'™ forests

Article

Annually Spatial Pattern Dynamics of Forest Types under a
Rapid Expansion of Impervious Surfaces: A Case Study of

Hangzhou City

Yuxin Zhu !, Jingchuan Zhou !, Mingyue Liu 2(*, Weidong Man 2{0 and Lin Chen 1*

check for
updates

Citation: Zhu, Y.; Zhou, J.; Liu, M.;
Man, W.; Chen, L. Annually Spatial
Pattern Dynamics of Forest Types
under a Rapid Expansion of
Impervious Surfaces: A Case Study of
Hangzhou City. Forests 2024, 15, 44.
https:/ /doi.org/10.3390/£15010044

Academic Editor: Pedro

Alvarez-Alvarez

Received: 10 December 2023
Revised: 19 December 2023
Accepted: 22 December 2023
Published: 24 December 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Institute of Remote Sensing
and Earth Sciences, Hangzhou Normal University, Hangzhou 311121, China;

zhuyuxin@stu.hznu.edu.cn (Y.Z.); zhoujingchuan@stu.hznu.edu.cn (J.Z.)

Hebei Key Laboratory of Mining Development and Security Technology, Hebei Industrial Technology
Institute of Mine Ecological Remediation, College of Mining Engineering, North China University of Science
and Technology, Tangshan 063210, China; liumy917@ncst.edu.cn (M.L.); manwd@ncst.edu.cn (W.M.)

*  Correspondence: chenlin@hznu.edu.cn; Tel.: +86-0571-28869966

Abstract: Dramatic forest dynamics strongly influence pressure mitigation from the increasing
population and climate changes of an urban landscape. Effectively monitoring landscapes in a
spatiotemporally consistent manner, satellite remote sensing has emerged as the first analytical tool
to help us understand the changes in urban forests. At present, most studies focus on classification
algorithms, spatial analysis methods, and ecosystem models, and the literature lacks spatiotemporally
explicit research on the responses of different types of forests to urbanization. Thus, in this study,
Hangzhou was selected as a typical metropolitan area to determine the annual spatial patterns of
urban forests at a forest-type level. To illustrate the spatial pattern dynamics of different forest types
resulting from rapid urbanization, this study characterized the Landsat-based spatial patterns of
different forest types, as well as their annual changes from 2000 to 2022 using object-based backdating
classification, land-use transfer matrix, area-weighted centroids, and landscape pattern indexes. The
spatiotemporal effects of impervious surface expansion on forest pattern changes at a type scale
were discussed. The results demonstrated that forests, mainly located in the southwest, decreased
from 11,660.69 to 11,516.15 km?. Moreover, evergreen broadleaved forests occupied the largest
area and had the most decreased ratio among the three forest types over 23 years, followed by
evergreen needle-leaved and deciduous broadleaved forests. In total, 103.37 km? of forest areas
transformed to impervious surfaces, with the highest annual transformation of area occurring
among evergreen broadleaved forests widely across Hangzhou City and the lowest occurring among
deciduous broadleaved forests. Forests lost adjacency due to the development of Hangzhou City,
while this southwestward shrinkage slowed down over 23 years, resulting in the highest increase
in the degree of evergreen broadleaved forest fragmentation. Therefore, measures of city planning
according to the deep effects of adjustments of administrative divisions to forest suitability should be
implemented, such as green ecological corridor construction. This research provides a Landsat-based
methodology at a spatiotemporally explicit-scale perspective for better understanding forest changes
under high-speed urbanization.

Keywords: annual forest type maps; forest spatiotemporal patterns; forestry effects of urbanization;
Landsat series; Google Earth Engine; Hangzhou City

1. Introduction

Booming urbanization has notably harmed the natural ecosystem through the replace-
ment of natural surfaces with artificial impervious surfaces, altering the surface thermal
environment and hydrological cycle [1,2]. These globally expanding impervious surfaces
support growing urban populations, creating opportunities for forests to deliver crucial
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ecosystem services and mitigate environmental impacts, such as urban heat islands and
waterlogging [3-5]. These services depend on the forest type, which is shaped by responses
to environmental processes and a diverse supply of wildlife and human habitats and re-
sources [6,7]. Therefore, subjects related to the spatiotemporal patterns of urban forest types
have attracted widespread attention among international scholars and organizations [8,9].

The traditional field-observed regional mapping of urban forest types is precise but
costly. Satellite remote sensing techniques, such as optical sensors of Moderate Resolution
Imaging Spectroradiometer (MODIS), Landsat series, and Sentinel-2, provide spatially
explicit forest observations in a comparable and repeatable manner [10,11]. On account of
the comparatively finer spatial resolution with a long-time sequence, the Landsat series
has become a popular data source for characterizing forest dynamics [12-14]. Furthermore,
Google Earth Engine (GEE) is a powerful geo-big data computing platform that combines
spatiotemporally spectral features for large-scale forest-type classification and produces
a series of multi-scale maps [15-17]. Zhang et al. [18] developed a Landsat-based global
30 m land-use map with a detailed classification system of forest types using the metric
composite method on GEE and a multi-temporal random forest model, of which the overall
accuracy is 82.5%. IokiAn et al. [19] investigated the use of the Landsat series to identify the
characteristics of disturbance events during the recovery of tree community composition.
Then, the spatiotemporal patterns of urban forests were commonly quantified via the
spatial analysis of temporal dynamics within the forest area, distribution, transformations,
and landscape pattern indexes [20—-22]. Shen et al. [23] adopted object-oriented Landsat-
based mapping of an urban forest cover and analyzed dynamics employing a transfer
matrix. Kowe et al. [24] acquired detailed information on urban vegetation patches and
their landscape metrics with the help of Landsat images to further examine the impact on
urban thermal cooling. Yang et al. [25] assessed the influence of urbanization on vegetation
in China based on the type of conversions and spatial centroids. Overall, previous studies
have closely studied classification algorithms and spatiotemporal conversions from forests
to impervious surfaces, as well as the driving forces [26-28]. Despite these great strides in
remote-sensing-based spatial analysis, the link between forest changes and urban expansion
was historically quantified at a whole-forest scale in most published papers. Namely,
the spatiotemporally explicit response of forest types to rapid urbanization is not well
documented.

Hangzhou earned its reputation as an International Garden City and National Forest
City due to its urban greening efforts with a high rate of vegetation covers [29,30]; never-
theless, urban development soared from 23% in 1978 to 84% in 2022 [31]. With the booming
urbanization process, forest dynamics have caught an additional focus in government
planning efforts toward the construction of Hangzhou's forest city and poly-centric urban
structures [30,32]. Prior studies were limited in observing forest changes under urban-
ization before 2020, with at least a five-year interval, and they mostly applied land-use
classification at the first level. Nevertheless, precise up-to-date forest dynamics at a type
scale following impervious surface expansion in Hangzhou City require further exploration.
Most notably, spatiotemporally explicit responses of various forest types to urbanization
have been insufficiently researched but remain crucial in supporting government planning
to balance urbanization and forest management in Hangzhou City. As such, the specific
objectives of this study were to: (1) map the annual spatial distributions of various forest
types; (2) quantify the spatiotemporal transformation of different forest types to impervious
surfaces; and (3) analyze the relationship of spatiotemporal patterns between the forest
type and impervious surface.

2. Materials and Methods
2.1. The Study Area

As the capital of the Zhejiang Province in China and the second largest metropolis
in the Yangtze River Delta, Hangzhou City is located between 118°20'23"-120°42'50" E
and 30°33/54"-29°11'19” N, in the lower reaches of the Qiantang River (Figure 1). The
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area includes 10 districts, two counties, and one county-level city, covering an area of
16,846.92 km? [33]. This region encompasses a vegetation zone named subtropical evergreen
broad leaved forests and has a humid subtropical monsoon climate with four distinct
seasons, including hot and humid summers and cold and dry winters [34,35]. It has an
annual average temperature of 17 °C and annual precipitation of 1450 mm [36]. Over
the past two decades, characterized by its economic soar, Hangzhou City has undergone
high-speed urbanization, with the urban population rising from 3.73 million in 2000 to
10.39 million in 2022 [31,32]. At the same time, this region has experienced intense land-use
changes with the expansion of impervious surfaces, with consequential environmental
impacts, such as urban inland inundation, heat island formation, and decreasing vegetation
carbon storage [37-39].
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Figure 1. The location (a,b) and mosaic image (c) of the Landsat-9 OLI-2 in the winter of 2022
and elevation (d) from the Advanced Land Observing Satellite World 3D-30 m (AW3D30) of the
study area. Here, SC, GS, XH, BJ, LP, QT, XS, YH, LA, FY, TL, JD, and CA represent districts named
Shangcheng, Gongshu, Xihu, Binjiang, Liping, Qiantang, Xiaoshan, Yuhang, Li’an, and Fuyang and
counties named Tionglu, Jiande and Chun’an, respectively.

2.2. Data and Preprocessing

A total of 1666 satellite images from 2000 to 2022 were used in this study, including
ones derived from the Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus
(ETM+), Operational Land Imager (OLI), and OLI-2 imagery (Table S1). For mapping forest
types and impervious surfaces, Landsat surface reflectance tier 1 images were chosen and
processed using the simpleComposite function to obtain and download mosaic images
based on the GEE cloud-computing platform (Figure 2) [40]. To classify the forest type,
mosaic images taken during the summer and winter were separately produced, with the
exception of images from 2012. Due to a lack of satisfactory images in different seasons
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of 2012, a yearly mosaic image was used for classification. The summer mosaic image
was computed from June 1st to August 31st, and the winter was defined as the period
from December 1st to the end of February of the following year. The classification was
based on the best-quality image with the lowest cloud cover in the study area among the
multi-sensor and multi-season mosaic images, and the remaining mosaic images were used
as auxiliary data. The mosaic image from the Landsat-9 OLI-2 in summer of 2022 is shown

in Figure 1.
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Figure 2. The outline of the quantification of the spatiotemporally explicit response of forest types
to rapid urbanization. The version number of the software are follows as eCognition Developer 9.0,
ArcGIS 10.2 and Fragstats 4.2.

The GLC_FCS30 products of 2020 with the mapsheet names of E115_30, E115_35,
E120_30, and E120_35 were downloaded from the Big Earth Data Science Engineering
Program (https:/ /data.casearth.cn/, accessed on 4 January 2022) as the baselines for the
classification. These 30 m resolution global land-cover data products achieved a total
accuracy of 82.5% and a Kappa coefficient of 0.78 [18].
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2.3. Methods

The workflow of this study, shown in Figure 2, was composed of three parts: (1) annual
mapping of the forest types and impervious surfaces via the object-based backdating
classification; (2) quantifying spatiotemporal dynamics of different forest types under
the expansion of impervious surfaces employing the land-use transfer matrix and spatial
centroid; and (3) analyzing the relationships of the spatiotemporal patterns of diverse forest
types and impervious surfaces by calculating the landscape pattern indexes.

2.3.1. Object-Based Backdating Classification

An object-based backdating approach, according to existing mapping efforts, with a
consistent classification scheme, improved the accuracy by decreasing pseudo changes and
heterogeneity [32,41]. According to the classification system of GLC_FCS30 products, land-
use types in Hangzhou City were reclassified as evergreen broadleaved forests, deciduous
broadleaved forests, evergreen needle-leaved forests, impervious surfaces, and other lands.
To effectively implement annual mapping with a consistent classification scheme, the object-
based backdating method was used to annually map forest types and impervious surfaces
between 2020 and 2022, with the recognition of existing efforts. The classification accuracy
was acceptable at overall values over 85%, which was assessed according to randomly
selected samples from Google Earth images. Classification involved the following steps:

1.  Object-based image analysis: The GLC_FCS30 map of 2020, as Phase I data, and
Landsat-9 OLI-2 mosaic image of 2022, as Phase II data, were segmented together
by the eCognition Developer 9.0 software with 50, 0.1, and 0.5 as values of the scale,
shape, and compactness, respectively.

2. Stratified image classification: The classes of objects from Phase II data were assigned
according to those from Phase I data.

3. Visual interpretation and manual modification: The changed objects from Phase II data
were modified manually to obtain the final map of 2022 at a 30 m spatial resolution.

4. Backdating: The final map of 2022 was used as the Phase I data, and the Landsat-8 OLI
mosaic image of 2021 was used as the Phase II data. Steps from 1 to 3 were conducted
to acquire the map for 2021. Based on the map of the Year N (as Phase I data) and the
Landsat mosaic image of N-1 (as Phase II data), steps from 1 to 3 were conducted to
acquire the map for N-1.

2.3.2. Land-Use Transfer Matrix

The land-use transfer matrix was widely computed to quantify the area conversions
among diverse land-use types [42]. To characterize the contributions of impervious surfaces
to the dynamics of different forest types in Hangzhou City, the following land-use transfer
matrix was calculated using the tabulate area tool in the ArcGIS 10.2 software:

Si1 -+ S
Si=1: 1)
Snl e Snn

where S;; is the area of land-use type i transferred to land-use type j, and 7 is the number of
land-use types. In this study, n was 5. i and j (1, 2, . . ., 5) represented land-use types before
and after a certain transfer process, respectively. The contributions of other land-use types
to the dynamics of different forest types represent the values from one of the columns in
this matrix.
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2.3.3. Area-Weighted Centroids

The area-weighted centroid is a set of the coordinates determined according to the area-
weighted geometric center of polygons [43]. These spatial centroids of different forest types
and impervious surfaces were mapped to delineate the direction of changes as follows:

{Xt =Y (G Xi)/ T Ci @)
Y =N (CirYi)/ By Cri

where X; and Y; are the longitude and latitude of a centroid of different forest types or
impervious surfaces in year t, respectively; Cy; is the area of patch i in year t when calculating
the centroid of different forest types or impervious surfaces; X; and Y; are the longitude and
latitude of patch i used for different forest types or impervious surfaces, respectively; and N
is the total patch number of different forest types or impervious surfaces. If different forest
types or impervious surfaces grow or reduce equally in every direction, the area-weighted
centroid remains invariant; otherwise, its centroid moves toward the direction in which the
forest types or impervious surfaces expand or decrease more.

2.3.4. Landscape Pattern Indexes

Most rapidly growing populations dwell in cities and exert more pressure on urban
forests, causing vegetation fragmentation and loss of landscape connectivity [24,44]. To
quantify landscape configuration, the indexes referring to the relevant literature were
calculated by employing the Fragstats 4.2 software as shown in Table 1 [45—47]. The
dominance, complex, aggregation, fragmentation, and homogeneity were described by
these typical indexes at class and landscape levels. Four land-use types were separately
analyzed at a class level, including evergreen broadleaved forests, deciduous broadleaved
forests, evergreen needle-leaved forests, and impervious surfaces. Landscape-level indexes
were calculated for the entire study area and forests, respectively.

Table 1. Descriptions of adopted landscape pattern indexes.

Level Type Indexes Formula Description
L4y x 100; a;; is the area of patch ij; n is the The class that qbtains a greater
PLAND total patch number of class 7; A is the total PLAND occupies more area of
Area and landscape area. the landscape.
edge »
LPI %1(””) x 100; parameters present the same as ~ Lhe greater LPI class obtains the
the above. largest patch of the landscape.
21n(0.25 p;j) . .
FRAC = —"=—; p;; is the perimeter of patch The greater FRAC_AM class
ij .
Class Shape FRAC_AM iji the others present the same as the above; obtains the most complex shape
FRAC_AM is an area-weighted mean of FRAC. across the landscape.
%\)’%1@ ; €' is the total length of the edge in the ~ The smaller LSI class shows the
LSI landscape between classes i and k; m is the class stronger aggregation across the
number; the others present the same as the above. landscape.
Aggregation PD % %10,000 x 100; n; is the patch number of class ;;  The greater PD class shows the
the others present the same as the above. worse fragmentation.
Th ter SPLIT cl h
SPLIT A722 ; parameters present the same as the above. o preaer © 85 SHOWS

Y ajj

the worse fragmentation.
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Table 1. Cont.

Level Type Indexes Formula Description
% x 10, 000; E is the total length of the edge in the It describes the edee effect and
ED landscape; the others present the same as the ] P & .
A d b andscape fragmentation.
rea an above.
edge max(a;;) L
LPI 1 % 100; parameters present the same as The greater LPI indicates that the
the above. dominance is more outstanding.
Shape FRAC AM FRAC_AM is the area-weighted mean of FRAC of It describes the shape complexity
p - all classes. across the landscape.
%’. E*is the total length of the edge in the It measures the overall geometric
LSI landscape; the others present the same as the complexity of the landscape.
above.
N . .
2 %10,000 x 100; N is the total patch number in It describes the land
PD the landscape; the others present the same as the es;n es the andscape
bove ragmentation.
Landscape a :
A? .
==, parameters present the same as the
Aggregation SPLIT YL p p It describes the lctmdscape
above. fragmentation.
mn i [ g )| e ()]
k=1Sik Ll Sik
1+ 2In(m) X
CONTAG 100; P; is the proportion of the landscape It describes the landscape
occupied by class i; g is the number of aggregation.
adjacencies between the pixels of classes i and k
based on the double-count method; the others
present the same as the above.
SHDI Y, (P;- InP;); parameters present the same It describes the diversity at the
as the above. landscape level.
Diversit " (P .
Y SHEI w ; parameters present the same It is the complement of
as the above. dominance.
3. Results

3.1. Spatiotemporal Distribution of Forests with the Expansion of Impervious Surfaces

Between 2000 and 2022, forest area decreased from 11,660.69 to 11,516.15 km?2, with
impervious surfaces exploding across Hangzhou City, and this mostly occurred in the
southwest, i.e., Chun’an, Li’an and Jiande (Figures 3 and 4). Forests showed a slower
reduction, with some fluctuations over 23 years under the decelerated urbanization of
Hangzhou City, with the expansion rate being 27.95 km? /year in the first 10 years and
13.32 km?/year in the most recent 12 years (Figure 4a). The fastest changes appeared within
the first 10 years, especially between 2006 and 2007 for forests and between 2007 and 2008
for impervious surfaces. Evergreen broadleaved forests had been occupying the largest
area among the three forest types for 23 years, followed by evergreen needle-leaved and
deciduous broadleaved forests (Figure 4a). At the same time, during the 2000-2022 period,
the greatest decline of 1.41% was shown in evergreen broadleaved forests, and evergreen
needle-leaved forests were reduced by 1.18%. The decrease ratio of deciduous broadleaved
forests was the lowest, at 0.14%.
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Figure 4. Statistics of forest changes during the urban expansion of Hangzhou City between 2000
and 2022, including the annual area changes in forest types and impervious surfaces (a), and the
composition dynamics of regions (b) and land-use types (c). The abbreviations EB, DB, and EN
represent evergreen broadleaved, deciduous broadleaved, and evergreen needle-leaved forests,
respectively.

The composition of forests in different regions slightly changed (Figure 4b,c). Ever-
green broadleaved forests were chiefly distributed in Chun’an, Li’an, and Jiande. Li’an,
Chun’an, and Tonglu encompassed most of the deciduous broadleaved forests. Evergreen
needle-leaved forests mostly grew in Chun’an, Jiande, and Lin’an. Regarding the percent-
age of forests during period of 2000-2022, evergreen broadleaf area lowered from 76.68%
to 76.55%, and deciduous broadleaf forest area increased from 11.15% to 11.27%, while
evergreen needle-leaf remained at 12.17% with a slight increase. The forest dynamics mostly
appeared in newly developed urban areas, such as Lin’an, Fuyang, Tonglu, and Jiande.
Older regions, such as Shangcheng, Gongshu, Xihu, Binjiang, Linping, and Qiantang,
showed that land-use changes mainly occurred for impervious surfaces and other lands.
Outstanding changes in forests and impervious surfaces in Xiaoshan and Yuhang were
observed. The land-use of Chun’an was observed to be quite stable for 23 years.

3.2. Spatiotemporal Transformation from Different Types of Forests to Impervious Surfaces

The annual occupation of forests by impervious surfaces was acquired using a land-
use transfer matrix, as illustrated in Figure 5. Between 2000 and 2022, a total of 103.37 km?
forest area was transformed into impervious surface. These transformations were out-
standing from 2015 to 2022. The retarded conversions from forests to impervious surfaces
showed that the slope of the curve decreased despite some fluctuations. Under the rapid
urbanization of Hangzhou City, evergreen broadleaved forests contributed the most area
among the three forest types over the 23 years; however, the occupation of the other forest
types by impervious surfaces varied annually. The percentages of evergreen needle-leaved
forests were larger than deciduous broadleaved forests, except from 2009 to 2010 and
2011 to 2012. During these periods, the changes from evergreen needle-leaved forests to
impervious surfaces did not appear in Hangzhou City. The conversions from deciduous
broadleaved forests to impervious surfaces occurred in 10 years among 22 periods, mostly
outstanding during the 2011 to 2012 period. The remarkable contributions of evergreen
broadleaved and needle-leaved forests occurred during the 2002 to 2003 and 2001 to 2002
periods, respectively.
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The annual spatial differences of forest transformations to impervious surfaces among
regions were quantified via spatial analysis and summarized in Figure 6. Within the first
5 years, the conversions from evergreen broadleaved forests to impervious surfaces were
mainly located in Lin’an, Jiande, and Fuyang (Figure 6a). The occupation of deciduous
broadleaved forests by impervious surfaces only occurred in Jiande and Gongshu from
2002 to 2005. Evergreen needle-leaved forests in Chun’an, Xiaoshan, and Fuyang repre-
sented most of the conversions to impervious surfaces. The spatial variations increased
over the next five years (Figure 6b). Evergreen broadleaved forests in Lin’an accounted for
the majority of conversions to impervious surfaces during the 2005 to 2010 period. The
transformation from deciduous broadleaved forests to impervious surfaces only occurred
in Tonglu from 2009 to 2010. Evergreen needle-leaved forests in Chun’an and Fuyang
accounted for more than half the conversions to impervious surfaces. Regarding the pe-
riod from 2010 to 2015, Lin’an still led with the proportion of conversions from evergreen
broadleaved forests to impervious surfaces, followed by Fuyang and Jiande (Figure 6c).
During this period, deciduous broadleaved forests transformed to impervious surfaces
increased and chiefly appeared in Lin’an. The sum proportion of evergreen needle-leaved
forests in Jiande, Chun’an, and Tonglu represented the majority. Between 2015 and 2020,
the conversions from evergreen broadleaved forests to impervious surfaces were similar to
those during the 2000 to 2005 period (Figure 6d). Within these five years, urban expansion
did not occupy deciduous broadleaved forests. Evergreen needle-leaved forests in Tonglu
and Jiande had the majority of conversions to impervious surfaces. Over the past two
years, Lin’an, Yuhang, and Fuyang contributed the most deciduous broadleaved forests
to urbanization (Figure 6e). The transformations from deciduous broadleaved forests to
impervious surfaces widely occurred across Hangzhou City from 2020 to 2022, mostly in
Chun’an, Tonglu, and Lin’an. The changes from evergreen needle-leaved forests to impervi-
ous surfaces were mainly in Jiande and Chun’an. Overall, over the 23 years studied, Lin’an,
Fuyang, and Jiande were the top three regions in which the rapid expansion of impervious
surfaces occupied great areas of forests. Evergreen broadleaved forests and whole forests
converted alike. The temporal frequency of changes from evergreen needle-leaved forests
to impervious surfaces was higher than that of conversions from deciduous broadleaved
forests. Conversions from deciduous broadleaved forests to impervious surfaces displayed
stronger spatial heterogeneity across Hangzhou City than those from evergreen needle-
leaved forests. Changes from deciduous broadleaved forests to impervious surfaces were
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mainly located in Lin’an and Chun’an, and those from evergreen needle-leaved forests
were chiefly in Chun’an and Jiande.
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Figure 6. Temporal dynamics of spatial variations of conversions from different forest types to
impervious surfaces summarized according to regions, covering the following periods: 2000 to 2005
(a), 2005 to 2010 (b), 2010 to 2015 (c), 2015 to 2020 (d), 2020 to 2022, and 2000 to 2022 (e).

3.3. Relations of Spatiotemporal Patterns between Various Types of Forests and
Impervious Surfaces

The area-weighted centroids of forests and impervious surfaces were determined
via spatial analysis and are depicted in Figure 7. Over 23 years, these five groups of
centroids from different land-use types had varying degrees of movement; however, they
were still within the same region. Indeed, 23 centroids of impervious surfaces were in
Xihu, and those of forests and evergreen broadleaved forests were in Tonglu. On the
other hand, centroids of deciduous broadleaved and evergreen needle-leaved forests were
located in Chun’an. Among the five groups, centroids of impervious surfaces moved the
most, followed by evergreen needle-leaved forests, evergreen broadleaved forests, forests,
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(a) Overview

and deciduous broadleaved forests. Regarding the centroid movements of the forests,
evergreen broadleaved and needle-leaved forests resembled one another. These three
groups of centroids all moved towards the southwest. The centroids of impervious surfaces
and deciduous broadleaved forests had more complex annual shifts. It was shown that
the impervious surface” centroid firstly moved southwestward and then shifted to the
northwest. After that, the centroid of impervious surfaces went to the southwest again
and finally toward the north. The deciduous broadleaved forests’ centroid headed for the
southwest and then went to the north. Subsequently, the centroid of deciduous broadleaved
forests moved to the southeast, with a final turn northwestward.
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Figure 7. Overview of centroid locations (a) with annual centroid movements of impervious surfaces
(b), forests (c), evergreen broadleaved forests (d), deciduous broadleaved forests (e), and evergreen
needle-leaved forests (f).
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The landscape pattern indexes at the class level were calculated and are summarized
in Figure 8. The PLAND values of all forests reduced, whereas those of impervious
surfaces increased, and these changes slowed down over 23 years (Figure 8a). Evergreen
broadleaved forests had the largest PLAND values, and deciduous broadleaved forests
had the smallest. The PLAND value variation for impervious surfaces was the greatest
at 29.34%, followed by evergreen broadleaved at 1.39%, evergreen needle-leaved, and
deciduous broadleaved forests. The LPI annual changes in forests and impervious surfaces
were approximate to PLAND (Figure 8b). However, the value ranking was different,
as evergreen needle-leaved forests had the minimum. The results demonstrated that
the FFRAC_AM values for all forests lowered slightly, with the largest decline being in
evergreen broadleaved forests, while the values of impervious surfaces increased, then
slowly decreased (Figure 8c). The order of the FFRAC_AM of forests and impervious
surfaces was same as that of the LPI values. All LSI values decreased, and the order
of the forests and impervious surfaces by shrinkage degree was the same as that of the
LPI (Figure 8d). Nevertheless, evergreen needle-leaved forests had the largest LSI, and
impervious surfaces had the minimum. The PD values of evergreen broadleaved and
deciduous broadleaved forests showed a slight increase (Figure 8e). The PD decrease for
impervious surfaces was relatively remarkable, at 5.7% compared to that of evergreen
needle-leaved forests over the 23 years studied. Evergreen needle-leaved forests had the
greatest PD, followed by deciduous broadleaved and evergreen broadleaved forests, and
impervious surfaces demonstrated the lowest PD values. The SPLIT values for all forest
types increased, whereas those of impervious surfaces lowered (Figure 8f). Evergreen
needle-leaved forests had the maximum, followed by deciduous broadleaved forests and
impervious surfaces. The SPLIT of evergreen broadleaved forests was the smallest. The
order of the change degree from highest to lowest values was as follows: impervious
surfaces, evergreen broadleaved, deciduous broadleaved, and evergreen needle-leaved
forests; this was also the same for LPI values.

The spatiotemporal pattern relationship between the forest types and impervious sur-
faces was highlighted by the relevance of centroid movements and class-level indexes. The
centroid movements of the forest types and impervious surfaces were broadly consistent with
a southwestward tendency from 2000 to 2022. This consistency indicated the spatial relation-
ships between the reduction in forests and the soar in impervious surfaces. The opposite
changes of index values of the forest types and impervious surfaces, such as that of PLAND,
LPI, and SPLIT, elucidated that all types of forests lost area and became fragmented due to the
rapid expansion of impervious surfaces. Although the PD values of evergreen needle-leaved
forests slightly lowered due to the amount of area lost, the forest fragmentation quantified
via PD aligned with the aggregation of impervious surface expansion described by PD and
LSI. This situation was tardier within the most recent years of this study, as depicted by the
slower dynamics shown in Figure 8, which was also demonstrated by the coherence between
FRAC_AM changes of forest types and impervious surfaces after 2012.

The landscape-level indexes were computed and are shown in Figure 9. The change
trends for FRAC_AM, LSI, SPLIT, CONTAG, SHDI, and SHEI of forests and the en-
tire Hangzhou City were similar. Nonetheless, regarding ED, LPI, and PD, forests and
Hangzhou City displayed opposite variations. Moreover, the dynamics of all indexes
became tardive within the 23 years of the study. The chief indexes of the forests had incre-
ments, excluding FRAC_AM, LSI, and CONTAG; on the other hand, those of Hangzhou
City decreased, except for SPLIT, SHDI, and SHEI The forest pattern dynamics, due to
the urbanization of Hangzhou City, were depicted by the relationship between centroid
movements and landscape-level indexes. Forests showed close spatiotemporal patterns to
evergreen broadleaved forests, which elucidated the southwest-oriented decline in forests
over 23 years. As demonstrated by the value dynamics of ED and PD, forests became
fragmented despite the stronger aggregation of impervious surfaces. The value changes in
LPI, SHDI, and SHEI indicated that the area differences in forest patches were enhanced,
while the dominance among forest types declined within the increasing homogeneous
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landscape. The complexity and heterogeneity of natural landscapes reduced with a slower
speed, displayed by the decreasing FRAC_AM and LSI. The booming SPLIT and CONTAG
values elucidated the lessening adjacencies.
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Figure 8. Annual values of landscape pattern indexes of forests and impervious surfaces at the class
level. The vertical coordinate presents the values of the lines, and the sub-vertical coordinate is for
the bars.
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4. Discussion
4.1. Spatiotemporal Patterns of Various Types of Forests

The spatiotemporal differences of the three forest types were determined via the
annual summary of area and distribution, as shown in Figure 4, and they were depicted
by the centroid movements shown in Figure 7, as well as the indexes in Figure 8. As the
majority, evergreen broadleaved forests generally dominated the spatiotemporal patterns
of forests in Hangzhou City. The southwest-oriented decline in evergreen broadleaved
forests largely resulted in lost forest area in Hangzhou City. Although the southwest region,
i.e.,, Chun’an, Lin’an, and Jiande, mostly encompassed evergreen broadleaved forests, the
forest reduction in these regions was relative remarkable. Moreover, evergreen broadleaved
forests showed the largest shrinkage among the three types, which greatly contributed to
the dominance decrease based on the dynamics of the landscape indexes. Despite the great
loss, evergreen broadleaved forests still dominated among the three types, with the best
adjacency and minimal fragmentation. Deciduous broadleaved forests shrunk the least
and also covered the smallest area, mainly located in the northwestern marginal regions
of Hangzhou City. Nonetheless, change directions were the most complex in deciduous
broadleaved forests among the three forest types. Though the overall direction was similar
to other forests, which was southwestwards, the annual changes were quite varied after
2011. According to landscape indexes, deciduous broadleaved forests maintained an
average level of fragmentation but had the most complex shape among the three forest
types. As the second-largest cover type, the proportion of evergreen needle-leaved forests
changed the least among the three types, but it had the highest fragmentation and worst
adjacency. The main distribution regions and change direction of evergreen needle-leaved
forests were approximate to evergreen broadleaved forests; however, western-oriented loss
was more outstanding among evergreen needle-leaved forests.

The temporal patterns for all forests generally displayed slower variations. The
area changes were highlighted during the 2001 to 2002 period for evergreen broadleaved
forests, 2004 to 2005 for deciduous broadleaved forests, and 2014 to 2015 for evergreen
needle-leaved forests. These area losses had southwest orientation based on centroid
movements. Regarding variations in landscape indexes, apart from PLAND and LSI, ev-
ergreen broadleaved forests had the greatest temporal dynamics among the three forest
types, followed by deciduous broadleaved and evergreen needle-leaved forests. Evergreen
broadleaved forests also demonstrated the highest temporal variations in PLAND and
LSI values. On the other hand, deciduous broadleaved forests showed fewer temporal
dynamics for PLAND and LSI values than evergreen needle-leaved forests. These differ-
ences resulted from area changes in evergreen needle-leaved forests being bigger than
that of deciduous broadleaved forests. It was revealed that the fragmentation degree of
evergreen broadleaved forests increased the most, and the adjacency loss was the greatest.
Simultaneously, it was indicated that evergreen needle-leaved forests had the least changes
in fragmentation and adjacency; this was also the reason why forests became homogeneous
at the landscape level.

In summary, this study identified and compared the spatiotemporally explicit patterns
of evergreen broadleaved, deciduous broadleaved, and evergreen needle-leaved forests.
These results explain the forest dynamics and can support forest management in Hangzhou
City at a finer spatiotemporal scale.

4.2. Spatiotemporal Responses of Different Types of Forests to Rapid Urbanization

The spatiotemporal responses of the three forest types to rapid urbanization during
the 2000 to 2022 period were inferred by the annual transformation (Figures 5 and 6),
and they were described via the comparison of centroid movements (Figure 7) and index
changes (Figure 8). These results all indicated that evergreen broadleaved forests annually
contributed the largest area, suffering the most consequence from rapid urbanization
widely across Hangzhou City, especially in Li’an Fuyang and Jiande. It also resulted in the
largest increasing degree of fragmentation of evergreen broadleaved forests, as well as the
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greatest loss of adjacency as a response to the enhancing aggregation and dominance of
impervious surfaces. Contrastingly, deciduous broadleaved forests lost the least area to
impervious surface expansion, mainly in Lin’an and Chun’an, except for the two periods
from 2009 to 2010 and 2011 to 2012. The response of evergreen needle-leaved forests to
urbanization was similar to that of evergreen broadleaved forests, as shown in Figure 7.
On the other hand, the transformations of evergreen needle-leaved forests to impervious
surfaces had more spatiotemporal variations than those of evergreen broadleaved forests,
mainly occurring in Chun’an and Jiande.

The general directions of centroid movements of forests and impervious surfaces were
consistent, which was revealed through the southwestward shrinkage response of forests
to urban expansion. At the same time, the annual directions of forest centroid movements
shown in Figure 7 were partly in line with the location of the major transformation regions
summarized in Figure 6. Additionally, this consistency was enhanced when relating cen-
troid movements to transformation over five-year intervals. It was uncovered that the
expansion of impervious surfaces was the primary reason underlying forest dynamics, and
these responses were more outstanding at certain time intervals. Although the transforma-
tion from forests to impervious surfaces was relatively remarkable in the years between
2015 and 2022, the overall response of forests to rapid urbanization lessened with some
fluctuations over 23 years. Moreover, these response changes had time coincidences with
adjustments of administrative divisions of Hangzhou City. In 2001, Xiaoshan and Yuhang
were incorporated into Hangzhou City [48], when the centroids of forests moved south-
wards (Figure 7). From 2001 to 2012, remarkable conversions from evergreen broadleaved
forests to impervious surfaces in Yuhang and those from evergreen needle-leaved forests in
Xiaoshan were observed, as outlined in Figure 6a. At the end of 2014, Fuyang was merged
into the city [48]; meanwhile, forests in Fuyang presented substantial transformations to
impervious surfaces during the 2012 to 2014 period (Figure 6¢). Furthermore, the centroids
of forests and impervious surfaces also showed long-distance movements from 2014 to
2015. Then, Lin’an was included as a region of Hangzhou City in 2017, and Qiantang was
established in 2019 [49,50]. Through the above-described adjustments, Hangzhou City
entered the “Qiantang Era” from the “Xihu Era” and became polycentric [51], which also
elucidated the reason behind the transformation of forests to impervious surfaces, mainly
appearing in newly built urban regions (Figure 6d). In 2021, these administrative divisions
were greatly adjusted, as shown in Figure 1 [52], which was in line with the outstanding
transformations of forests to impervious surfaces (Figure 5).

In short, the adjustments of administrative divisions in Hangzhou City largely ex-
plained the spatiotemporal responses of forests to urbanization. Forests contributed a large
amount of area and adjacency to the development of Hangzhou City, particularly evergreen
broadleaved forests, whereas the degradation of forests due to urbanization slowed down.

4.3. Uncertainty and Urban Forest Managements

The uncertainty of this study was generated and controlled among the annual spatial
distribution mapping of various forest types, as well as by quantifying the spatiotemporal
transformation and analyzing the spatiotemporal patterns. In order to accomplish the
change analysis effectively and avoid pseudo changes, object-based backdating classifi-
cation was applied that could produce results quicker, more accurately, and consistently
with previous mapping efforts and existing data. Alongside that, all good-quality Landsat
images were adopted to acquire mosaic images of the summer and winter images adopted
in this study to reduce the uncertainty of annual forest-type mapping. Despite being limited
by the ground-truth field samples, the accuracy of forest-type maps remained uncertain
and can be improved in follow-up works by integrating high-quality ground-observed data.
The occupation of forests by impervious surfaces was annually quantified using the transfer
matrix and summarized according to regions to provide multiple spatiotemporal scales to
reduce uncertainty. To comprehensively determine the spatiotemporal patterns of forests
under rapid urbanization, centroid movements that combined landscape indexes at two
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levels were used. The improvement of this study is particularly reflected in the finer tem-
poral resolution and class-level analysis of the forests. Through the above three steps, the
response of forest types to the rapid expansion of impervious surfaces was quantified and
integrated from area changes and spatial change direction, as well as landscape patterns
of dominance, fragmentation, adjacency, and homogeneity. The multiple spatiotemporal
scales in this study revealed that the optimal time interval and spatial unit should be
explored in more depth in further works.

Based on the results and above discussions, urban development planning, including
adjustments to administrative divisions, deeply affected forests. For sustainable urban
development, measures based on the spatiotemporal responses of forests to urbanization
should be implemented. Owing to the strict protection of ecological environments in
Chun’an, the land-use of Chun’an was quite stable over the 23 years of the study. However,
impervious surfaces still occupied forests due to tourism developments in this region [43,53].
The fragmentation and adjacency of forests in the western regions of Hangzhou City, i.e.,
Chun’an, Li'an, and Jiande, where evergreen broadleaved and evergreen needle-leaved
forests extensively grew, should be paid close attention to. A green ecological corridor can
be constructed in these regions [54]. Southwestern regions, such as Tonglu and Fuyang,
should also be strictly controlled for transformations from forests to impervious surfaces.

In conclusion, this study considered the uncertainty from each step and advanced a
Landsat-based methodology at a finer spatiotemporal scale to explicitly understand forest
changes under high-speed urbanization. Certain measures should be taken to control forest
transformations and improve the problems of fragmentation and adjacency loss.

5. Conclusions

To delineate explicitly spatiotemporal response of forests at a type scale to the rapid
expansion of impervious surfaces, this pioneering study put forward a methodology
using object-based backdating classification, transfer matrix, area-weighted centroids, and
landscape pattern indexes based on the GLC_FCS30 product and Landsat imagery during
the period of 2000-2022. The following results were observed:

(1) Forests were mainly located in the southwest and decreased in area from 11,660.69 to
11,516.15 km?, with the most rapid shrinkage occurring in the first ten years of the
study, especially between 2006 and 2007. Evergreen broadleaved forests occupied
the largest area and had the greatest decrease ratio among the three forest types over
23 years, followed by evergreen needle-leaved and deciduous broadleaved forests.
Evergreen broadleaved forests mainly grew in Chun’an, Li'an, and Jiande, while
deciduous broadleaved forests were mainly in Li’an, Chun’an, and Tonglu. The
majority of evergreen needle-leave forests were in Chun’an, Jiande, and Lin’an.

(2) A total of 103.37 km? of forest area was transformed to impervious surfaces. Among
the three types, evergreen broadleaved forests annually contributed the largest area
widely across Hangzhou City, especially in Li’an Fuyang and Jiande. Contrastingly,
deciduous broadleaved forests lost the least area to impervious surface expansion,
with the strongest spatial heterogeneity, mainly in Lin’an and Chun’an, except from
2009 to 2010 and 2011 to 2012. The temporal frequency of the changes from evergreen
needle-leaved forests to impervious surfaces was higher than that of conversions from
deciduous broadleaved forests, which mainly occurred in Chun’an and Jiande.

(38) Forests lost remarkable area and adjacency due to the development of Hangzhou
City, while this southwestward shrinkage slowed down over 23 years. Evergreen
broadleaved forests annually contributed the largest area widely across Hangzhou
City, which also resulted in the largest increasing degree of fragmentation. The
response of evergreen needle-leaved forests to the enhancing aggregation and dom-
inance of impervious surfaces was similar to that of evergreen broadleaved forests.
On the other hand, evergreen needle-leaved forests showed the least change in frag-
mentation and adjacency. This also led to the increasing homogeny of forests at the
landscape level due to the expansion of impervious surfaces.
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Forest management strategies were discussed based on the above findings. This study
provides results at multiple spatiotemporal scales; however, optimal time intervals and
spatial units should be explored in more depth in future works.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/f15010044 /s1, Table S1: List of Landsat images used to create a
mosaic for mapping forest types and impervious surfaces.
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