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Abstract: There is a need to convert fire danger indices into operational estimates of fire activity to
support strategic fire management, particularly under climate change. Few studies have evaluated
multiple accumulation times for indices that combine both dead and remotely sensed estimates of
live fuel moisture, and relatively few studies have aimed at predicting fire activity from both such fuel
moisture estimates and autoregressive terms of previous fires. The current study aimed at developing
models to forecast the 10-day number of fires by state in Mexico, from an accumulated Fuel Dryness
Index (FDI) and an autoregressive term from the previous 10-day observed number of fires. A period
of 50 days of accumulated FDI (FDI50) provided the best results to forecast the 10-day number of
fires from each state. The best predictions (R2 > 0.6–0.75) were obtained in the largest states, with
higher fire activity, and the lower correlations were found in small or very dry states. Autoregressive
models showed good skill (R2 of 0.99–0.81) to forecast FDI50 for the next 10 days based on previous
fuel dryness observations. Maps of the expected number of fires showed potential to reproduce fire
activity. Fire predictions might be enhanced with gridded weather forecasts in future studies.

Keywords: fire danger; hazard; fuel moisture; fire occurrence; fire activity

1. Introduction

Temporal predictions of fire occurrence from fuel dryness (e.g., [1–4]) are fundamental
to support fire management planning (e.g., [5–7]). For example, fire activity forecasts can
enable effective resource pre-positioning [8]. This is even more relevant under expected
higher vegetation stress from climate change, which is expected to alter the number of fires
or burned area [9,10] and increase fire season length [11,12].

The majority of the literature on fire occurrence forecasting has relied on weather
variables such as temperature (e.g., [13,14]) or precipitation (e.g., [1,2]), or on the use of
fire danger indices calculated from observed or forecasted weather (e.g., [15–18]). The
most widely used weather-based fire danger indices include those from the Canadian
Forest Fire Danger Rating System, (CFFDRS) (e.g., [14–17]) or the fire danger indices of
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the National Forest Fire Danger Rating System (NFFDRS) of the USA (e.g., [2,4,19]), but
several challenges in fire prediction from those metrics of fuel dryness still remain [2]. In
particular, several studies have concluded that the relationships between weather indices
of fuel dryness and fire activity can largely vary between regions within the areas of the
USA and Canada for which those fire danger indices were developed (e.g., [20,21]). These
uncertainties are more evident when attempting to apply those fire weather indices in other
countries that may have different biophysical and social conditions to those where they
were developed (e.g., [22,23]). Thus, it is worth stressing that the majority of the analysis of
fire occurrence against fire weather indices has been performed in data-abundant countries,
e.g., the United States, Canada, Australia, China, and some European countries (e.g., [24]).
Comparatively, fewer studies are available for global hotspots of fire activity in countries
with great biodiversity, e.g., Mexico (e.g., [25,26]) or Latin American countries (e.g., [27,28]).

Furthermore, there is a need in the literature to better understand the mechanisms by
which various timescales of drought are empirically related to fire occurrence [2]. While
some studies have documented relationships of fire activity against weather-based indices
of short-term drought (e.g., [29–31]), others have found the value of metrics of accumulated
fuel dryness that account for the effect of accumulated soil and vegetation stress for weeks,
or even months, to predict fire occurrence and behavior (e.g., [32–35]). In this regard, there
is still a relative scarcity of studies that have compared fire danger indices at different time
scales to predict fire activity (e.g., [3,36,37]). For example, Abatzoglou et al. [3] evaluated
the temporal averaging of weather-based fire danger indices at periods of 1–150 days. They
observed that biophysical variables tied to the depletion of fuel and soil moisture and
prolonged periods of elevated fire danger had stronger correlations to areas burned in
forested systems. Riley et al. [2] found that metrics based on the previous 1–3 months of
weather data had strong correlations with both the total burned area and the number of
large fires. Gudmundsson et al. [36] and Turco et al. [36] evaluated different periods of
the Standardized Precipitation Index (SPI) index to predict burned area. They found the
highest correlations for 2- and 3-month SPI, respectively. An improved understanding of
the time scales through which weather influences fire occurrence could be beneficial to
support operational fire management, particularly under climate change [2].

Weather-based fire indices do not explicitly include vegetation vulnerability to fires
due to drought. Nevertheless, the flammability of live fuels depends not only on weather
variability, but also on plant and soil response to it, which is species- and landscape-specific
(e.g., [38–40]). Although live fuel moisture has been shown to be crucial in predicting fire
behavior and fire severity (e.g., [39–42]), its role is not explicitly accounted for by current
fire danger models [43]. In this sense, in spite of an emerging body of literature that has
demonstrated a correlation of remotely sensed estimates of live moisture (e.g., [44,45]) with
fire occurrence and behavior (e.g., [46–48]), there are still uncertainties for incorporating
such remotely sensed fuel moisture estimates into operational fire prediction modeling
(e.g., [38,39,42]).

Further, some studies have proposed an integration of MODIS relative greenness and
dead fuel moisture on a Fire Potential Index [49] at 1 km resolution, with promising results
in the USA (e.g., [50,51]), Europe ([52–54]), and, more recently, Mexico [26]. Even though
FPI has shown a good potential to predict fire occurrence (e.g., [51]), further research
evaluating this index at different time lags is lacking. In particular, we are not aware of
studies that have compared different accumulation times (e.g., within the range of 10 to
90 days) for the FPI index.

Moreover, except for the studies of Huesca et al. [53,54], the use of autoregressive
models to forecast the FPI index has received little attention in the literature, in spite of
its potential to estimate future fuel greenness conditions based on previously observed
remotely sensed fuel moisture.

Finally, beyond considering the effects of fuel moisture in allowing fire initiation, the
occurrence of forest fires is largely conditioned by the occurrence of an ignition (e.g., [8]).
In the case of natural-caused fires, ignitions can be caused by lightning (e.g., [14,55,56]).
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Human-caused fires, on the other hand, can be related to spatial and temporal patterns of
human activities such as escaped agricultural burns or urban or agricultural expansion
(e.g., [57–60]). Regarding the latter, several studies have documented that anthropogenic
factors can largely influence fire occurrence (e.g., [61,62]), particularly in regions with
frequent conversion to agricultural lands (e.g., [63]). In the case of Mexico, the statistics by
the National Forest Commission (CONAFOR) [64] show that more than 90% of suppressed
fires are related to human activities.

In this regard, in order to account for the important role of human-based temporal
patterns on fire activity, some studies have suggested a good potential for autoregressive
techniques (e.g., [65,66]). Compared to a vast majority of studies predicting fire activity from
fuel dryness only, this promising autoregressive approach for temporal fire forecasting has
nevertheless received relatively less attention in the literature (e.g., [67,68]) and demands
further research. In particular, there is a relative knowledge gap in studies aiming at predicting
fire activity from both autoregressive fire activity and fuel moisture (e.g., [69–71]).

Consequently, the aim of this study is to develop models to forecast the number of fires
by state in Mexico from both autoregressive fire activity and accumulated fuel moisture. In
particular, the specific objectives of the study were as follows:

(1) To develop models to predict the number of fires by state in Mexico for the next
10 days from an accumulated Fuel Dryness Index (AcFDI) and autoregressive terms
from the number of fires observed in the previous 10 days;

(2) To develop autoregressive models to forecast the AcFDI for the next 10 days by state
in Mexico.

2. Materials and Methods
2.1. Study Area and Fire Suppression Records

The study area was the entire country of Mexico (Figure 1). Main vegetation types
range from desert shrublands and temperate forests in the states of the north to tropical
forests in the south of the country [72]. Precipitation ranges from <500 mm in the more arid
states of the north to >1000 mm in the tropical southern region [73].
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Figure 1. Number of suppressed fires by state in the study period (2011–2015).

We analyzed fire suppression records from CONAFOR [64] from 2011 to 2015 for every
state of Mexico. The database contains the start and end date of each fire, based on fire
suppression records, their coordinates, and the corresponding state of Mexico. The total
number of fire suppression records in the study period was 38,715. The states with a higher
number of fire records included State of Mexico, Chihuahua, Durango, Michoacan, Ciudad
de Mexico, Jalisco, Puebla, Chiapas, and Oaxaca, with more than 1000 fire suppression
records for the study period (Figure 1). Conversely, the states with the lower number of
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fire registers were Aguascalientes, Baja California Sur, Colima, Campeche, Guanajuato,
Tamaulipas, Tabasco, and Yucatan (Figure 1).

2.2. Fuel Dryness Index
2.2.1. Inputs for the Fuel Dryness Index (FDI) Calculation

The two inputs for FDI calculation, moisture content of dead fuels of 100 h (H100) and
10-day NDVI composites, were supplied by the National Commission for the Knowledge
and Use of Biodiversity (CONABIO), as detailed by Cruz-Lopez et al. [74]. H100 composites
at 1 km pixel were calculated by CONABIO using the methodology of Cervera-Tavoada [75]
to implement the NFDRS of dead fuel moisture content calculation [76] from MODIS
temperature and relative humidity and TRMM precipitation [74]. The period of study was
2011–2015, defined by the availability of H100 data from CONABIO at the time of analysis.

The 10-day cloud-free NDVI composite images, with a pixel of 1 km, were calculated
from MODIS by CONABIO [74]. The process of gap filling to reconstruct cloud-free NDVI
composites was performed by CONABIO using the HANTS (Harmonic Analysis of Time
Series) algorithm [77]. HANTS is a widely used algorithm to reconstruct time series for
seasonal stationary variables such as NDVI [78]. The algorithm was applied to a time series
of 9 years of MODIS NDVI to obtain a fitted time series (using a superposition of periodic
functions [77]) to reconstruct the temporal gaps for each pixel.

2.2.2. Fuel Dryness Index (FDI) Calculation

The Fuel Dryness Index (FDI) was calculated using the procedure described by [26] to
calibrate the Fire Potential Index (FPI) from Burgan et al. [49] for Mexican ecosystems:

FDI = (1 − LR)·(1 − MR)·100 (1)

where:
LR: Live ratio calculated using Equations (2)–(4).
MR: Dead fuels moisture ratio calculated using Equation (5).
FDI is an integrated index that combines both estimates of live fuel moisture (LR)

(Equation (1) through (4)) and dead fuel Moisture Ratio (MR) (Equations (1) and (5)), with a
spatial resolution of 1 km. It reaches values close to 100 when the pixel reaches its maximum
fuel dryness (minimum dead and fuel moisture). Conversely, its lowest values are reached
when both live and dead fuels have high moisture [49].

The first component, Live Ratio (LR), was calculated using Equations (2) and (3):

LR = RG·LRmax/100 (2)

where: RG is Relative Greenness, estimated as:

RG = (NDVI − NDVImin)/(NDVImax − NDVImin)·100 (3)

where: NDVI is the observed 10-day NDVI for each pixel, NDVImin and NDVImax are the
minimum and maximum NDVI values for each pixel from the period of study.

LRmax is the maximum Live Ratio value for each pixel, calculated using Equation (4):

LRmax = 30 + 30·(NDVImax − 125)/(255 − 125) (4)

where: NDVImax = maximum NDVI for every pixel.
The values of NDVI were scaled from 0 to 255 to permit data compression, as detailed

in [79]. The map of the maximum NDVI observed for each pixel in the study period ranged
from 125 to 255 [26]. Following [79], the absolute minimum (125) and maximum (255)
values of the maximum NDVI were included in Equation (4).

The value of 30, at the intercept of Equation (4), represents the minimum LRmax value,
as established by [79]. Following Equation (4), a maximum LRmax value of 60 is reached
for the pixels where the maximum NDVI value reaches its absolute observed value for
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the study area. Consequently, as proposed for FPI [61,79], areas with a lower maximum
NDVI (e.g., desert shrublands) have a lower maximum live ratio (fraction of fuels that is
estimated to be alive) and the contrary occurs in areas with higher NDVImax.

Finally, the dead fuel Moisture Ratio (MR) was calculated following Equation (5):

MR = (H100 − Hmin)/(Hmax − Hmin) (5)

where: H100: observed 100 h dead fuel moisture; Hmax, Hmin: maximum and minimum
historical H100 values for each pixel.

2.2.3. Accumulated FDI

We tested accumulated FDI (AcFDIi), calculated as the average FDI value for the evalu-
ated i periods of 10, 20, 30, 40, 50, 60, 70, 80, and 90 days, for every Mexico state. Evaluated
periods of 10–90 days for the AcFDIi were selected based on the more common range of
accumulated periods for fire danger indices considered in the literature (e.g., [17,18]). The
index AcFDI was assumed to be zero when the FDI value at the corresponding 10-day
period was below a threshold FDI99. For each state, FDI99 thresholds were calculated as the
FDI value above which 99% of the fire suppression registers were registered. The average
AcFDI was calculated for each state for every period of 10 days in the study period.

2.3. Models for Prediction of Number of Fires for Each State

We evaluated linear and non-linear models to predict the observed number of fires for
10 days for each state from AcFDI and the observed number of fires in the last 10 days. For
the non-linear models, we fitted the following expression [26]:

NFt = a·AcFDIit b + c·NFt − 1 (6)

where: NFt: Observed number of fires for each state for each 10-day period t of the study
period; AcFDIit: Accumulated Fuel Dryness Index at each 10-day period t of the study
period for the evaluated accumulated period i (Section 2.2.3); NFt − 1: Observed number
of fires for each state for the previous 10-day period t − 1; a, b, are model coefficients for
the role of AcFDI, fitted using non-linear quantile regression at a 95% percentile, and c is a
model coefficient to account for the temporal autocorrelation of NF, which was estimated
as the calculated correlation coefficient between observed values of NFt and NFt − 1 for
each state following [26].

For obtaining the a and b model coefficients of AcFDI for each state, we fitted the
models from Equation (6) using non-linear quantile regression at a 95% percentile using
the R package nlrq [80]. Candidate models were evaluated by means of the coefficient of
determination for non-linear regression (R2) (e.g., [81]), defined as the squared correlation
coefficient between the measured and estimated values, together with the Root Mean
Square Error (RMSE) and model bias.

2.4. Autoregressive Integrated Moving Average (ARIMA) Models to Forecast AcFDI

For the selected AcFDIi index, we evaluated seasonal AutoRegressive (AR) Integrated
(I) Moving Average (MA) models (ARIMA) to forecast the AcFDIi for the next 10 days for
each state, based on previously observed lags of the same index. Seasonal ARIMAs are
frequently used to forecast time series of remotely sensed estimates of fuel moisture such
as NDVI (e.g., [82]). They have been previously used to model FPI temporal dynamics by
Huesca et al. [53,54].

A generic notation of ARIMA models can be written as:

ARIMA (ar, dif, ma) × (sar, sdif, sma)S, (7)
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where: ar = non-seasonal AR lag order, dif = non-seasonal differencing, ma = non-seasonal
MA lag order, sar = seasonal AR lag order, sdif = seasonal differencing, sma = seasonal MA
lag order, and S = time span of repeating seasonal pattern.

Lag order and components of ARIMA models were identified by an exploratory
analysis using auto.arima [53] in R ([83,84]). The most suitable model was selected based
on Standard AIC [85], together with the evaluation of model R2, RMSE, and bias. Selected
models were fitted using auto.arima in the library forecasting in R ([83,84]). The adequacies
of selected models were further evaluated by means of the Ljung–Box Q-statistic [53,86].

For example, if auto.arima selected a (2, 0, 0) × (0, 0, 0)S as the best model, which is an
autoregressive model to predict AcFDI from the two previous lags, the corresponding AR
model can be written as:

AcFDI = a0 + a1·AR1 + a2·AR2 (8)

where AR1 and AR2 are the autoregressive AcFDI observed values for lag 1 (i.e., previous
10 days) and lag 2 (previous 11–20 days), respectively, and a0, a1, and a2 are fitted model
coefficients using auto.arima ([83,84]).

3. Results
3.1. FDI99 Thresholds by State

An example of the process of calculation of FDI99 is illustrated in Figure 2. The upper
Figure 2a shows the curves of the accumulated percentage of the number of suppressed
fires against FDI values. For illustration purposes, we show a selected example for the states
of Oaxaca, Durango, and state of Mexico. A detail of the same curves, for the accumulated
percentages of fires below 10%, is shown in Figure 2b. FDI99 values, obtained as the nearest
FDI integer for the accumulated % fires for the first 1% (i.e., 99% of fires occur above this
FDI), are marked in circles for each curve in Figure 2b. FDI99 values of 40, 48, and 55 were
obtained for the states of Oaxaca, Mexico, and Durango, respectively (Figure 2b).
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Figure 2. Accumulated percentage of fires (% Ac Fires) against Fuel Dryness Index (FDI) values for
the states of Oaxaca (blue), Durango (red), and State of Mexico (green) (a) and detail of the same
curves for the % Ac Fires below 10% (b). FDI99 values (FDI values corresponding to a % Ac Fires of 1)
are marked as circles for each curve.

The observed FDI99 values for all the states ranged from 33 to 60 (Figure 3, Table 1).
The lowest FDI99 values (<40) were observed in some of the wetter states of the southeast,
such as Yucatan, Chiapas, or Oaxaca. On the contrary, higher FDI99 values (>50) were
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observed for the driest states in the Northern region (e.g., Durango, Chihuahua), or Center
(e.g., Hidalgo, Guanajuato, San Luis Potosi).
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Table 1. Coefficient and goodness of fit of models to predict number of fires in 10 days by state.

State FDI99 a b c R2 RMSE Bias

Baja California 45 34.701 3.227 0.665 0.501 6.840 −4.160
Campeche 47 27.366 2.409 0.400 0.450 1.689 −0.379

Chiapas 38 103.179 3.230 0.733 0.631 11.889 −6.297
Chihuahua 58 280.047 6.273 0.819 0.743 40.310 −20.510
Coahuila 48 36.343 3.696 0.726 0.492 5.228 −2.360
Colima 48 56.733 3.634 0.332 0.160 9.916 −7.684

Ciudad de Mexico 39 645.171 7.069 0.732 0.625 30.580 −12.710
Durango 54 99.630 5.130 0.686 0.559 13.700 −5.647

Guanajuato 60 24.410 4.219 0.168 0.178 6.308 −5.020
Guerrero 47 25.485 0.987 0.587 0.377 8.945 −4.716
Hidalgo 53 78.719 2.699 0.642 0.466 15.061 −7.640
Jalisco 41 77.550 2.736 0.847 0.673 21.012 −12.265
Mexico 48 654.915 6.053 0.730 0.628 48.452 −19.110

Michoacan 41 276.791 5.361 0.767 0.646 34.615 −15.674
Morelos 50 37.675 2.794 0.514 0.379 8.480 −4.510
Nayarit 46 12.851 0.970 0.730 0.554 4.562 −2.198

Nuevo Leon 39 17.617 1.960 0.726 0.531 4.297 −1.980
Oaxaca 40 99.594 4.216 0.702 0.574 10.100 −5.110
Puebla 43 161.332 4.319 0.566 0.479 20.270 −10.778

Queretaro 55 102.881 7.392 0.321 0.257 5.379 −2.137
Quintana Roo 43 25.036 1.517 0.646 0.471 4.210 −1.711

San Luis Potosi 50 107.705 8.867 0.458 0.279 4.221 −1.367
Sinaloa 45 33.935 4.439 0.213 0.229 3.567 −1.484
Sonora 50 24.221 3.069 0.350 0.253 4.384 −2.047
Tabasco 47 25.034 1.517 0.646 0.479 4.291 −1.770

Tamaulipas 45 25.469 3.402 0.247 0.153 1.310 −0.412
Tlaxcala 40 90.834 3.587 0.652 0.537 14.450 −7.920
Veracruz 39 150.319 3.854 0.612 0.411 13.598 −7.550
Yucatan 35 109.077 5.544 0.294 0.147 4.115 −1.468

Where: FDI99: FDI values corresponding to a % Ac Fires of 1%; a, b, and c are model coefficients (Equation (6)); R2:
coefficient of determination; RMSE: Root Mean Squared Error.
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3.2. Models to Predict Number of Fires by State

Based on a preliminary correlation analysis between the candidate accumulated FDI
for the evaluated periods of 10–90 days and the observed number of fires, a period of
50 days was selected for the accumulated Fuel Dryness Index (FDI50) based on an observed
higher correlation to predict fire activity for the majority of the analyzed states. The best
fits were obtained using non-linear models (Equation (6)). The coefficients and goodness of
fit for the models to predict the number of fires from FDI50 using Equation (6) are shown
in Table 1. For 19 of the 32 evaluated states, values of R2 higher than 0.4 were observed
(Table 1).

In general, the best performance (R2 of up 0.6–0.75) was observed in states with higher
fire activity (states with >1000 fires in the study period, Figure 1), such as Chihuahua,
Ciudad de Mexico, Jalisco, Michoacan, or the state of Mexico. Conversely, the lowest
goodness of fit was observed for states with a low number of fire suppression records
(<200 fires in Figure 1), such as Colima, Guanajuato, Tamaulipas, or Yucatan (Table 1). For
the two states with very low fire activity, Southern Baja California and Aguascalientes, R2

values lower than 0.1 (models not shown) were obtained. The fitted models from the nearest
states (Baja California and Zacatecas, respectively), scaled by the corresponding forest land
surface, were applied for those two states. Because of the use of percentile regression, all
models showed negative bias values (i.e., the models rarely provide underestimations, as
required for risk assessment).

Selected examples of predicted against the observed number of fires in 10 days are
shown in Figure 4 for the states of Chihuahua (North region), Mexico (Centre), and Oaxaca
(South region). In general, the models provide conservative predictions, with relatively few
underestimates, because of the use of percentile regression (to represent “worst case sce-
narios”), combined with the consideration of autocorrelation, that corrects for unexpected
punctual events (i.e., high observed fire activity under relatively wet conditions), that are
considered in the prediction for the next 10 days. Additional examples of predicted against
observed number of fires are shown in Supplementary Figures S1–S5.

3.3. Autoregressive Models to Forecast Accumulated Fuel Dryness

Based on the exploratory analysis using autoarima, autoregressive models of order
2, i.e., (2, 0, 0) × (0, 0, 0)S (Equation (8)), were selected. The coefficients for the selected
models using Equation (8) to forecast FDI50 are shown in Table 2. R2 ranged from 0.989 to
0.813 and RMSE from 1.70 to 7.54. For 29 out of the 32 evaluated states, R2 values were
higher than 0.95 and RMSE values were lower than 2.5. In addition, all the fitted models
demonstrated a lack of autocorrelation in the residues based on the Box–Ljung test.

Table 2. Coefficient and goodness of fit of autoregressive models to forecast accumulated fuel
dryness FDI50.

State a0 a1 a2 R2 RMSE Bias AIC

Aguascalientes 2.142 1.720 −0.756 0.982 2.440 0.021 803.76
Baja California 7.582 1.386 −0.503 0.888 2.389 −0.119 812.47

Baja California Sur 2.620 1.498 −0.538 0.961 2.219 0.024 769.92
Campeche 2.989 1.676 −0.739 0.971 1.703 0.034 701.53
Coahuila 2.007 1.430 −0.462 0.964 2.061 0.037 761.53
Colima 2.093 1.781 −0.822 0.813 7.542 0.239 1193.45
Chiapas 2.364 1.742 −0.793 0.981 1.807 0.028 720.09

Chihuahua 2.728 1.751 −0.794 0.982 2.035 0.011 758.62
Ciudad de Mexico 2.196 1.632 −0.676 0.973 2.608 0.037 845.13

Durango 2.266 1.759 −0.798 0.985 2.086 0.012 767.30
Guanajuato 2.075 1.689 −0.727 0.985 2.150 0.052 781.91

Guerrero 2.132 1.828 −0.869 0.989 1.855 0.004 726.84
Hidalgo 2.070 1.635 −0.675 0.975 2.340 0.035 807.23
Jalisco 2.061 1.813 −0.853 0.989 2.025 0.005 757.53
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Table 2. Cont.

State a0 a1 a2 R2 RMSE Bias AIC

Mexico 1.794 1.768 −0.807 0.985 2.331 0.047 811.73
Michoacan 1.847 1.816 −0.853 0.989 2.006 0.036 759.73

Morelos 2.058 1.778 −0.818 0.986 2.428 0.013 821.03
Nayarit 2.132 1.834 −0.876 0.988 1.983 0.004 750.37

Nuevo Leon 1.682 1.405 −0.434 0.975 1.840 0.040 737.65
Oaxaca 2.239 1.742 −0.787 0.984 1.870 0.069 741.15
Puebla 2.151 1.706 −0.748 0.982 2.259 0.070 802.59

Queretaro 1.991 1.641 −0.679 0.979 2.290 0.063 808.12
Quintana Roo 3.630 1.591 −0.669 0.952 1.799 0.033 719.08

San Luis Potosi 1.487 1.630 −0.657 0.976 2.181 0.007 792.53
Sinaloa 3.092 1.822 −0.875 0.964 1.820 0.002 718.40
Sonora 4.340 1.744 −0.811 0.947 2.167 0.002 780.40
Tabasco 3.425 1.608 −0.678 0.955 2.117 0.024 771.23

Tamaulipas 2.097 1.512 −0.549 0.965 1.926 0.043 737.93
Tlaxcala 2.044 1.686 −0.728 0.979 2.903 0.042 883.19
Veracruz 2.295 1.675 −0.722 0.974 1.774 0.016 709.54
Yucatan 2.386 1.664 −0.714 0.971 1.981 0.000 748.31

Zacatecas 1.668 1.707 −0.736 0.982 2.339 0.070 818.07

Where: a0, a1, and a2 are model coefficients for Equation (7). R2: coefficient of determination; RMSE: Root Mean
Squared Error.
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Figure 4. Selected examples of observed and predicted number of fires in 10 days for the states of
Chihuahua (a), State of Mexico (b), and Oaxaca (c). Where PRED: predicted with models from Table 1;
OBS: observed.
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Selected examples of observed against predicted FDI50 values using the fitted autore-
gressive models are shown in Figure 5, where a close agreement between forecasted and
observed fuel dryness can be observed. Plots of observed against predicted FDI50 values
for all the evaluated states are shown in Supplementary Figures S6–S10.
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Figure 5. Selected examples of observed and predicted accumulated fuel dryness FDI50 for the states
of Chihuahua (a), State of Mexico (b), and Oaxaca (c).

The developed models allow us to map the estimated number of fires by state for
every 10-day period, based on the forecasted accumulated fuel dryness FDI50 and on
the observed number of fires from the previous 10 days. An example of the forecasted
number of fires for two contrasting years (dry year 2011 and wet year 2015) is shown in
Figure 6. The forecasted number of fires shows sensitivity to both years and time periods
within years of contrasting fuel dryness and previous fire activity, generally matching with
observed fire suppression registers (shown as blue dots in Figure 6).
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4. Discussion

This study demonstrated the potential of the combination of forecasts of remotely
sensed fuel moisture, together with autoregressive models that account for human-caused
temporal variations in fire activity, to predict fire occurrence at temporal (10 days) and
spatial units relevant for fire management planning.

Regarding the analyzed effect of fuel dryness, the observed variations between states
in the FDI99 thresholds (Figure 2) in the current study support previous observations
that fuel dryness thresholds for fire occurrence can vary between geographical regions
(e.g., [87]). Furthermore, the generally lower thresholds for fire occurrence observed in
wetter states and, conversely, higher FDI99 found for drier states, support similar previous
observations for FPI by [60], who documented the highest FPI thresholds for the drier
bioclimatic regions in Southern Europe. This also agrees with previous observations of
higher thresholds of live fuel moisture for fire occurrence in drier ecosystems than in wetter,
more productive forests (e.g., [40,43,88]).

For several states, the developed models showed some skill in relating the higher
observed fire activity (e.g., years 2011–2013 for Chihuahua, Figure 4a) to correspond-
ing higher accumulated fuel dryness in those periods (corresponding years and state in
Figure 4a) and, conversely, in explaining the lower fire activity observed in wetter years
(e.g., year 2015 for Chihuahua or Mexico, Figures 4a and 5a). This interannual variability
in fire activity has been previously documented to be related to annual ENSO indices
for Mexico (e.g., [89–91]) and other countries (e.g., [92–94]), although the country- and
region-specific effects of Niño/Niña are still not fully understood for many areas of Mexico
(e.g., [95–97]). The temporal patterns of observed fire activity (Figure 4 and Supplementary
Figures S1–S5) and fuel dryness (Figure 5 and Supplementary Figures S6–S10) point that,
for several states in the analysis, particularly in the North of Mexico, higher fire activity is
observed for La Niña years, such as 2011, which had been documented to be a record for
both number of fires and burned area in Mexico [64].

Our selection of an accumulated fuel dryness index for prediction of fire occur-
rence seems to agree with studies that have observed higher correlations of fire activ-
ity with longer time lag fire weather indices (e.g., [35,98,99]), reinforcing the hypothe-
sis that antecedent water balance and accumulated drought can influence fire activity
(e.g., [3,32,33,100]). Interestingly, the selected period of 50 days, out of the candidate
10–90 days evaluated, corresponds directly with the time lag of some frequently used
indices that have been found to be related to fire activity, such as Drought Code (DC) (with
a time lag of 52 days) ([35,99,101]), 1000 h dead fuel moisture ([17,18]), or 2-month SPI [36].
Furthermore, some of the shorter time lag widely used fire danger indices that have been
frequently related to fire activity such as FWI (e.g., [31,37,102]) or ERC (e.g., [4,8]) integrate
those longer time lag codes into their weighted calculation (e.g., [2,15]). For example, the
52-day time lag index Drought Code is weighted with 15-day DMC in the FWI calculation
through its contribution to the Build-Up Index (BUI) [15]. BUI and DC are commonly used
indicators of potential fuel available for surface fuel consumption, allowing fire managers
to evaluate the difficulty in finally extinguishing all areas where the fire is smoldering
(e.g., [15]). The index ERC is generally calculated for fuel model G (e.g., [2,4,8]), which,
owing to a heavy weighting of large dead fuels (100 and 1000 h), is mainly driven by
weather conditions during the previous 1.5 months [2].

Beyond a potential influence on coarse dead fuel moisture or on deep soil layers, it
is likely that the apparent advantage of the selection of a 50-day period might be related
to live fuel moisture dynamics, which are known to influence fire occurrence and spread
(e.g., [39,43,103]), although its mathematical contribution to fire modeling remains still as an
open research question (e.g., [38,42,43]). In this sense, unlike short-term fire danger indices
and dead fuel moisture codes that are driven mainly by short-term weather conditions, live
fuel moisture depends not just on recent hydrometeorology [38]. Accumulated vegetation
stress is also driven by dynamic and non-linear interactions between weather conditions, soil
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properties, and plant physiological processes (e.g., [40,42,43]). Plant responses to drought and
dry mass changes associated with phenology are particularly critical ([38,42,104]).

This study offers useful information for a hybrid index that, unlike studies that have
focused on weather-driven fire danger indices only (e.g., [22,23,37]]) or only on remotely
sensed estimates of live fuel moisture (e.g., [39,43,46]), combines both moisture components.
This is, to our best knowledge, the first study analyzing several accumulation periods from
10 to 90 days for FPI, one of the few operational fire danger indices integrating both
weather-driven dead fuel moisture and remotely sensed live fuel moisture estimates.

Other studies have found the benefit of using time lags beyond 2 months, such as the
Monte Alegre formula [105,106], the Telicyn Logarithmic Index [107], and the Nesterov
index [108], that use the consecutive number of days without rainfall at longer time periods.
Also, the Risco do Fogo index, which considers precipitation over a period of 120 days [109].
However, we did not observe gains using longer accumulation times in our study, with
correlations generally decreasing for the 90-day interval period.

In addition, our observed non-linearity in the relationship between accumulated FDI
and fire activity from our study supports similar observations for FPI in Europe by [52].
This response has also been observed for other fire weather indices (e.g., [2,102,110]) or
for live fuel moisture (e.g., [103]). Consequently, as stated by Koh et al. [111], the common
practice of using fire weather indices directly as a proxy for wildfire activity, without a non-
linear region-specific calibration to observed fire data, can have limitations in predicting
fire occurrence.

This furthermore highlights the need to develop regionally specific calibrated models to
convert fire weather indices into estimates of fire activity (e.g., [8,51]). Our high variability in
the coefficients to predict fire occurrence might be related to the ample variations in ecosystem
types, climate, and human factors between the analyzed states. This corroborates previous
observations of variations in such relationships between different regions (e.g., [23,102,112]).

The observed best performance (R2 of >0.6–0.75) in larger states with higher fire
activity such as Chihuahua, Ciudad de Mexico, Jalisco, Michoacan, or the State of Mexico,
seems to support similar previous observations of stronger relationships at larger areas of
study [105]. In general, the range of R2 for the percentile regression models from our study
was similar to that found in studies predicting the number of fires in other regions, such as
the range of R2 of 0.26–0.46 by [113] or R2 of 0.37–0.60 by [114].

Our observed lower relationship between fuel dryness and fire activity in some of
the drier states (e.g., Southern Baja California, Aguascalientes, Sonora, San Luis Potosi,
Queretaro, or Guanajuato) agrees with previous studies reporting weaker fuel be related
to the observations from previous studies that have similarly documented weaker fuel
dryness–fire activity correlations for drier climate regions (e.g., [23,31,37,105]). This might
support the hypothesis of varying constraints of fire occurrence (e.g., [115,116]). In addition,
weaker weather-fire relationships may arise in regions where fire occurrence is strongly
determined by episodic wind-driven fires, such as in Baja California, where Santa Ana
winds are known to influence fire activity [117]. Current ongoing research aimed at
developing a windy FPI for Mexico, similar to what recently developed for a revised
FPI index including wind in the USA [118] or other countries [119] might contribute to
improving our capacity to predict fire occurrence in future studies. This could provide
information at finer temporal scales than the periods of 10 days evaluated in the current
study. In this regard, different time lags of fuel moisture than the ones selected for 10-day
fire occurrence here, together with the consideration of wind, might be useful for future
analyses aiming at predicting daily fire spread. In addition, future studies could expand
the period of study, based on the future availability of FDI data.

Beyond observing the effect of fuel dryness in promoting fire activity, for many of
the analyzed states, a large effect of temporal autocorrelation was also documented. For
example, in spite of lower observed accumulated fuel dryness in 2015 for the state of
Oaxaca (Figure 4c), the relatively large fire observed activity could be generally predicted,
even under wetter conditions, because of the consideration of autocorrelation terms. This
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approach predicts a higher number of fires as a response to observed fire activity from
the previous 10 days (Figure 4c). In this sense, many of the states with the largest c
coefficient in the predictive equation to account for temporal autocorrelation of previous
fire activity (Table 1), such as Oaxaca, Chiapas, Michoacan, Jalisco, or Nayarit, correspond
to areas in the center and southeast of Mexico where fires are most likely a result of the
spread of frequent agricultural burns (e.g., [120,121]). These observations support the notion
that anthropogenic factors can effectively mask or have an influence beyond weather–fire
relationships in some regions due to extensive and regular intentional human ignitions where
conversion to agricultural lands and greater land fragmentation occurs (e.g., [23,61–63]).

Our use of an autoregressive term of 1 lag, allowing us to forecast the number of fires
based on the observed number from the previous 10 days, agrees with the observations
of [65] who found a temporal correlation of up to 11 days to predict daily arson ignition
counts in Florida. Nevertheless, our study, unlike the univariate autoregressive approach
of Prestemon et al. [66] or other authors [67,68], or unlike the majority of literature that
have used fire danger indices only (e.g., [23,37,102]), included a combination of both fuel
dryness and autoregressive terms of previous fire activity, to forecast fire activity of the
next 10 days.

In our study, on the one hand, autocorrelation alone explained a relatively large vari-
ability of the observed number of fires for the majority of the evaluated states, as noted by
a correlation coefficient (c, Table 1) of up to 0.8, being >0.5 for 20 of the analyzed states. On
the other hand, adding fuel dryness in addition to autocorrelation improved the correlation
for the large majority of the analyzed states (Table 1). For example, in the Campeche
state, considering only autocorrelation resulted in an R2 (squared correlation coefficient of
0.40) of 0.16 (Table 1). Conversely, including fuel dryness in addition to autocorrelation
increased the R2 for this state to 0.45 (Table 1). Furthermore, using previous fires only,
would not allow us to anticipate either (1) the beginning of the fire season (when previous
days show few or no fire activity), nor (2) sudden peaks of fire activity when weather
conditions aggravate, after previous days of moderate fire activity. This can be observed
in the plots of predicted fire activity (Figure 1). For example, for Chihuahua (Figure 4a),
at the beginning of the fire season of the year 2012, the previously observed number of
fires from the previous month of December 2011 was 0. Using only an extrapolation of the
previous fires, one would assume 0 fires for the first 10 days of January, underestimating
the observed start of the fire season on this date. Instead, because the model provides a
conservative (percentile-fitted) estimate of fire activity based on accumulated fuel dryness,
the observed number at the beginning of the fire season is not underestimated (Figure 4a).
Also, the sudden increases in fire activity at the end of January 2012 and the start of March
2012 in this state (Figure 4a), which would have otherwise been underestimated based on
previously observed fire activity, were successfully anticipated in the predictions because of
the consideration of accumulated fuel dryness. This suggests that considering a percentile
fit of fire activity against fire weather can provide conservative estimates of fire activity,
anticipating sudden peaks of fire occurrence in dry seasons before they have occurred
(Figure 4), as desired for a safe fire hazard decision support tool.

Autoregressive terms were also used to forecast the accumulated fuel dryness of the
next 10 days. Our approach agrees with the results of Huesca et al. [53] who used autore-
gressive models of the previous 2 lags to predict FPI in Spain. Although the autoregressive
models developed in this study showed good skill (R2 of 0.989 to 0.813) in forecasting the
accumulated fuel dryness of the next 10 days, future studies could further explore the
use of weather forecasts (e.g., [4,122]). Such approaches could be valuable to predict fire
occurrence under potentially changing climate conditions [9–12], including expanded fire
seasons, or changes in the timing of precipitation, that might be better captured with such
more detailed weather forecasts.

The current study aimed at forecasting the total number of fires by state. Nevertheless,
considering that large fires can represent a large fraction of the fire suppression budget
(e.g., [5,123–125]), future studies could aim at predicting a number of large fires (e.g., [8]).
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Furthermore, beyond developing temporal forecasts of large fire activity based on the aver-
age (or percentile) fuel dryness value by state, more detailed spatio-temporal approaches
to predict fire occurrence, such as those demonstrated by Preisler et al. [8,19]), should be
explored in future studies. Such approaches could allow both mapping fire or large fire
occurrence probability and simultaneously estimating the number of fires or the number of
large fires for a particular region and period of time by summing the estimated probability
values of individual voxels (e.g., [51]). This would further contribute to support decision-
making not only between but also within states, potentially improving fire suppression
and fire management planning.

5. Conclusions

The main conclusions of the study can be summarized as:

(1) This study evaluated for the first time the effect of different accumulation time periods
on the capability of a modified version of the FPI fire danger index to forecast the
number of fires.

(2) Our results suggest that a period of 50 days, provided the best results to forecast
fire activity in a variety of geographical areas with different ecosystems and climates
in Mexico. These results indicate a potential effect of the selected time period in
capturing live fuel moisture dynamics effects in fire occurrence for the study area
analyzed, that could be tested for accumulated FPI in other research areas using the
methodology presented here.

(3) In addition, the use of autoregressive terms, in combination with the accumulated
fuel dryness, reveals its usefulness for predicting fire activity for several states. This
approach could be tested elsewhere based on FPI or other fire indices to forecast fire
activity.

(4) Finally, autoregressive models showed good performance in forecasting Accumulated
Fuel Dryness (AcFDI) based on previously observed AcFDI values, allowing the
development of forecasts of the expected number of fires by state for the next 10 days.

(5) Future studies might enhance the potential of these initial models by exploring
weather forecasts of both predicted fuel dryness and wind. Furthermore, spatio-
temporal approaches should be also tested to further support fire management plan-
ning at different time and spatial scales.
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