure for the discrimina-
tion of five eucalyptus species using different machine learning (ML) algorithms and dataset sizes
(n = 50 samples of each species, n = 100 samples of each species, and n = 200 samples of each
species). Error bars represent standard errors. Lowercase letters compare ML algorithms for the same
sample size, while uppercase compare the n for the same ML algorithm by the Scott–Knott test at
5% probability.
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Overall, the algorithms performed differently in terms of accuracy according to the
number of leaf samples evaluated, revealing that the dataset size is a determining factor
when choosing which ML algorithm to use for eucalyptus species classification. For both
accuracy metrics, all the algorithms performed better using a dataset with 200 samples.
However, ANN performed well regardless of the number of samples in terms of accuracy.
RF performed better with 100 and 200 samples.

4. Discussion

For this study, we selected values corresponding to the visible range, comprising
the spectral interval between 400 and 700 nm, and the near-infrared range, covering the
spectral interval between 701 and 820 nm. Our findings reveal that the differences between
the spectral signatures analyzed for E. camaldulensis and E. urophylla species were not
very significant in the region of the visible spectrum at wavelengths between 400 and
700 nm, corresponding to the characteristic absorption of electromagnetic radiation by
chlorophyll [10].

The distinction between the species is due to the biochemical characteristics of the
leaves, which influence what is absorbed and what is reflected by the leaf in each spectral
band, as reported by Yoder and Pettigrew-Crosby [23]. Spectral signatures offer the ability
to highlight variations in both the biochemical composition and structure between different
plant populations occupying different geographical areas. These physiological disparities
between populations of the same species can be attributed to the genetic diversity that
exists between them [24], as shown in Figure 2, where there was a distinction between the
species regarding what was reflected by them. It is important to point out that the particular
spectral signature of each species is influenced by its distinct anatomical, morphological,
and physiological characteristics. This information can be extremely valuable in breeding
programs as it allows the selection of unique genotypes, contributing to the increase in
genetic variability necessary for developing superior genotypes [25–27].

On the other hand, between the species C. citriodora, E. grandis, and E. saligna, differenti-
ation occurred more intensely in the near-infrared (NIR) spectral region from
701 nm onwards, a range that is related to light scattering in the mesophyll and interaction
with the internal leaf structure [28]. This region shows a higher sensitivity to variations
in chlorophyll concentration compared to the other reflectance bands in the visible region,
especially when there is significant plant biomass [29]. In the context of leaves, there is
a phenomenon of internal light scattering in the mesophyll cells, resulting in substantially
higher reflectance. In this scenario, the NIR region proves to be particularly sensitive to
these changes, reflecting a higher intensity [30].

Once the species were distinguished by reflectance, it was possible to use machine
learning to tell them apart. Five ML methods were used to discriminate between eucalyptus
species, and classification experiments were also conducted with regard to the impact of
sample sizes.

Using the same inputs, RL and RF obtained a classification performance similar to
ANN, providing CC above 80%. However, ANN had the highest CC and F-measure in the
three sample sizes, while the RF and RL algorithms obtained higher CC only for 100 and
200 samples, respectively. REPTree and J48 decision trees had the lowest accuracy among
all the sample sizes tested. The limited number of samples obtained is a challenge for
training highly accurate tree species classification models [6]. Before building a tree species
classification model, the collection of plant samples takes time and skilled labor, which
can compromise classification efficiency. It is expected that the more samples there are,
the more accurate and robust the model will be [9]. However, our findings show that the
smallest sample size evaluated (n = 50) is sufficient to classify species with high accuracy.
In this way, it is possible to accurately distinguish eucalyptus species more quickly and
on a large scale using a low number of leaf samples and hyperspectral sensing, especially
when using ANN.
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ANN models have shown superior performance for supervised classifications [13] and
are often used in remote sensing due to their ease of learning complex class patterns [31].
Studies such as Gava et al. [13] corroborates our findings in relation to classification analyses
using ANN. When evaluating which ML technique is most accurate in identifying soybean
cultivars using only spectral bands, these authors reported that ANN was the most accurate
technique in identifying soybean cultivars, with 92.18% correct classification [12]. Studying
the classification of soybean genotypes for industrial traits using spectral variables as inputs
in ML models, when comparing the metrics of correct classification (%) and F-score, the
authors found that the classification algorithm that achieved the highest accuracy was
ANN, followed by decision tree (REPTree) and support vector machine (SVM).

When analyzing the unfolding of the models within the inputs (Figure 2), it can be
seen that ANN stood out for achieving the highest means of CC and F-measure regardless
of the sample size used. These findings show that it is possible to distinguish eucalyptus
species using a smaller number of samples for hyperspectral variables as input in ML
models. Our findings, which offer information on forest plantations with labor and time
savings, are an important and novel scientific advance for mapping forest areas worldwide.
Future studies should be carried out in other regions globally on different plant species in
both forest plantations and native vegetation areas, enabling an even broader approach to
species-level distinction using remote sensing.

5. Conclusions

The leaf reflectance obtained by the hyperspectral sensor in the five eucalyptus species
(Eucalyptus camaldulensis, Corymbia citriodora, E. saligna, E. grandis, and E. urophyla) revealed
the existence of distinct spectral curves between the species, with the differences being more
marked from the 700 nm range onwards. As demonstrated, it was possible to discriminate
eucalyptus species with high accuracy using spectral bands as input to the machine learning
models tested. Overall, all ML algorithms had high classification accuracy (higher than
75% CC and 0.75 F-measure), but ANN stood out for its efficiency in accurately classifying
eucalyptus species with all sample sizes.

When evaluating the sample sizes for datasets within each model, the use of a dataset
with 50 samples per species was found to be more feasible, thereby reducing the labor and
time spent collecting and evaluating samples. These results represent an important and
new scientific advance for breeding programs and forest inventories, demonstrating that it
is possible to discriminate eucalyptus species quickly, accurately, and on a large scale using
hyperspectral variables and machine learning.

Funding: This research was funded by the Universidade Federal de Mato Grosso do Sul (UFMS);
Universidade do Estado do Mato Grosso (UNEMAT); Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq), grant numbers 303767/2020-0, 309250/2021-8, 306022/2021-4, and
304979/2022-8; and Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do
Estado de Mato Grosso do Sul (FUNDECT), TO numbers 88/2021, 07/2022, 318/2022, and 94/2023
and SIAFEM numbers 30478, 31333, 32242, and 33111. This study was financed in part by the
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Financial Code
001.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carvalho, O.A.d., Jr.; Hermuche, P.M.; Guimarães, R.F. Identificação regional da floresta estacional decidual na bacia do Rio

Paranã a partir da análise multitemporal de imagens MODIS. Rev. Bras. Geofísica 2006, 24, 319–332. [CrossRef]
2. Franklin, S.E. Remote Sensing for Sustainable Forest Management; CRC Press: Boca Raton, FL, USA, 2001.
3. Ponzoni, F.J.; Shimabukuro, Y.E.; Kuplich, T.M. Sensoriamento Remoto no Estudo da Vegetação; Parêntese São José dos Campos: São

José dos Campos, Brazil, 2007.

https://doi.org/10.1590/S0102-261X2006000300002


Forests 2024, 15, 39 9 of 10

4. Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales.
Remote Sens. Environ. 2005, 96, 375–398. [CrossRef]

5. Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high
geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258–270. [CrossRef]

6. Ghosh, A.; Fassnacht, F.E.; Joshi, P.K.; Koch, B. A framework for mapping tree species combining hyperspectral and LiDAR data:
Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 49–63. [CrossRef]

7. Van Aardt, J.A.N.; Wynne, R.H. Examining pine spectral separability using hyperspectral data from an airborne sensor: An
extension of field-based results. Int. J. Remote Sens. 2007, 28, 431–436. [CrossRef]

8. Marconi, S.; Weinstein, B.G.; Zou, S.; Bohlman, S.A.; Zare, A.; Singh, A.; Stewart, D.; Harmon, I.; Steinkraus, A.; White, E.P.
Continental-scale hyperspectral tree species classification in the United States National Ecological Observatory Network. Remote
Sens. Environ. 2022, 282, 113264. [CrossRef]

9. Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top Appl.
Earth Obs. Remote Sens. 2015, 8, 2381–2392. [CrossRef]

10. Della-Silva, J.L.; da Silva, C.A., Jr.; Lima, M.; da Silva Ribeiro, R.; Shiratsuchi, L.S.; Rossi, F.S.; Teodoro, L.P.R.; Teodoro, P.E.
Amazonian species evaluation using leaf-based spectroscopy data and dimensionality reduction approaches. Remote Sens. Appl.
2022, 26, 100742. [CrossRef]

11. Gaci, B.; Abdelghafour, F.; Ryckewaert, M.; Mas-Garcia, S.; Louargant, M.; Verpont, F.; Laloum, Y.; Moronvalle, A.; Bendoula, R.;
Roger, J.M. Visible–Near infrared hyperspectral dataset of healthy and infected apple tree leaves images for the monitoring of
apple fire blight. Data Brief. 2023, 50, 109532. [CrossRef]

12. Santana, D.C.; Teodoro, L.P.R.; Baio, F.H.R.; dos Santos, R.G.; Coradi, P.C.; Biduski, B.; da Silva, C.A., Jr.; Teodoro, P.E.; Shiratsuchi,
L.S. Classification of soybean genotypes for industrial traits using UAV multispectral imagery and machine learning. Remote Sens.
Appl. 2023, 29, 100919. [CrossRef]

13. Gava, R.; Santana, D.C.; Cotrim, M.F.; Rossi, F.S.; Teodoro, L.P.R.; da Silva, C.A., Jr.; Teodoro, P.E. Soybean Cultivars Identification
Using Remotely Sensed Image and Machine Learning Models. Sustainability 2022, 14, 7125. [CrossRef]

14. Goyal, S. Artificial Neural Networks in fruits: A comprehensive review. Int. J. Image Graph. Signal Process. 2014, 6, 53. [CrossRef]
15. Silva, J.P.M.; da Silva, M.L.M.; de Mendonça, A.R.; da Silva, G.F.; de Barros, A.A., Jr.; da Silva, E.F.; Aguiar, M.O.; Santos, J.S.;

Rodrigues, N.M.M. Prognosis of Forest Production Using Machine Learning Techniques. Information Processing in Agriculture.
2021. Available online: https://www.sciencedirect.com/science/article/pii/S2214317321000780 (accessed on 20 March 2023).

16. Borges, M.V.V.; de Oliveira Garcia, J.; Batista, T.S.; Silva, A.N.M.; Baio, F.H.R.; da Silva, C.A., Jr.; de Azevedo, G.B.; de Oliveira
Sousa Azevedo, G.T.; Teodoro, L.P.R.; Teodoro, P.E. High-throughput phenotyping of two plant-size traits of Eucalyptus species
using neural networks. J. For. Res. 2022, 33, 591–599. [CrossRef]

17. de Oliveira, B.R.; da Silva, A.A.P.; Teodoro, L.P.R.; de Azevedo, G.B.; Azevedo, G.T.D.O.S.; Baio, F.H.R.; Sobrinho, R.L.; da Silva,
C.A., Jr.; Teodoro, P.E. Eucalyptus growth recognition using machine learning methods and spectral variables. For. Ecol. Manag.
2021, 497, 119496. [CrossRef]

18. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst.
Sci. 2007, 11, 1633–1644. [CrossRef]

19. Al Snousy, M.B.; El-Deeb, H.M.; Badran, K.; Al Khlil, I.A. Suite of decision tree-based classification algorithms on cancer gene
expression data. Egypt. Inform. J. 2011, 12, 73–82. [CrossRef]

20. Kalmegh, S. Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News.
IJISET-Int. J. Innov. Sci. Eng. Technol. 2015, 22, 438–446.
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