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Abstract: Global warming significantly affects forest ecosystems in the Northern Hemisphere’s mid-
to-high latitudes, altering tree growth, productivity, and spatial distribution. Additionally, spatial
and temporal heterogeneity exists in the responses of different tree species to climate change. This
research focuses on two key species in China’s Greater Khingan Range: Larix gmelinii (Rupr.) Kuzen.
(Pinaceae) and Quercus mongolica Fisch. ex Ledeb. (Fagaceae). We utilized a Maxent model optimized
by the kuenm R package to predict the species’ potential habitats under various future climate
scenarios (2050s and 2070s) considering three distinct Shared Socioeconomic Pathways: SSP1-2.6,
SSP2-4.5, and SSP5-8.5. We analyzed 313 distribution records and 15 environmental variables and
employed geospatial analysis to assess habitat requirements and migration strategies. The Maxent
model demonstrated high predictive accuracy, with Area Under the Curve (AUC) values of 0.921
for Quercus mongolica and 0.985 for Larix gmelinii. The high accuracy was achieved by adjusting
the regularization multipliers and feature combinations. Key factors influencing the habitat of
Larix gmelinii included the mean temperature of the coldest season (BIO11), mean temperature of
the warmest season (BIO10), and precipitation of the driest quarter (BIO17). Conversely, Quercus
mongolica’s habitat suitability was largely affected by annual mean temperature (BIO1), elevation, and
annual precipitation (BIO12). These results indicate divergent adaptive responses to climate change.
Quercus mongolica’s habitable area generally increased in all scenarios, especially under SSP5-8.5,
whereas Larix gmelinii experienced more complex habitat changes. Both species’ distribution centroids
are expected to shift northwestward. Our study provides insights into the divergent responses of
coniferous and broadleaf species in the Greater Khingan Range to climate change, contributing
scientific information vital to conserving and managing the area’s forest ecosystems.

Keywords: global warming; Maxent; GIS; potential habitats; parameter optimization

1. Introduction

Forest ecosystems are sensitive to climate variations and are crucial for ecological
services, notably for carbon sequestration [1,2]. Of the estimated 2.19 × 1018 kg of carbon
in the total biosphere carbon pool, a significant portion, approximately 1.0 × 1018 kg, is
sequestered in forest ecosystems, which hold about 50% more carbon than the current
atmospheric pool [3]. Predictions suggest a mean global temperature rise of 0.3–1.7 ◦C to
2.6–4.8 ◦C by 2100, posing significant challenges to these ecosystems, including potential
productivity decline, biodiversity loss, and forest degradation [4–7]. Trees mitigate varied
responses to global warming [8–10]. Although studies have shown that warming may limit
habitats for species like Nothofagus pumilio (Poepp.& Endl.) Krasser (Nothofagaceae) [8] and
Picea mariana (Mill.) Britton, Sterns & Poggenb. (Pinaceae) [9], it could benefit tree growth
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in temperate and boreal regions [10]. This variability in tree responses to climate change
highlights the importance of adaptive management and conservation in forest ecosystems.

Researchers have utilized statistical models, species distribution data, and environ-
mental variables to simulate potential future distributions of forest ecosystems under
climate change [11–13]. The Maximum Entropy Model (Maxent), integrating machine
learning with maximum entropy principles, effectively predicts species’ potential distribu-
tions by utilizing known geographical data and environmental factors [14]. Elith et al. [15]
compared Maxent’s accuracy and consistency against 16 species distribution models
across 226 species and found it superior in performance and stability across varied sample
sizes. Maxent’s low bias, high data tolerance, and effectiveness with small samples make it
a preferred choice for predicting species spatial distribution, especially for tree species [16].
For instance, Carlos et al. [11] demonstrated Maxent’s high predictive accuracy and stabil-
ity for 17 economically significant Mexican pine species, where it outperformed nine other
models, which highlights its potential for modeling tree species distribution.

However, Maxent has several limitations, including the need for high-quality data, ap-
propriate environmental variables, optimal parameters, and uncertainty assessment [17,18].
Using the default or a priori parameters and including all environmental variables can
complicate the model and limit its application and accuracy, resulting in a decrease in
the capacity of species translocation [19,20]. Moreover, the Intergovernmental Panel on
Climate Change (IPCC) has updated the future climate scenarios, requiring more in-depth
simulation analysis [4]. The WorldClim database (http://worldclim.org, in its 2020 update
to version 2.1, extended the period of historical climate data from the 1960s–1990s to include
the 1970s–2000s [21]. This update marked a significant shift from the Representative Concen-
tration Pathways (RCPs) used for the IPCC’s Fifth Coupled Model Intercomparison Project
(CMIP5) to the Shared Socioeconomic Pathways (SSPs) of the CMIP6 framework. The SSPs
in version 2.1 provided granular future climate projections: SSP1-2.6 (Sustainability) tar-
geted a warming scenario substantially below 1.5 ◦C by 2100; SSP2-4.5 (Middle of the Road)
projected a radiative force of approximately 4.5 W/m2 by 2100; SSP3-7.0 (Regional Rivalry)
indicated scenarios of high social fragility coupled with a significant anthropogenic radia-
tive force; and SSP5-8.5 (Fossil-fueled Development) forecast the most extreme scenario,
with radiative force reaching 8.5 W/m2 by 2100 [4,22,23]. These SSPs enhanced our un-
derstanding of the interplay between socioeconomic development and climate change,
resulting in more precise and realistic climate simulations [24]. Hence, the meticulous choice
of environmental factors and model parameters is crucial for effective Maxent applications.

Research on tree habitats often focuses on single species, whereas few comprehensive
studies have been conducted on different species, such as conifer and broadleaf trees.
Therefore, there is limited understanding of their growth suitability and response to cli-
mate change, which will affect forest management. Climate warming has affected the
geographic distribution and growth patterns of coniferous and broadleaf trees in northeast
China [25–27]. Research by Lyu et al. [28] on Pinus koraiensis Siebold & Zucc. (Pinaceae)
and Quercus mongolica Fisch. ex Ledeb. (Fagaceae) in this region revealed that the radial
growth of Quercus mongolica is predominantly precipitation-dependent during the growing
season, while Pinus koraiensis growth is more temperature-sensitive. Located in the Greater
Khingan Range, the forests in the northern region of northeast China not only represent
29.9% of the country’s natural forests but also encompass one-third of the carbon stock
within China’s forest ecosystems [29,30]. Notably, since 1961, the Greater Khingan Range
has exhibited a significant warming trend, with its annual average temperature increase
reaching 0.88 ◦C, far exceeding the national average rate of 0.02 ◦C [31]. This pronounced
climate change has made the Greater Khingan Range an ideal location for studying the
responses and adaptive mechanisms of trees to global warming.

Against this backdrop, two key species in the Greater Khingan Range forests, Larix
gmelinii (Rupr.) Kuzen. (Pinaceae) and Quercus mongolica Fisch. ex Ledeb. (Fagaceae) have
become focal points of study. These species are critical indicators of climate change and
play vital roles in their respective forest ecosystems [27]. They exhibit a complex coexistence
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with other species, such as Pinus koraiensis Siebold & Zucc. (Pinaceae) and Betula platyphylla
Sukaczev (Betulaceae), forming diverse inter-species relationships [32–34]. Larix gmelinii,
known for its cold tolerance and drought resistance, is one of the dominant vegetation species
in the northern part of China’s cold temperate coniferous forest zone [35]. It accounts for over
70% of the forest coverage in the Greater Khingan Range [36], and its carbon storage represents
approximately 8.5% of the total forest carbon reserves in China [37]. This species plays a
crucial role in maintaining the ecological balance in the northeast region of the country [38].
Quercus mongolica, as one of the most important deciduous tree species in northeast China,
is classified as a secondary precious tree species. It is characterized by rapid growth and
high-quality timber [39] and exhibits significant biomass accumulation and productivity in
temperate zones. The ecosystem biocycling capacity of Quercus mongolica forests not only
surpasses that of subtropical Cunninghamia lanceolata (Lamb.) Hook. (Cupressaceae) mature
forests but also exceeds that of common pioneer tree species in temperate regions, such as
Betula platyphylla [39–44].

To address this research gap, we employed a Maxent model optimized with the kuenm
R package (https://github.com/marlonecobos/kuenm, accessed on 2 January 2023)) to pre-
dict the future distributions of Larix gmelinii and Quercus mongolica in the Greater Khingan
Range. Leveraging updated IPCC data [21], we aimed to assess the impact of future climate
change on these species in detail. Our study focuses on (1) defining the species’ current and
future distributions and suitabilities under various climate scenarios and (2) comparing the
distributions, trends, and mechanisms of these species. We hypothesize a northward shift
under future climate change and expect Larix gmelinii to be more sensitive to these changes
than Quercus mongolica.

This study utilized a Maxent model optimized with R language to investigate the
diverse responses and adaptation strategies of coniferous and broadleaf species to climate
change, thereby contributing to a deeper understanding of forest–climate interactions.
This research lays a scientific foundation for the conservation of the Greater Khingan
Range’s forest ecosystem. Additionally, the integration of Geographic Information System
(GIS) methods with the Maxent model demonstrates the practical application value of this
methodological combination in ecological protection and management.

2. Materials and Method
2.1. Collection of Species Occurrence Data

The occurrence data of Larix gmelinii and Quercus mongolica were obtained from two primary
sources: (1) extensive field surveys by our research team in the Greater Khingan Range between
2019 and 2023 to map the species distribution comprehensively and (2) digitized historical speci-
men data from the Global Biodiversity Information Facility (GBIF; http://www.gbif.org) and
the National Plant Specimen Resource Center (NSII; http://www.cvh.ac.cn), which provided
essential historical insights into the species’ distributions.

To ensure data accuracy and minimize spatial autocorrelation, we carefully screened
records for precise latitude and longitude information, retaining only one record within a
1 km radius to avoid redundancy [45,46]. This strategy resulted in a robust dataset of 186
and 127 unique, spatially distinct occurrence records for Larix gmelinii and Quercus mon-
golica, respectively, serving as the basis for niche modeling and predicting potential future
distributions under various climate scenarios (Figure 1).

https://github.com/marlonecobos/kuenm
http://www.gbif.org
http://www.cvh.ac.cn


Forests 2024, 15, 283 4 of 26

Figure 1. Administrative borders and research zone (left) alongside Greater Khingan Prefecture
(areas surveyed) featuring the presence data of Larix gmelinii and Quercus mongolica (right).

2.2. Environmental Data Acquisition and Processing

We integrated topographical, soil, and 19 bioclimatic variables (Tables 1 and A1). The
bioclimatic variables were derived from the WorldClim database (http://worldclim.org),
and Shared Socioeconomic Pathways (SSPs) from the Sixth Coupled Model Intercompari-
son Project (CMIP6) were used to project future scenarios (2050s and 2070s) under three
climate scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) at a 30-arc-second resolution [47,48].
These climate data, generated by the Beijing Climate Center’s Medium-Resolution Climate
System Model (BCC.CSM2.MR), are noted for their accuracy at simulating China’s pre-
cipitation and temperature patterns [49,50]. Soil data came from the World Soil Database
(http://www.fao.org), and topographic data (high-resolution (90 m) elevation data) were
sourced from the Chinese Academy of Sciences’ Resource and Environmental Science Data
Center (http://www.resdc.cn/). The vector zoning map of the study area was sourced
from the National Administration of Surveying, Mapping and Geoinformation’s standard
map service website (http://bzdt.ch.mnr.gov.cn/).

The Maxent model necessitates that the environmental data inputs must rigorously
maintain uniform spatial reference coordinates and resolution. Accordingly, the vector map
of the study area is utilized as a boundary, and the ArcGIS (Version 10.4, ESRI, Redland,
CA, USA) mask tool is employed for batch extraction of the pertinent environmental
variable layers. Additionally, the resampling tool under raster processing is utilized to
standardize the spatial resolution: that is, the pixel size (X, Y) of the environmental layers.
Subsequently, utilizing the ‘From Raster to ASCII’ functionality in ArcGIS, the datasets
containing environmental variables were converted into ASCII format.

2.3. Model

The complexity of the model constitutes a critical aspect in the investigation of species
distribution models. An effective model must strike a balance between accurately fitting
the data and constraining overly complex functional relationships [51]. Maxent, as an
algorithmic model, is inclined to form complex functional relationships to align with obser-
vational data. This tendency significantly contributes to the model’s enhanced predictive
capabilities: a notable strength of the maximum entropy approach [52].

The complexity of the Maxent model is primarily influenced by three factors: the
number of environmental variables included, the types of functional modes (or ‘features’)
used, and the regularization multiplier [53,54].

http://worldclim.org
http://www.fao.org
http://www.resdc.cn/
http://bzdt.ch.mnr.gov.cn/
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The choice of environmental variables is pivotal; an excess can lead to computational
inefficiencies and challenges in interpreting the results, especially when variables display
high collinearity [19,51]. Therefore, a balanced approach for selecting these variables is
crucial for both computational efficiency and clarity of interpretation.

Regularization plays a vital role in Maxent by constraining variable weights, ensuring
a balance between model fit and extrapolation. This prevents overfitting, allowing the
model to maintain a margin of error [55]. Maxent’s versatility is further illustrated by its
six functional modes: linear (L), quadratic (Q), product (P), threshold (T), hinge (H), and
category (C), each catering to different variable interactions and types [56,57]. Maxent
dynamically tests combinations of these modes, ultimately selecting the one that achieves
the highest Area Under the Curve (AUC) for prediction.

Model performance is critically evaluated using the AUC, a metric derived from
the Receiver Operating Characteristic (ROC) curve [14]. The ROC curve is a plot of the
false positive rate against the true positive rate at various thresholds [14]. The AUC,
measuring the area under this curve, provides a robust measure of model performance and
is applicable across various thresholds [58]. Its range from 0 to 1, with values nearer to 1
reflecting greater predictive accuracy, classifies performance into four categories [59,60]:
poor (0.6–0.7), fair (0.7–0.8), good (0.8–0.9), and excellent (0.9–1).

2.3.1. Environmental Variable Selection

Considering the potentially high correlations among 19 bioclimate variables, such
multicollinearity could lead to data overfitting when these factors are directly used in
model construction using the Maxent software (v3.4.4, Biodiversity Informatics, Cambridge,
MA, USA), thereby affecting the simulation results [61]. Pearson correlation analysis was
conducted by the software ENMTools v1.3 [62,63] to refine our variable selection; we
focused on factors with a correlation coefficient above 0.8 (Figure A1). Utilizing Maxent
3.4.4, ten calculations were performed on the selected environmental variables to establish
an initial model. Based on the average results of these ten computations, environmental
factors with a contribution rate of less than 1% were excluded. This selection process
was guided by a comprehensive consideration of the species’ environmental needs and
physiological traits, resulting in the identification of key variables for modeling (Table 1).

Table 1. Environmental variables considered in the Maxent models of Larix gmelinii and Quercus
mongolica in the Greater Khingan Range.

Variable Types Code and Unit
Species

Larix gmelinii Quercus mongolica

Annual Mean Temperature BIO1 (◦C) – ✓
Isothermality × 100 BIO3 (◦C) ✓ ✓
Mean Temperature of Warmest Quarter BIO10 (◦C) ✓ ✓
Mean Temperature of Coldest Quarter BIO11 (◦C) ✓ –
Annual Precipitation BIO12 (mm) ✓ –
Precipitation Seasonality (Co-efficient of Variation) BIO15 (mm) ✓ –
Precipitation of Driest Quarter BIO17 (mm) ✓ –
Soil Total Organic Carbon Content T_CACO3 (%) ✓ ✓
Total Organic Carbon Content T_OC (%) – ✓
Soil Base Saturation S_BS (%) ✓ –
Elevation Elevation (m) ✓ ✓
Slope Slope (degree) – ✓
Aspect Aspect (degree) – ✓

The variables marked with “✓” are used for building the model.

2.3.2. Model Calibration

Model calibration is a process in which the aim is to determine which combination
of parameters best represents the phenomenon of interest by finding the best fit with the
data [64]. Performed manually, detailed model calibration and final model creation is
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quite time-consuming (e.g., a week or more). Hence, automating the process is essential
for increasing the robustness of Ecological Niche Models (ENMs) [54]. Here, we em-
ployed kuenm, an R package that automates important calibration and evaluation steps
in ENM. In its current version, this package uses Maxent as the modeling algorithm and
automates model calibration and the creation of final models [54]. For each species, we
created 1240 candidate models by combining 3 sets of environmental variables, 40 values
of regularization multipliers (RMs, 0.1–4 at intervals of 0.1), and all 31 possible combina-
tions of 5 feature classes (FCs). The R software (Version 4.1.1, R Foundation for Statistical
Computing, Vienna, Austria) evaluates candidate model performance and initially selects
statistically significant models with omission rates ⩽ 5% [54]. Subsequently, models with a
Delta-corrected Akaike Information Criterion (AICc) of ⩽2 are chosen [17,51,54].

2.3.3. Threshold Determination

After determining the best configuration of the FC and RM, we reserved 25% of the
samples for testing. The significance of the environmental variables was evaluated through
jackknife tests, which were conducted ten times to ensure robustness. The mean values
of the iterations were used as predictive results. Utilizing the ArcGIS software (Version
10.4, ESRI, Redland, CA, USA) (specifically, the ArcToolbox: Conversion Tools), the species
distribution maps generated by the Maxent model (.asc files) were converted into raster
data (.tif files), resulting in suitability maps that represented the probability of species
occurrence (0 < p ⩽ 1).

We adopted the maximum test sensitivity plus specificity (MTSPS) threshold as a
criterion to delineate suitable and unsuitable areas to effectively consider both omission
and commission errors [65–67]. Suitable habitat was further categorized into three levels:
low (MTSPS < p ⩽ 0.4), moderate (0.4 < p ⩽ 0.6), and high suitability (p > 0.6) [68].

2.4. Habitat Change Analysis and Centroid Shifts

To ensure the temporal comparability of Maxent, we maintained the consistency of
topographical and soil variables while focusing exclusively on changes to bioclimatic
variables to predict future spatial patterns of species distribution [69,70]. Additionally, we
cited a hypothesis that species possess unrestricted migration capacities when evaluating
the impact of future climatic changes on species distribution [71]. This implies that in
response to climatic alterations, species may either adapt and persist in their current
habitats, potentially relocate to newly viable regions, or face in situ extinction. Based on
this hypothesis, we categorized the changes in the species’ potential habitats into four types
(expansion, unsuitable, no change, and contraction) based on future area changes relative to
the current suitable habitats. In the habitat change matrix, transitions from 0 to 1 indicated
expansion, 1 to 0 contraction, 1 to 1 persistence, and 0 to 0 consistent unsuitability. Finally,
to compare the responses of the geographical suitability areas of Larix gmelinii and Quercus
mongolica under various future climate scenarios, we implemented the following steps:
initially, the raster data were reclassified; subsequently, a raster calculator was utilized to
determine the expansion or contraction of the suitable habitat ranges for both tree species
under different future climate scenarios.

Due to the irregular boundaries of habitats, the centroids of the species records in the
entire geographic range were determined to assess the changes between current and future
conditions. We used SDMtoolbox 2.4 to assess the trends of the centroid shifts between
adjacent habitat stages and calculated the centroid migration distances [46].

3. Results
3.1. Model Performance

Automatic analysis using the R program indicated that all 1240 candidate models were
statistically significant. One recommended model was selected for each species (Figure 2);
both had a DeltaAICc value of 0. This result indicated optimal model transferability from
known to predicted distribution areas and the avoidance of overfitting; thus, these were
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the best models. The FC was Q, P, and T for Larix gmelinii and H for Quercus mongolica. The
RM values were 1.7 for Larix gmelinii and 1 for Quercus mongolica. For these optimal FC and
RM settings, the AUC values of the Maxent prediction results were 0.921 for Larix gmelinii
and 0.985 for Quercus mongolica (Figure 3).

Figure 2. Omission rates and AICc values for Larix gmelinii (a) and Quercus mongolica (b), including
all candidate models and the chosen ‘best’ models.

Figure 3. The outcomes of the jackknife test elucidate the significance of various variables for the
habitat distribution modeling of (a) Larix gmelinii and (b) Quercus mongolica. The regularized training
gain quantifies the enhancement in the Maxent model’s fit to the existing data, as opposed to a uniform
distribution. Dark blue bars represent the gain achieved by employing each variable independently
for each species, light blue bars reflect the reduction in gain consequent to the exclusion of a single
variable from the comprehensive model for each species, and the red bar denotes the gain attained
with the incorporation of all variables for each species.

3.2. Variable Importance

Environmental variables crucial for Larix gmelinii and Quercus mongolica were identified
through contribution rate analysis (Figure 4 and Table 2). For Larix gmelinii, BIO11, BIO10,
and BIO17 accounted for 71.6% of the model’s predictive power, underlining their critical
role in determining its potential geographic distribution. In contrast, for Quercus mongolica,
BIO1, elevation, and BIO12 contributed 90%, dominating the model and shaping the species’
current potentially suitable habitat.
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Figure 4. AUC curve representation: (a) Larix gmelinii and (b) Quercus mongolica distribution model
development. The red curve represents the training data, indicating model alignment with the train-
ing dataset; the blue curve represents the testing data, reflecting the model’s predictive performance
in practical tests.

Table 2. Contribution rate of environmental variable importance obtained by jackknife test.

Species Variable Percent Contribution (%)

Larix gmelinii

BIO11 37.1
BIO10 19.5
BIO17 15

T_CACO3 11.4
BIO3 5.9
S_BS 5.3

BIO15 3.3
elevation 2.6

Quercus mongolica

BIO1 64.4
elevation 21.1

BIO12 4.8
slope 4.2
aspect 3.1
BIO3 1.1
T_OC 1

The red lines in Figure 5 display the influence of individual environmental factors on
the predicted probability of occurrence. Details on other environmental factors can be found
in Figures A2 and A4. Specifically, Figure 5a illustrates that the occurrence probability
for Larix gmelinii increases as BIO11 and BIO10 decrease: peaking before stabilizing and
forming a response crest. This finding reveals that Larix gmelinii consistently reacts to
temperature variations, implying a decline in its suitable habitat as temperatures increase.
Conversely, BIO17 shows a positive correlation with the distribution probability. As BIO17
increases, the logistical probability value rises and remains consistently high. For Quercus
mongolica, elevation and BIO1 stabilize at high probabilities at fixed thresholds but decrease
with increasing variable values and then stabilize. The relationship between BIO12 and
the distribution probability differs slightly, with a minor increase in probability as annual
precipitation rises, followed by stabilization. Most precipitation values correspond to high
probability levels, indicating a comparatively lower contribution and importance of annual
precipitation to the distribution probability prediction for Quercus mongolica relative to the
other two dominant factors.
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Figure 5. Response curves characterizing how dominant variables affected the Maxent predictions
for Larix gmelinii (a) and Quercus mongolica (b). Red lines represent logistical predictions varying with
each climatic variable while holding other variables at their means. Based on individual variables,
the Maxent models generate blue lines. Solid lines show the average of ten Maxent runs, and dashed
lines denote one standard deviation from this mean.

The blue lines in Figure 5 display the distinct effects of the key variables in the op-
timal model on forecasting the likelihood of favorable conditions, as demonstrated by a
Maxent model that incorporates each variable independently. Details on other environ-
mental factors can be found in Figures A3 and A5. Larix gmelinii’s occurrence probability
approaches zero with BIO11 above −10 ◦C, increases sharply as temperatures decrease,
and peaks below −28 ◦C. This result suggests a stringent upper limit but no lower limit for
BIO11. The suitable distribution for Larix gmelinii (probability ⩾ 0.24) requires that BIO11
is below −19 ◦C. In contrast to BIO11, BIO10 and BIO17 have upper and lower limits. The
probability approaches zero for BIO17 below 7 mm, rapidly increases to its highest level at
14 mm, and sharply declines above this value. Similarly, the probability of BIO10 stabilizes
around 0.23 when temperatures are below 12 ◦C and increases with rising temperatures,
maintaining high levels between 15 ◦C and 17 ◦C, followed by a downward trend. The
suitable distribution area for Larix gmelinii requires BIO10 and BIO17 ranges of 12–19 ◦C
and 10–28 mm, respectively. The occurrence probability of Quercus mongolica approaches
zero when BIO01 exceeds 18 ◦C, with the optimal BIO1 range of −20 ◦C to −10 ◦C. Unlike
temperature, precipitation and elevation require stringent thresholds. The occurrence prob-
ability approaches zero when the elevation is below 140 m and BIO12 is below 400 mm.
This probability surges with increasing values, peaking at 340 m for elevation and 505 mm
for BIO12 before sharply decreasing beyond these points. The suitable distribution for
Quercus mongolica (probability ⩾ 0.15) necessitates an elevation range of 166–776 m and
annual precipitation of 415–620 mm.

3.3. Potential Current and Future Habitat Distributions
3.3.1. Larix gmelinii

Under the current climate, the unsuitable habitat area for Larix gmelinii accounts for
only 2.06% of the research zone, whereas the suitable habitat encompasses a significant
98.02%, demonstrating its high adaptability to current climate conditions (Figure 6 and
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Table 3). Within the suitable habitat, marginally suitable, moderately suitable, and highly
suitable habitats comprise 14.17%, 37.33%, and 46.52%, respectively, indicating that most
areas offer ideal conditions for Larix gmelinii. Future climate shifts, however, are expected
to alter these habitats (Figure 7 and Table 3). By the 2050s, various climate scenarios pre-
dict an expansion of unsuitable habitats: notably, to 29.02% under the SSP5-8.5 scenario.
However, the conditions will differ by the 2070s. Under SSP1-2.6, suitable habitats will
revert to near-current levels at 98.43%, whereas under the SSP2-4.5 and SSP5-8.5 scenarios,
unsuitable areas could expand to 17.65% and 54.06%, respectively. In particular, a sub-
stantial increase in unsuitable habitats is observed in the SSP5-8.5 scenario, potentially
covering over half of the study area. These results highlight the notable influence of varying
climate scenarios on the suitable habitat of Larix gmelinii and the looming threat of climate
change to its distribution. Additionally, the shift in suitability zones is noteworthy. Under
most climate scenarios, moderately and highly suitable habitats for Larix gmelinii decrease,
whereas marginally suitable areas increase, hinting at a potential overall decline in fu-
ture growth conditions. These effects are especially pronounced in the SSP5-8.5 scenario,
where highly suitable habitats will shrink to 3.66% by the 2070s—much lower than in other
scenarios—suggesting a scarcity of optimal growth environments under extreme
climate conditions.

Table 3. Forecast areas unsuitable and suitable for Larix gmelinii under current and future
climate scenarios.

SSPs (Year)

Unsuitable
Habitats

Total Suitable
Habitats

Minimally
Suitable Habitats

Moderately
Suitable Habitats

Highly Suitable
Habitats

Area /km2 Area/km2 Area /km2 Area /km2 Area /km2

(%) (%) (%) (%) (%)

Current 1701.8 81,104.7 11,724.9 30,885.3 38,494.5
2.06 98.02 14.17 37.33 46.52

SSP1-2.6 6142.0 76,687.9 7138.4 24,326.6 45,222.9
(2050s) 7.42 92.68 8.63 29.40 54.65

SSP2-4.5 12,183.3 70,646.6 9965.7 18,502.4 42,178.5
(2050s) 14.72 85.38 12.04 22.36 50.97

SSP5-8.5 24012.2 58817.7 11,972.8 42,373.2 4471.7
(2050s) 29.02 71.08 14.47 51.21 5.40

SSP1-2.6 1360.0 81,446.6 3656.6 22,681.3 55,108.7
(2070s) 1.64 98.43 4.42 27.41 66.60

SSP2-4.5 14,602.1 68,227.8 12,050.2 34,774.7 21,402.8
(2070s) 17.65 82.46 14.56 42.03 25.87

SSP5-8.5 44,732.1 38,097.7 24,590.3 10,480.6 3026.9
(2070s) 54.06 46.04 29.72 12.67 3.66

SSPs: Shared Socioeconomic Pathways; SSP1-2.6: Sustainable Development Pathway; SSP2-4.5: Moderate
Development Pathway; SSP5-8.5: Conventional Development Pathway Dominated by Fossil Fuels. The proportion
of suitable habitat area under different future climate scenarios is the average for the periods 2021–2040, 2041–2060,
and 2061–2080.

In summary, future climate change will significantly affect the habitats of Larix gmelinii,
with diverse impacts under different climate scenarios. These findings not only underline
potential risks to this species but also emphasize the diverse responses for different levels
of suitable habitats.
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Figure 6. Suitable habitat distribution of Larix gmelinii (left) and Quercus mongolica (right) in the
Greater Khingan Range under current climatic conditions.
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Figure 7. Future distribution of Larix gmelinii as a reaction to future climate change scenarios
during 2050s and 2070s. SSPs: Shared Socioeconomic Pathways; SSP1-2.6: Sustainable Development
Pathway; SSP2-4.5: Moderate Development Pathway; SSP5-8.5: Conventional Development Pathway
Dominated by Fossil Fuels.

3.3.2. Quercus mongolica

Currently, 79.64% of the study area is unsuitable for Quercus mongolica; only 20.36% is
suitable (Figure 6 and Table 4). Future climate scenarios predict a significant increase in
suitable habitat (Figure 8 and Table 4). Suitable habitat will comprise the majority by the
2050s under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios (66.28%, 78.39%, and 89.09%,
respectively). This expansion intensifies by the 2070s, particularly under SSP5-8.5, with
suitable habitats nearly encompassing the whole area (99.99%). A key trend in this shift is
the marked rise in marginally suitable habitats; they will account for 67.84% under SSP5-8.5
by the 2050s, increasing to 95.42% by the 2070s. Meanwhile, moderately suitable habitats
will exhibit relatively minor changes.
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Figure 8. Future distribution of Quercus mongolica as a reaction to future climate change scenarios
during 2050s and 2070s. SSPs: Shared Socioeconomic Pathways; SSP1-2.6: Sustainable Development
Pathway; SSP2-4.5: Moderate Development Pathway; SSP5-8.5: Conventional Development Pathway
Dominated by Fossil Fuels.

Table 4. Forecast areas unsuitable and suitable for Quercus mongolica under current and future
climate scenarios.

SSPs (Year)

Unsuitable
Habitats

Total Suitable
Habitats

Minimally
Suitable Habitats

Moderately
Suitable Habitats

Highly Suitable
Habitats

Area /km2 Area/km2 Area /km2 Area /km2 Area /km2

(%) (%) (%) (%) (%)

Current 65,896.4 16,848.4 11,967.0 3745.5 1135.9
79.64 20.36 14.46 4.53 1.37

SSP1-2.6 27,897.9 54,846.9 12,473.4 6610.1 35,763.4
(2050s) 33.72 66.28 15.07 7.99 43.22

SSP2-4.5 17,958.6 64,866.1 12,156.8 6658.5 46,050.8
(2050s) 21.70 78.39 14.69 8.05 55.65

SSP5-8.5 9111.2 73,713.5 10,446.4 7137.0 56,130.1
(2050s) 11.01 89.09 12.62 8.63 67.84

SSP1-2.6 29,908.1 52,916.6 12,642.7 6660.7 33,613.3
(2070s) 36.14 63.95 15.28 8.05 40.62

SSP2-4.5 8058.2 74,766.6 15,597.5 7757.7 51,411.4
(2070s) 9.74 90.36 18.85 9.38 62.13

SSP5-8.5 86.5 82,738.2 1220.2 2564.9 78,953.2
(2070s) 0.10 99.99 1.47 3.10 95.42

SSPs: Shared Socioeconomic Pathways; SSP1-2.6: Sustainable Development Pathway; SSP2-4.5: Moderate
Development Pathway; SSP5-8.5: Conventional Development Pathway Dominated by Fossil Fuels; The proportion
of suitable habitat area under different future climate scenarios is the average for the periods 2021–2040, 2041–2060,
and 2061–2080.

These data reveal that Quercus mongolica’s habitat will change significantly under
different future climate scenarios. Generally, its suitable habitat will expand, especially
under extreme scenarios, potentially covering the entire study area. However, the majority
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of this expanded habitat will fall into the low suitability category, suggesting that the
quality of its habitat could diminish although the species may extend its range.

3.4. Differences in the Distribution of Current and Future Habitats
3.4.1. Larix gmelinii

The results from the Maxent model showed a shift in the habitat distributions of
Larix gmelinii over time (Figure 9 and Table 5). The largest no-change area regarding
suitability is 75,766.29 km2 by the 2050s under the SSP1-2.6 scenario. In contrast, the SSP5-
8.5 scenario predicts the most extensive contraction of suitable areas (23,202.01 km2). The
ability of the species to adapt will be more complex by the 2070s. The large, stable area of
79,760.56 km2 expands by 1686.04 km2 under SSP1-2.6, indicating resilience. In contrast, the
suitable area sharply declines to 43,317.24 km2 under the more extreme SSP5-8.5 scenario,
nearly doubling the reduction observed in the 2050s and suggesting survival challenges.
Interestingly, the stability of the unsuitable area at 687.06 km2 under the 70s SSP2-4.5
scenario marks a significant shift from its decrease in the 2050s, indicating evolving habitat
dynamics for Larix gmelinii over time, even for the same climate scenario.
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Figure 9. Future distribution of Larix gmelinii as a reaction to future climate change scenarios
during 2050s and 2070s. SSPs: Shared Socioeconomic Pathways; SSP1-2.6: Sustainable Development
Pathway; SSP2-4.5: Moderate Development Pathway; SSP5-8.5: Conventional Development Pathway
Dominated by Fossil Fuels.

Table 5. Changes in the distribution of Larix gmelinii’s habitats comparing current to future climate
change projections.

Current to SSPs (Year)
Expansion Range Unsuitable No Change Contraction Range

Area (km2) % Area (km2) % Area (km2) % Area (km2) %

SSP1-2.6 (2050s) 901.7 1.09 800.2 0.97 75,766.3 91.57 5338.4 6.45
SSP2-4.5 (2050s) 901.7 1.09 800.2 0.97 75,766.3 91.57 5338.4 6.45
SSP5-8.5 (2050s) 908.3 1.10 793.5 0.96 57,902.7 69.98 23,202.0 28.0
SSP1-2.6 (2070s) 1686.0 2.04 15.8 0.02 79,760.6 96.39 1344.2 1.62
SSP2-4.5 (2070s) 1014.8 1.23 687.1 0.83 67,194.7 81.21 13,910.1 16.81
SSP5-8.5 (2090s) 306.1 0.37 1395.7 1.69 37,787.5 45.67 43,317.2 52.35

SSPs: Shared Socioeconomic Pathways; SSP1-2.6: Sustainable Development Pathway; SSP2-4.5: Moderate
Development Pathway; SSP5-8.5: Conventional Development Pathway Dominated by Fossil Fuels.



Forests 2024, 15, 283 14 of 26

Overall, these findings indicate that Larix gmelinii’s suitable habitat in the Greater
Khingan Range is generally stable under future climate scenarios, but the species faces
varying degrees of change and contraction risks.

3.4.2. Quercus mongolica

The evolving patterns of Quercus mongolica’s habitat distributions exhibits notable
characteristics (Figure 10 and Table 6). First, a stable suitable area of 16,916.15888 km2 is
consistent in all scenarios, indicating habitat stability. However, the degree of expansion
differs. The areas of expansion are 47,941.181 km2 and 56,754.02 km2 in the 2050s under
SSP2-4.5 and SSP5-8.5, respectively, surpassing the 37,933.05 m2 under SSP1-2.6. A similar
trend of larger expansions under SSP2-4.5 and SSP5-8.5 is observed in the 2070s. Second,
the stable unsuitable areas show significant differences between the scenarios, especially
under the 2070s SSP5-8.5 scenario, where it reduces to just 89.00 km2. This finding suggests
that Quercus mongolica’s unsuitable areas might contract more under certain scenarios.

Figure 10. Changes in the distribution of Quercus mongolica’s habitats comparing current to fu-
ture climate change projections during 2050s and 2070s. SSPs: Shared Socioeconomic Pathways;
SSP1-2.6: Sustainable Development Pathway; SSP2-4.5: Moderate Development Pathway; SSP5-8.5:
Conventional Development Pathway Dominated by Fossil Fuels.

In summary, Quercus mongolica’s future suitable habitat in the Greater Khingan Range
is somewhat stable. However, the expansion and stability of the suitable and unsuitable
areas differ markedly for different climate scenarios.

Table 6. Changes in the distribution of Quercus mongolica’s habitats comparing current to future
climate change projections.

Current to SSPs (year)
Expansion Range Unsuitable No Change Contraction Range

Area (km2) % Area (km2) % Area (km2) % Area (km2) %

SSP1-2.6 (2050s) 37,933.1 45.84 27,895.0 33.71 16,916.2 20.44 0.0 0.00
SSP2-4.5 (2050s) 47,941.2 57.94 17,886.9 21.62 16,916.2 20.44 0.0 0.00
SSP5-8.5 (2050s) 56,754.0 68.59 90,74.0 10.97 16,916.2 20.44 0.0 0.0
SSP1-2.6 (2070s) 35,924.3 43.42 29,903.8 36.14 16,916.2 20.44 0.0 0.00
SSP2-4.5 (2070s) 57,833.7 69.89 7994.4 9.66 16,916.2 20.44 0.0 0.00
SSP5-8.5 (2090s) 65,739.0 79.45 89.0 0.11 16,916.2 20.44 0.0 0.00

SSPs: Shared Socioeconomic Pathways; SSP1-2.6: Sustainable Development Pathway; SSP2-4.5: Moderate
Development Pathway; SSP5-8.5: Conventional Development Pathway Dominated by Fossil Fuels.
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3.5. Scope and Intensity of Distribution Shifts
3.5.1. Larix gmelinii

The current geographic center for Larix gmelinii is located at 52.03◦ N, 124.33◦ E in
Xinlin’s northwest (Figure 11 and Table 7). It will migrate to the northwest by the 2050s
under different climate scenarios. Specifically, it migrates 8.45 km to 52.08◦ N and 124.24◦ E
under SSP1-2.6. The shifts are more pronounced for SSP2-4.5 and SSP5-8.5 (30.3 km to
52.18◦ N, 123.97◦ E and 51.9 km to 52.27◦ N, 123.97◦ E, respectively).

Table 7. Predicted migration distances for Larix gmelinii and Quercus mongolica under different
SSP scenarios.

Species Initial Location
(Lat, Long)

Scenario Shifted Location
(Lat, Long)

Migration Distance
(km)

Larix gmelinii 52.03◦ N, 124.33◦ E

SSP1-2.6 (2050s) 52.08◦ N, 124.24◦ E 8.45
SSP1-2.6 (2070s) 52.04◦ N, 124.28◦ E 5.67
SSP2-4.5 (2050s) 52.18◦ N, 123.97◦ E 30.3
SSP2-4.5 (2070s) 52.03◦ N, 124.32◦ E 1.19
SSP5-8.5 (2050s) 52.27◦ N, 123.97◦ E 51.9
SSP5-8.5 (2070s) 52.20◦ N, 123.35◦ E 25.3

Quercus mongolica 51.28◦ N, 125.83◦ E

SSP1-2.6 (2050s) 51.69◦ N, 125.18◦ E 64.2
SSP1-2.6 (2070s) 51.73◦ N, 125.24◦ E 5.95
SSP2-4.5 (2050s) 51.85◦ N, 124.87◦ E 92.24
SSP2-4.5 (2070s) 51.95◦ N, 124.64◦ E 19.75
SSP5-8.5 (2050s) 51.94◦ N, 124.64◦ E 110.6
SSP5-8.5 (2070s) 52.01◦ N, 124.34◦ E 22.1

SSPs: Shared Socioeconomic Pathways; SSP1-2.6: Sustainable Development Pathway; SSP2-4.5: Moderate
Development Pathway; SSP5-8.5: Conventional Development Pathway Dominated by Fossil Fuels.
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Figure 11. Location of the center of mass in the fitness zone of two tree species under different
climate scenarios during 2050s and 2070s. SSPs: Shared Socioeconomic Pathways; SSP1-2.6: Sustain-
able Development Pathway; SSP2-4.5: Moderate Development Pathway; SSP5-8.5: Conventional
Development Pathway Dominated by Fossil Fuels..



Forests 2024, 15, 283 16 of 26

Larix gmelinii’s centroid migrates southeast to 52.04◦ N, 124.28◦ E in the Xinlin District
under SSP1-2.6, covering 5.67 km from the 2050s to the 2070s. It shifts a short distance
southwest by 1.19 km under SSP2-4.5, indicating stability. In contrast, the shift is substantial
under SSP5-8.5, and the centroid moves to 52.20◦ N, 123.35◦ E in the northwest Huzhong
District, a distance of 25.3 km. These centroid movements reflect the nuanced climate
impacts and adaptability challenges for Larix gmelinii in all scenarios.

3.5.2. Quercus mongolica

Currently, Quercus mongolica’s centroid is southwest of Huma County at 51.28◦ N,
125.83◦ E (Figure 11). Under SSP126, it migrates to the western Xinlin District by the
2050s (51.69◦ N, 125.18◦ E; 64.2 km) and shifts northeast by the 2070s (51.73◦ N, 125.24◦ E;
5.95 km). Under SSP245, the centroid migrates northwest to the northern Xinlin District by
the 2050s (51.85◦ N, 124.87◦ E; 92.24 km) and continues northwest in the 2070s (51.95◦ N,
124.64◦ E; 19.75 km). It relocates northwest to the north-central Xinlin District by the 2050s
under SSP5-8.5 (51.94◦ N, 124.64◦ E; 110.60 km) and then to the western part by the 2070s
(52.01◦ N, 124.34◦ E; 22.1 km).

This result reveals that Quercus mongolica predominantly migrates toward the north-
west and to higher altitudes in different periods and climate scenarios, with the exception
of a northeast shift in the 2070s under SSP1-2.6. The migration distance increases with
higher greenhouse gas emissions over the same period, and the distance migrated in the
2070s is consistently shorter than that in the 2050s in each climate scenario.

4. Discussion

The niche model is based on the statistical correlation between species distribution and
environmental variables and primarily focuses on significant environmental influences on
species distribution but tends to overlook interspecies interactions, evolutionary processes,
extreme disturbances, and species dissemination [72,73]. While the existing relationships
between species and their environmental factors, particularly climatic conditions, may
not consistently provide precise forecasts for the distribution of species in the future,
niche modeling remains the predominant approach for analyzing the effects of climate
change on species distributions within a region [19]. It is crucial to understand that
these models predict potential suitable habitats for species, not their actual distribution.
The interaction between species and their migration capabilities restricts the presence of
specific species in certain areas, meaning that the actual distribution is only a part of the
potential distribution [74]. Future research should more comprehensively consider factors
such as vegetation competition and succession, botanical functional processes, and insect
infestation impacts in order to develop and improve the integration techniques between
regional climate models and dynamic ecosystem models.

4.1. Potential Current and Future Habitat Distributions

The Greater Khingan Range area is characterized by a typical cold temperate continen-
tal monsoon climate [75,76]. During winter, it is dominated by the Mongolian High, leading
to temperature inversion and stable snow cover, which contribute to the region’s signif-
icant permafrost heterogeneity [77]. The extreme low temperatures (reaching −52.3 ◦C),
prolonged winter snow cover (approximately five months), and the presence of permafrost
pose substantial challenges to plant growth [78,79]. Larix gmelinii, as a principal constituent
tree species of the cold temperate coniferous forests, exhibits high wood density and pos-
sesses notable frost resistance, enabling it to maintain elevated levels of water transport
capacity in cold environments [80]. Furthermore, its well-developed root system can pene-
trate the permafrost to access water and nutrients, concurrently enhancing soil permeability
and stability. These characteristics empower it to thrive in harsh environments. In contrast,
Quercus mongolica, a secondary forest species, predominantly emerges in environments
following the disturbance of primary forests. Its adaptability to environmental conditions
may be comparatively lower [81].
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Under the majority of future climatic scenarios, the suitable habitat of Larix gmelinii is
anticipated to contract, with a trend of the distribution centroid shifting northwestward.
This aligns with the conclusions derived by Zhang et al. [82] using the Maxent model, which
predict a significant reduction in the suitable habitat of Larix gmelinii forests in northeast
China during the 2050s and 2070s. Shi et al. [83] further corroborate this perspective, noting
that under the effects of climate change, the suitability of Larix gmelinii in northeast China
will decline, particularly in the eastern foothills of the Greater Khingan Range, the Lesser
Khingan Range, and the Changbai Mountains. In these areas, the decrease in suitable
habitat area is especially pronounced, with potential distribution areas expected to move
northward and contract towards central regions. While many studies [82–85] have shown
variability in the specific figures regarding the rate of habitat loss for Larix gmelinii, they
collectively highlight a significant trend: under the overarching context of global warming
and increased precipitation, the distribution area of Larix gmelinii is expected to contract,
indicating its sensitivity and vulnerability to future climate change. The variations in these
figures likely arise from differences in study areas, environmental factors, models, and
parameter settings, which in turn limit the comparability of the results [86].

Conversely, Quercus mongolica shows considerable adaptability to future climatic
changes, with all predictive scenarios indicating an expansion in its suitable habitat area.
These findings are consistent with previous studies on climate change impacts in north-
eastern forests. For instance, Chen et al. [87] employed the ECHAM5-OM and HadCM3
atmospheric circulation models for simulations and revealed that climate warming over
the next century (2002–2102) will favor birches and Quercus mongolica in northeastern
forest communities. Similarly, Yan et al. [88] conducted simulations using the NEWCOP
model under GFDL climate change scenarios for forests in the Greater Khingan Range
and observed a gradual increase in the proportion of Quercus mongolica. Other studies,
such as those referenced [89–91], consistently report that regional warming benefits the
growth of temperate broadleaf forests.The expansion of Quercus mongolica forests is pri-
marily attributed to its significant physiological traits. Firstly, the stability of this species is
underpinned by its remarkable adaptability, resistance, and resilience, leading to a longer
lifespan for Quercus mongolica and its ability to dominate habitats once it establishes a
community [40,92,93]. Secondly, Quercus mongolica is among the most drought-tolerant
species owing to its well-developed root system. Additionally, Quercus mongolica possesses
drought-resistant leaf structures with strong stomatal closure capabilities, low water po-
tential, and flexible regulatory mechanisms [94,95]. Among broadleaf trees, it also exhibits
high stem water flow—attributable to its unique leaf morphology—high branching angle
of branches, and a higher leaf area index, enabling it to effectively absorb more water and
nutrients [96]. These physiological structures enable Quercus mongolica to maintain a high
rate of photosynthesis even under future warming conditions. Compared to other species,
it shows greater survivability in poor soils [95,97]. Moreover, projections indicate that
the future distribution centroid of Quercus mongolica is expected to shift predominantly
towards the northwest, a continuation of the migration trend observed in past research,
which is highlighted by a study showing that from 1896 to 1986, the northern boundary of
the broadleaf forests in Heilongjiang Province extended approximately 290 km towards
the northwest [98].

4.2. Environmental Variables Affecting the Distribution of Larix gmelinii and Quercus mongolica

Larix gmelinii, owing to its preference for sunlight, cold tolerance, and high adaptabil-
ity to soil and moisture [99], is significantly more influenced by temperature (contribut-
ing 62.2%) than by precipitation (contributing 18.3%). This finding is corroborated by
previous research; for instance, Shi [83] discovered through probability of presence analysis
that spring maximum temperature (contributing over 50%) and annual mean tempera-
ture are key factors influencing its distribution rather than spring precipitation. Similarly,
Yang et al. [84] identified that the primary climatic factors affecting its geographic distri-
bution are the mean temperature of the coldest month (contributing over 50%), annual
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temperature range, annual radiation, and accumulated temperature of ≥5 ◦C. Although
different studies vary in their data sources and methodologies, and the main climatic factors
differ, a consistent conclusion is the predominance of temperature over precipitation.

Annual temperature, elevation, and precipitation are crucial factors affecting Quer-
cus mongolica’s distribution, with temperature being the most significant at 64.7%. This
finding is consistent with studies identifying similar influencing factors. For example,
Yin et al. [100] found that annual precipitation (330–910 mm) and annual temperature
differences greater than 29 ◦C were dominant influencing factors, and Jia et al. [101] empha-
sized the impact of rainfall and altitude. Zhou et al. [102] focused on the influence of low
temperatures in May on natural regeneration. Despite differences in factor contributions,
all factors were related to temperature, precipitation, and altitude. Our study’s logistical
response curves show a distinct threshold for annual precipitation for Quercus mongolica’s
suitable areas and its adaptability to lower temperatures, aligning with its drought resis-
tance and cold tolerance. The elevation range of Quercus mongolica identified in this study
aligns with the data presented in Flora of China (Volume 22, p. 236) [79], noting that Quercus
mongolica commonly grows at elevations below 600 m in northeast China. Complementary
literature [103] indicates that this species predominantly occupies an elevation range of 250
to 400 m in the Greater and Lesser Khingan Ranges and is typically found on low mountain
summits, ridges, and variously inclined slopes, which supports these findings.

4.3. Implications for Conservation

Larix gmelinii and Quercus mongolica, key species in the Greater Khingan Range, face
various challenges and opportunities due to climate change. Therefore, we provide the
following conservation recommendations:

Larix gmelinii has high sensitivity and vulnerability to climate shifts; thus, it is crucial to
enhance monitoring and research. This involves mitigating climate impacts, improving pest
control, and carefully planning human activities to protect its population and ecological
services. For example, the projected 54.06% habitat reduction by the 2070s under the
SSP5-8.5 scenario suggests the need for stronger conservation efforts, such as expanding
reserves, promoting tree planting, and controlling pests.

Although Quercus mongolica is adaptable, it will face challenges, particularly as future
suitable areas are predicted to be of lower quality. Conservation planning should account
for future climate impacts and include strategies to improve current and future suitable
habitats. The projected 20.35% habitat increase by the 2070s under SSP5-8.5 is promising,
but the potential impact on other species and its adaptability to less suitable areas must be
considered. Thus, conservation efforts should aim for a balance: ensuring species diversity
and the species’ ability to thrive in varied conditions.

5. Conclusions

We used the Maxent model to predict the current and future habitat distribution
of Larix gmelinii and Quercus mongolica in the Greater Khingan Range under varying cli-
mate scenarios. Significant differences were observed in the species’ responses to climate
change. Larix gmelinii is projected to experience a reduction in its suitable habitat and a
likely shift towards the northwest in future scenarios. In contrast, Quercus mongolica is
expected to expand its habitat in all scenarios, mostly shifting northwest, demonstrating
stronger adaptability.

Our findings provide a baseline for further research into the region’s forest ecosystems
and biodiversity conservation. The combination of GIS methods and Maxent modeling
proved effective for developing conservation strategies. Future research should broaden
niche modeling to include more tree species and use diverse climate models and environ-
mental factors to enhance the distribution models to deepen our understanding of the
Greater Khingan Range’s forest response to climate change.
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Appendix A

Figure A1. Assessing interrelations of 19 bioclimatic variables: Pearson’s (r) correlation analysis via
ENM tools: |r| ⩾ 0.8 is displayed in bold.
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Figure A2. Response curves characterizing how variables affected the Maxent predictions for Larix
gmelinii. Red lines represent logistical predictions varying with each climatic variable while holding
other variables at their means. Shaded regions denote one standard deviation from this mean.

Figure A3. Response curves characterizing how variables affected the Maxent predictions for Larix
gmelinii. Based on individual variables, the Maxent models generate red lines. Shaded regions denote
one standard deviation from this mean.
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Figure A4. Response curves characterizing how variables affected the Maxent predictions for Quercus
mongolica. Red lines represent logistical predictions varying with each climatic variable while holding
other variables at their means. Shaded regions denote one standard deviation from this mean.

Figure A5. Response curves characterizing how variables affected the Maxent predictions for Quercus
mongolica. Based on individual variables, the Maxent models generate red lines. Shaded regions
denote one standard deviation from this mean.
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Table A1. WorldClim version 2.1: standard 19 bioclimatic variables. The monthly values are averages
over 20-year periods: 2021–2040, 2041–2060 and 2061–2080.

Variables Description Units

BIO1 Annual Mean Temperature °C
BIO2 Mean Diurnal Range (mean of monthly (max temp − min temp)) °C
BIO3 Isothermality (BIO2/BIO7) ×100 /
BIO4 Temperature Seasonality (standard deviation ×100) /
BIO5 Max Temperature of Warmest Month °C
BIO6 Min Temperature for Coldest month °C
BIO7 Temperature Annual Range (BIO5−BIO6) °C
BIO8 Mean Temperature of Wettest Quarter °C
BIO9 Mean Temperature of Driest Quarter °C
BIO10 Mean Temperature of Warmest Quarter °C
BIO11 Mean Temperature of Coldest Quarter °C
BIO12 Annual Precipitation mm
BIO13 Precipitation of Wettest Month mm
BIO14 Precipitation of Driest Month mm
BIO15 Precipitation Seasonality (Coefficient of Variation) /
BIO16 Precipitation of Wettest Quarter mm
BIO17 Precipitation of Driest Quarter mm
BIO18 Precipitation of Warmest Quarter mm
BIO19 Precipitation of Coldest Quarter mm
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