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Abstract: Information about the distribution of coniferous forests holds significance for enhancing
forestry efficiency and making informed policy decisions. Accurately identifying and mapping
coniferous forests can expedite the achievement of Sustainable Development Goal (SDG) 15, aimed at
managing forests sustainably, combating desertification, halting and reversing land degradation, and
halting biodiversity loss. However, traditional methods employed to identify and map coniferous
forests are costly and labor-intensive, particularly in dealing with large-scale regions. Consequently,
a methodological framework is proposed to identify coniferous forests in northwestern Liaoning,
China, in which there are semi-arid and barren environment areas. This framework leverages a
multi-classifier fusion algorithm that combines deep learning (U2-Net and Resnet-50) and shallow
learning (support vector machines and random forests) methods deployed in the Google Earth Engine.
Freely available remote sensing images are integrated from multiple sources, including Gaofen-1
and Sentinel-1, to enhance the accuracy and reliability of the results. The overall accuracy of the
coniferous forest identification results reached 97.6%, highlighting the effectiveness of the proposed
methodology. Further calculations were conducted to determine the area of coniferous forests in each
administrative region of northwestern Liaoning. It was found that the total area of coniferous forests
in the study area is about 6013.67 km2, accounting for 9.59% of northwestern Liaoning. The proposed
framework has the potential to offer timely and accurate information on coniferous forests and holds
promise for informed decision making and the sustainable development of ecological environment.

Keywords: coniferous forests; semi-arid; multi-classifier fusion; Gaofen-1; Sentinel-1; Google Earth Engine

1. Introduction

Forests provide conditions for the survival of animals and plants [1]. As a wide-
spread type of forest, coniferous forests are the largest terrestrial biome on Earth [2] and
play an irreplaceable role in improving the ecological environment, including combating
desertification, carbon storage, and controlling dust storms and soil erosion [3]. With
excellent stress resistance, coniferous forests are well adapted to growth in arid, barren,
and cold environments [4]. Due to deforestation, pests and diseases, urbanization, and
harvesting, coniferous forests are decreasing around the world. There is an urgent need
for coniferous forests to be mapped in a timely and accurate manner so that these data can
be used in domains such as natural resource management [5], ecological and hydrological
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modeling [6], and climate change studies [7,8], which can accelerate progress towards the
achievement of SDG 15.

Remote sensing technology has a wide range of applications in forestry due to its
outstanding advantages, including large-scale coverage, cost effectiveness, and minor
restrictions. Currently, remote sensing data such as multispectral images [9], hyperspectral
images [10], synthetic aperture radar (SAR) images [11], and LiDAR (light detection and
ranging) [12] are often used to map forest types. However, obtaining the remote sensing
data for coniferous forest extraction at a large scale can be a challenge, as it requires access
to high-quality and high-resolution data, which can be expensive and difficult to obtain.
With a good spatial resolution and revisit time, the Chinese Gaofen-1 has been successfully
utilized in various fields [13–15], and its data have been publicly available since 2013. It is
widely believed that Gaofen-1 can be used for coniferous forest extraction in large semi-arid
regions. Unfortunately, this potential has not yet been fully explored, especially when
integrated with other remote sensing data. The Sentinel-1 constellation, launched by the
European Space Agency (ESA), has characteristics including the capability for imaging
in all-weather conditions at any time, high spatial resolution, and free availability, and
scholars have tried to use Sentinel-1 images for coniferous forest extraction [16,17]. So far,
there have been several studies using Sentinel-1 combined with Gaofen-1 to extract forest
parameters [18], which implies the possibility of utilizing the amalgamation of Gaofen-1
and Sentinel-1 for coniferous forest extraction in large semi-arid regions.

Google Earth Engine (GEE) is an excellent cloud-based platform. With computing
power and storage provided by millions of servers distributed around the world, GEE can
be used for geospatial analysis on a global scale [19]. It is worth noting that there are more
than forty years of historical imagery stored in GEE’s public data archive, which is updated
and expanded daily. Additionally, many mature algorithms have been integrated into GEE,
making it easier for users to process and analyze geospatial data without having to develop
algorithms from scratch themselves. Pixel-based shallow learning algorithms, such as
random forest (RF), support vector machine (SVM), and classification and regression tree
(CART), are often employed in GEE for classification tasks. These approaches pay more
attention to detailed information, and classification maps usually contain noise. Google
has developed a series of products to cooperate with GEE for deep learning model training,
model hosting, and model calling. Some deep learning models have been successfully
deployed in GEE to map forest harvesting [20], crop type [21], built-up land [22], and
coniferous forest extraction [23]. Generally speaking, the existing shallow learning and
deep learning methods perform well for mapping certain land-use and land-cover (LULC)
types and perform relatively poorly for others. Multi-classifier fusion (MCF) is a method
that integrates different classification maps to achieve better classification results than a
single classifier (base classifier). It draws upon the advantages of every single classifier to
improve the performance of LULC classification tasks and has been successfully employed
in diverse fields [24–26]. It shows promise for improving classification accuracy and speed
by using deep learning and shallow learning as the base classifiers of MCF deployed in
GEE for extracting coniferous forests in large semi-arid regions. Unfortunately, insufficient
scholarly inquiry has been conducted within this specific field so far.

Northwestern Liaoning is recognized as a focal region for ecological development in
China; it acts as an ecological barrier that protects the North China Plain and the Northeast
China Plain from the sand invasion of the Horqin Sandy Land [27]. As a typical semi-arid
area in China, it is a harsh ecological environment with little rain, has a shortage of water
resources, and displays soil desertification, which seriously restricts social development. To
improve environmental conditions, in the 1970s, China implemented afforestation programs
to increase forest coverage through artificial planting and aerial seeding afforestation [3],
and coniferous forests (Chinese pine, Pinus sylvestris, etc.) were selected as the main tree
species for afforestation due to their strong stress resistance. In recent years, the ecosystem
in northwestern Liaoning has continued to improve. However, factors such as pests and
diseases, the conversion of forests to farmland, and inappropriate management measures
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have interfered with coniferous forests in recent years, threatening the healthy development
of the ecological environment in this area.

To improve the accuracy and efficiency of the forest inventory, a methodological
framework is needed to identify coniferous forests in the semi-arid area of northwestern
Liaoning, which can provide a baseline for forest management policy development and
forest ecosystem conservation. The methodological framework incorporates two machine
learning methods with completely different working principles, patch-based deep convo-
lutional neural networks and pixel-based shallow learning methods, and the four maps
are merged using a majority voting principle. By integrating deep learning and shallow
learning methods, this study aims to overcome the limitations of single classifiers and
provide a more accurate and comprehensive understanding of the extent and distribution
of coniferous forests. Additionally, employing the combination of optical and radar im-
agery for land-cover classification offers significant advantages. In this study, multi-source
remote sensing images, including those from Chinese Gaofen-1 and ESA Sentinel-1, serve
as data sources for coniferous forest identification. This allows the utilization of both the
spectral characteristics of Gaofen-1 and the backscattering properties of Sentinel-1 during
the identification process. It is worth mentioning that most of these operations can be
performed in the GEE cloud computing platform, except for the preprocessing of Gaofen-1
images. This will greatly enhance the efficiency of coniferous forest extraction, especially at
large regional and national scales.

2. Study Area and Materials
2.1. Study Area

The study area is situated in the northwest of Liaoning Province (northwestern Liaon-
ing), China (see Figure 1), and borders Jilin Province to the east, the Inner Mongolia
Autonomous Region to the north, and Hebei Province to the west. Northwestern Liaon-
ing spans approximately 62,885 km2, comprising 42.49% of the total area of Liaoning
Province. Its longitude ranges from 118◦49′50′′ E to 124◦25′25′′ E and its latitude ranges
from 39◦59′33′′ N to 43◦29′18′′ N (WGS_1984_UTM_51). It includes the five cities of
Chaoyang, Huludao, Fuxin, Jinzhou, and Xinmin, and the three counties of Changtu, Faku,
and Kangping. Topographically, northwestern Liaoning is high-lying in the northwest and
low-lying in the southeast. This area is mainly dominated by plains and hills, with eleva-
tions ranging from −156 to 1245 m. Northwestern Liaoning is located in the mid-latitudes
and belongs to the warm temperate semi-humid and semi-arid continental monsoon cli-
mate zone, with a climate that is characterized by cold winters and hot summers. The
annual average temperature in northwestern Liaoning is 6.4–8.5 ◦C, and the precipitation
is mostly concentrated from June to August [28].

Due to being adjacent to the Horqin Sandy Land, and as it is affected by drought as
well as human activities, land desertification in northwestern Liaoning is serious. Thus, a
large number of shelterbelts have also been planted in this area to improve the ecological
environment. The dominant tree species used in shelterbelts include Chinese pine, Pinus
sylvestris, Robinia pseudoacia, poplar, and willow [29,30].

2.2. Remote Sensing Images and Preprocessing

Gaofen-1 and Sentinel-1 were selected as the data sources. It has been proven that
coniferous forests have better separability than other LULC types from November to April
in a year [23]. Based on this, Gaofen-1 and Sentinel-1 images from 1 November 2019 to 20
April 2020 with cloud cover of less than 20% were chosen for coniferous forest extraction in
northwestern Liaoning.

Gaofen-1 is a Chinese Earth observation satellite launched by the China National Space
Administration (CNSA) in 2013. With a spatial resolution of 16 m, the multispectral images
have four bands, including blue (0.45–0.52 µm), green (0.52–0.59 µm), red (0.63–0.69 µm),
and near-infrared (0.77–0.89 µm). Users can obtain Gaofen-1 data from the China Center
for Resources Satellite Data and Application (https://data.cresda.cn/#/2dMap, accessed

https://data.cresda.cn/#/2dMap
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on 16 July 2023). After cloud cover filtering and boundary filtering, 18 Gaofen-1 Level-1A
image scenes were obtained. The software packages ENVI 5.3 (Harris Corp., Melbourne, FL,
USA) and ArcGIS 10.5 (ESRI, Redlands, CA, USA) were used to preprocess these images,
including the following steps: radiometric calibration, atmospheric correction, orthorectifi-
cation, geometric correction, mosaicking, and cropping. In detail, the Gaofen-1 images were
radiometrically calibrated using the absolute radiometric calibration coefficients provided
by the China Center for Resources Satellite Data and Application (CRESDA). The atmo-
spheric correction was then conducted employing the FLAASH module in ENVI software
to obtain surface reflectance values. The orthorectification was performed by employing
rational polynomial coefficient (RPC) files and a digital elevation model (DEM) with a
spatial resolution of 30 m. To improve the geometric accuracy, a total of 35 ground control
points (GCPs) were collected to perform geometric correction on the Gaofen-1 data. The
operations of mosaicking and cropping were subsequently performed in ENVI and ArcGIS,
respectively. Finally, the 5.48 GB Gaofen-1 image covering northwestern Liaoning was
generated and uploaded to Google Assets.
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Figure 1. The study area.

The Sentinel-1 satellite constellation consists of two satellites, and was launched by the
ESA for the purpose of Earth observation. Sentinel-1 can provide all-weather day and night
radar images with 10 m spatial resolution and a 5-day revisit time. A total of 299 scenes from
the COPERNICUS/S1_GRD image collection in GEE were collected (https://developers.
google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD, accessed on 16 July
2023) through boundary filtering and date filtering. The SAR images in this dataset
are ground range-detected (GRD) scenes, which were preprocessed using the Sentinel-1
Toolbox. The VV (vertical transmit/vertical receiver) and VH (vertical transmit/horizontal
receiver) backscatter coefficients were used for coniferous forest extraction, and they were
composited and clipped using functions in GEE. The specific information regarding the
data source is shown in Table 1.

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
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Table 1. The specific descriptions of remote-sensing images used for coniferous forest extraction.

Satellites Band Wavelength (µm) Spatial Resolution (m) Revisit Time (Day) Period

Gaofen-1 WFV

Band 1 (Blue) 0.45–0.52 16

4 1 November 2019~20
April 2020

Band 2 (Green) 0.52–0.59 16
Band 3 (Red) 0.63–0.69 16
Band 4 (NIR) 0.77–0.89 16

Sentinel-1
VV /

10 5VH /

2.3. Training and Validation Samples

In this paper, the LULC types of the study area are divided into two classes: coniferous
forests and non-coniferous forests. Cultivated land, grassland, bare land, water, other
forests, and construction land belong to the non-coniferous forest land types. Since the
imaging of the selected remote sensing images occurred during winter, cultivated land,
grassland, and bare land display a similar spectral reflectance in images. The field survey
was conducted in August 2020 and August 2021, and 3104 sample points (see Figure 2) were
obtained combined with visual interpretation on Google Earth Pro. These sample points
of each class were merged and added to a unique identification field. A random selection
was performed where 70% of the sample points were utilized for training purposes, while
the remaining 30% were reserved for validation. For block samples used in deep learning
methods, 20 subareas sized 18 × 18 km and evenly distributed in the study area were
selected. The coniferous forest distribution maps of the 20 subareas were generated using
SVM and Sentinel-2 images. To fine-tune the extraction results, ArcGIS software was then
employed to remove salt-and-pepper noise and incorrect classification results. The block
samples were augmented using cropping, rotation, and flipping. Finally, 640 sample blocks
were generated, and then uploaded to Google Assets in Geotiff format. Figure 3 shows
some of the block samples, and the specific sample information (point samples and block
samples) is shown in Table 2.
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Figure 3. Examples of sample blocks used in deep learning models. The first row shows the remote
sensing images. The second row contains the corresponding labels. In the visualization, coniferous
forests are depicted in green, while other land types are depicted in black.

Table 2. The information of samples used in this paper.

ID Category Number

1 Point samples

Coniferous forest / 416

Non-coniferous forest

Cultivated land, grassland, and bare land 706
Water 322

Other woodland 439
Construction land 1221

Total 3104

2 Block samples Coniferous forest
/ 20Non-coniferous forest

3. Methods

A full program (see Figure 4) was designed to utilize multispectral data (Gaofen-1) and
C-band SAR data (Sentinel-1) to map coniferous forests in a large semi-arid region based on
the proposed multi-classifier fusion algorithm deployed in GEE, integrating deep learning
(U2-Net and Resnet-50) and shallow learning (SVM and RF). Firstly, the downloaded
Gaofen-1 images were preprocessed on personal computers, involving the following steps:
radiometric calibration, atmospheric correction, orthorectification, geometric registration,
mosaicking, and cropping. Then, the preprocessed Gaofen-1 images, the point samples in
shapefile format, and the block samples in Geotiff format were uploaded to GEE Assets.
Secondly, the Sentinel-1 images covering the study area were collected in GEE through
boundary filtering, time filtering, median synthesis, and cropping operations. The final
image used for coniferous forests extraction was composed of Sentinel-1 images and Gaofen-
1 images, which have six bands (i.e., blue, green, red, NIR, VV, and VH). The proposed
multi-classifier fusion algorithm was employed to map the coniferous forest distribution,
and the area calculation and accuracy evaluation were conducted. Finally, the driving
factors and characteristics of coniferous forest distribution were analyzed in the study area.

3.1. The Base Classifiers

U2-Net is an advanced convolutional neural network (CNN) renowned for its sim-
plicity and effectiveness, primarily due to its unique two-level nested U-structure [31].
Inspired by the U-Net architecture, U2-Net consists of an encoder path comprising six
encoder blocks and a decoder path comprising five decoder blocks. In U2-Net, each block,
known as the ReSidual U-block, follows a Unet-like structure, which can capture contextual
information at various scales in the first four encoder stages. Due to the low resolution of
feature maps, the dilated convolution is employed in the last two encoder stages to replace
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the max-pooling operation. The decoder stages have the same structures as the encoder
stages, and they are connected to the symmetrical encoder stages. Six saliency probability
maps are generated, which are the same size as the input images. They are then integrated
together, and the final coniferous forest probability map is generated through a series of
operations, including concatenation and convolution.
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As deep neural networks grow in depth with an expanding number of layers, they
often encounter the challenge of degradation. To solve this problem, a deep residual
learning framework named residual blocks was proposed [32]. ResNet has various archi-
tectures (i.e., ResNet-18, 34, 101, 152). Using residual connections, ResNet-50 can effectively
train deep networks with improved performance and easier optimization. It has achieved
state-of-the-art results in various computer vision tasks, such as image classification, object
detection, and semantic segmentation. The architecture of ResNet-50 has been widely
adopted and serves as a backbone for many other advanced CNN models.

SVM is often employed to deal with classification and regression analysis tasks in
the field of pattern recognition. It can achieve satisfactory performance in processing
nonlinear and high-dimensional data. The principle of SVM is to find a decision boundary
for separating the samples of different classes. The decision boundary can be a straight
line or a plane. Finding a clear-cut line or plane to fully separate the data has been proven
to be challenging due to the complexity of the spatial distribution of samples. Thus, the
soft margin SVM [33] was proposed, allowing the misclassification of a small number of
samples while most samples are correctly classified. To separate samples of different classes
more effectively, the radial basis function (RBF), and linear, nonlinear, polynomial, and
Gaussian functions, are the most commonly used functions utilized when transforming
data from a low-dimensional to a high-dimensional space. The Library for SVM (LibSVM)
in GEE was used to extract coniferous forests, and RBF was selected as the kernel function.
Through experiments, the two parameters of gamma and cost were finally set as 16 and 34,
respectively [34].

As an ensemble learning algorithm in shallow learning, RF is a combination of decision
trees [35] and has been widely used in various areas. By applying the technique of bootstrap
aggregating (bagging), training samples were randomly selected with the replacement
from a training set. Since each decision tree was trained using different samples, the final
results usually have strong noise resistance. Additionally, RF has demonstrated strengths
in handling high-dimensional data and exhibited robust generalization capabilities. It
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possesses the unique advantage of eliminating the requirement for manual feature selection.
The smileRandomForest function in GEE was used in this study, and the parameter of
decision tree number was set to 50 [34].

3.2. Multiple Classifier Fusion

Shallow learning and deep learning techniques were employed in various classifi-
cation tasks. So far, there is no universal algorithm that is applicable to all classification
tasks, which are related to factors such as image type, imaging time, training samples,
and algorithm selection. The accuracy, robustness, and applicability of these algorithms
still need to be improved. Multi-classifier fusion is a technique that integrates the outputs
of multiple base classifiers and can achieve excellent performance in classification tasks.
Coniferous forest distribution in northwestern Liaoning is extensive. Shallow learning
classifiers based on point samples can obtain more detailed information, while deep learn-
ing classifiers based on block samples can identify coniferous forests with high accuracy
and minimal salt-and-pepper noise without the need for feature extraction. As shown in
Figure 5, four algorithms, namely, two deep learning models (i.e., U2-Net and Resnet-50)
and two shallow learning methods (i.e., SVM and RF), were employed to extract coniferous
forests. Four binary classification maps were integrated based on the principle of majority
voting (Equation (1)).

H(x) =

 cj, i f
T
∑

i=1
hj

i(x) > 0.05
N
∑

k=1

T
∑

i=1
hk

i (x)

reject, otherwise
(1)

where cj belongs to the set of land-cover categories {c1, c2, . . .cN}, T is the number of
classifiers, N is the number of categories, hi

j(x) indicates that the classifier hi divides the
pixel x into the category cj, and similarly, hi

k(x) means that classifier hi classifies pixel x as
category ck. Equation (1) indicates that when more than half of the classifiers hi classify x
into cj, the final category H(x) = cj is determined, otherwise the category of x is uncertain.
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3.3. Accuracy Assessments

To quantitatively assess the effectiveness of the five models (i.e., MCF, U2-Net, Resnet,
SVM, and RF), 930 sample points were randomly selected as the validation points from the
dataset (see Figure 2). The sample points for validation were blind to the entire training
and prediction process. Five widely utilized accuracy assessment metrics, namely, OA,
recall, precision, kappa, and F1 score, were computed based on the validation data and the
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obtained coniferous forest distribution maps. All these metrics were calculated based on
the confusion matrix, and the equations are shown in Equations (2)–(6).

OA =
TP + TN

TP + TN + FP + FN
(2)

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

where TP represents a true positive, FP represents a false positive, TN represents a true
negative, and FN represents a false negative.

F 1_score = 2× (Recall + Precision)
(Recall − Precision)

(5)

Kappa =
pO − pe

1− pe
(6)

where po is the sum of the number of samples correctly classified for each class divided by
the total number of samples, and pe is the sum of the products of the actual and predicted
quantities corresponding to all classes divided by the square of the total number of samples.

4. Results and Analysis
4.1. The Separability of Coniferous Forest from Other Land Types in Remote Sensing Images

When using remote sensing images for LULC classification, it is imperative to examine
the separability of different LULC types based on their spectral reflectance. Generally,
the greater the spectral difference between land-cover types, the better their separability.
The box plot (see Figure 6) exhibits the spectral reflectance of 798 sample points. These
were selected randomly from the point samples shown in Figure 2 and Table 2, including
200 coniferous forest samples; 200 construction land samples; 200 farmland, bare land, and
grassland (FBG) samples; 199 other forest samples; and 199 water samples. Figure 6a shows
the spectral differences among the five LULC types in Gaofen-1 spectral bands. The spectral
differences between coniferous forests and the four other land-cover types are significant.
There is a certain difference between the construction land and FBG in band 1 and band 4
of Gaofen-1, but it is not particularly obvious. In band 1 and band 2, the spectral reflectance
of FBG and other forests is similar but their differences increase in band 3 and band 4.
In all bands of Gaofen-1, the spectral reflectance of water and other forests is relatively
similar. Figure 6b shows the backscatter coefficients (VV and VH) of the five LULC types in
Sentinel-1. It can be seen that FBG, water, and other forests have more obvious separability
in the VV and VH of Sentinel-1 compared to the spectral reflectance in Gaofen-1. Therefore,
the combined use of Gaofen-1 and Sentinel-1 is considered to improve the accuracy of
coniferous forest extraction compared to the utilization of either of them alone.

4.2. The Performance of Different Classifiers in Coniferous Forest Extraction

To qualitatively and quantitatively assess MFC’s performance in GEE, five metrics were
calculated, namely, F1 score, precision, recall, OA, and kappa, based on Equations (1)–(5).
As shown in Table 3, of the four basic classifiers (i.e., U2-Net, Resnet-50, SVM, RF), U2-Net
performs the best, with F1 score, precision, recall, OA, and kappa reaching 97.1%, 96.3%,
98%, 97.6%, and 0.96%, respectively, which aligns with previous findings [23]. U2-Net
outperforms Resnet-50 by 1.1%, 1.8%, 0.4%, 0.7%, and 1.6% in terms of F1 score, precision,
recall, OA, and kappa, respectively. Among the shallow learning methods, SVM performs
best, with F1 score, precision, recall, OA, and kappa achieving 95.6%, 92.8%, 98.5%, 96.9%,
and 0.93, respectively, which are 5.5%, 8.3%, 2.0%, 3.6%, and 8.2% higher than those of RF.
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Overall, deep learning methods have better performances than shallow learning methods.
Specifically, U2-Net outperforms SVM by 1.5%, 3.5%, −0.5%, 0.7%, and 2.8% in terms of F1
score, precision, recall, OA, and kappa, respectively. MCF improves accuracy significantly
compared to the other classifiers, with F1 score, precision, recall, OA, and kappa reaching
98.1%, 97.9%, 98.3%, 98.6%, and 0.97, respectively. Compared to U2-Net, the five metrics
of MCF increased by 1.0%, 1.6%, 0.3%, 1.0%, and 1.0%, respectively. The five metrics of
MCF are 8.0%, 13.4%, 1.8%, 5.3%, and 12% higher than RF. Due to the different principles
of these base classifiers, the MCF method comprehensively utilizes the advantages of deep
learning and shallow learning as complements to each other, and ultimately improves the
accuracy of coniferous forest extraction.
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Figure 6. The spectral reflectance of different land-cover types. (a) The four bands spectral reflectance
of Gaofen-1. (b) Backscattering coefficient values for two polarization modes (VH and VV) of the
Sentinel-1.

Table 3. The extraction accuracies of the five classification algorithms (U2-Net, Resnet-50, SVM, RF,
and MCF).

Classifier F1_Score (%) Precision (%) Recall (%) OA (%) Kappa

U2-Net 97.1 96.3 98.0 97.6 0.960
Resnet-50 96.0 94.5 97.6 96.9 0.944

SVM 95.6 92.8 98.5 96.9 0.932
RF 90.1 84.5 96.5 93.3 0.850

MCF 98.1 97.9 98.3 98.6 0.970

As shown in Figure 7, five subareas (see Figure 7a–e) evenly distributed in northwest-
ern Liaoning were selected to exhibit the extraction results in detail. These subareas are situ-
ated in the north, south, west, central, and northeast of northwestern Liaoning, and are each
characterized by varying densities of coniferous forests. The first row (see Figure 7a–a5)
shows natural forests, the second row (see Figure 7b–b5) shows planted forests, and the
third to fifth rows show mixed forests (natural and planted forests). It can be seen from
Figure 7a1–e1 and Figure 7a2–e2 that U2-Net and Resnet-50 achieve good performance
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in coniferous forest extraction in highly homogeneous areas. For the scattered coniferous
forests, these two deep learning methods cannot completely separate the fine coniferous
forests from the background. It can be seen from Figure 7a3–e3 and Figure 7a4–e4 that the
extraction results of SVM and RF contain a lot of fragments, including scattered coniferous
forests and salt-and-pepper noise. The coniferous forest extraction results generated by
SVM and RF are significantly inferior to those of deep learning methods. However, SVM
and RF can extract scattered coniferous forests with higher precision. MCF has advantages
of both deep learning and shallow learning, which can not only extract coniferous forests
in highly homogeneous areas with clear boundaries and less salt-and-pepper noise but can
also clearly express detailed information.
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Figure 7. The outcomes of extracting coniferous forests in five areas using different classifiers (U2-Net,
Resnet-50, SVM, RF, and MCF). (a–e) The remote sensing images of the five selected subareas with a
spatial resolution of 0.5 m. (a1–e1) The coniferous forest results extracted using U2-Net. (a2–e2) The
coniferous forest results extracted using Resnet-50. (a3–e3) The coniferous forest results extracted
using SVM. (a4–e4) The coniferous forest results extracted using RF. (a5–e5) The coniferous forest
results extracted using MCF.

4.3. The Performance of Coniferous Forest Extraction Using Different Data Sources

Employing Gaofen-1 in combination with Sentinel-1 can achieve coniferous forest
identification results with higher precision than using either alone, which was demonstrated
by analyzing the spectral reflectance of the Gaofen-1 and the backscatter coefficients of
Sentinel-1 in Section 4.1. To further verify the feasibility of combining Gaofen-1 and
Sentine-1 for coniferous forest extraction, Gaofen-1 was first used alone to conduct the
coniferous forest extraction experiment, and then Gaofen-1 and Sentinel-1 were employed
together to extract coniferous forests. Both of the extraction tasks were based on the MCF
classifier in GEE. As shown in Table 4, the F1 score, precision, recall, OA, and kappa
using Gaofen-1 alone are 97.2%, 96.6%, 97.6%, 97.5%, and 0.962, respectively. When
the backscatter coefficients of Sentinel-1 were integrated with Gaofen-1, the five metrics
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of F1 score, precision, recall, OA, and kappa increased by 0.9%, 1.3%, 0.7%, 1.1%, and
0.8%, respectively.

Table 4. Accuracy in identifying coniferous forests using different data sources (Sentinel-1 + Gaofen-1
and Gaofen-1).

Data Source F1_Score (%) Precision (%) Recall (%) OA (%) Kappa

Gaofen-1 +
Sentinel-1 98.1 97.9 98.3 98.6 0.970

Gaofen-1 97.2 96.6 97.6 97.5 0.962

Qualitatively, three subareas were chosen to exhibit the coniferous forest extraction
outcomes (see Figure 8). We can see that in the extraction outcomes of planted forests (see
Figure 8a,a1,a2), there are many broken patches when Gaofen-1 is employed alone. After
combining Sentinel-1 with Gaofen-1, the extraction results were improved and became
more complete. In the extraction results of natural forests (see Figure 8b,b1,b2), using
Gaofen-1 alone was not able to completely extract the coniferous forests. After combining
Gaofen-1 with Sentinel-1, the completeness and accuracy of coniferous forest extraction was
improved, especially for the scattered coniferous forests. In the mixed forests of planted
and natural forests (see Figure 8c,c1,c2), using Gaofen-1 alone was not effective, and there
was obvious salt-and-pepper noise. However, when Gaofen-1 was used in combination
with Sentinel-1 to participate in the extraction process, the results were more continuous
with clear boundaries.
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Figure 8. The outcomes of coniferous forest extraction utilizing different combinations. (a–c) The
remote sensing images of there selected subareas with a spatial resolution of 0.5 m. (a1–c1) The results
extracted using Gaofen-1 and Sentinel-1 together. (a2–c2) The results extracted using Gaofen-1 alone.

Since the backscatter coefficients of Sentinel-1 can provide valuable insights into the
structure and biomass of coniferous forests, they can help to improve the separability
of coniferous forests from other LULC types and enhance the accuracy of coniferous
forest extraction.
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4.4. Comparison with Other Datasets

At present, there are several land-cover products available, including GlobeLand-30 [36],
EAS-Worldcover [37], FROM-GLC [38], CLCD [39], ESRI-10m [40], and MCD12Q1 [41], but
few of them include the classification of coniferous forests. GLC_FCS30 [42] (available
online: https://data.casearth.cn/), which is one of the few products with the classification
of coniferous forests, was selected for comparison with the coniferous forest distribution
map generated in this study. The spatial resolution of GLC_FCS30 is 30 m. It includes
16 LULC types, and the OA and kappa are 71.40% and 0.686, respectively.

Five subareas are evenly distributed across the study area, in which both natural
coniferous forests and artificial coniferous forests can be found (see Figure 9a–e). The
coniferous forests identified through the methodological framework described in this
article closely align with the actual situation and are complete with clear boundaries (see
Figure 9a1–e1). As a global land-cover product, GLC_FCS30 cannot extract all coniferous
forests, and the extraction results are fragmented (see Figure 9a2–e2). There may be various
reasons for this. First of all, GLC_FCS30 made use of the two-year composite remote
sensing data from Landsat-8 OLI, which do not take into account the spectral differences
between tree species in different seasons. Experiments have shown that it is not easy to
distinguish coniferous forests from other tree species in remote sensing images, except in
winter. [23]. Secondly, the spatial resolution of Landsat employed in GLC_FCS30 is 30 m,
which is coarser than that of Gaofen-1 (16 m) and Sentinel-1 (10 m) and can have a negative
influence on the extraction of coniferous forests. Additionally, only the multispectral bands
were used in GLC_FCS30, making the extraction results very sensitive to weather. In
this article, a substantial number of samples were collected using a combination of field
surveys and visual interpretation, and the training data for GLC_FCS30 were sourced from
GSPECLib (Global Spatiotemporal Spectral Library). It should be noted that there are
variations in the level of accuracy. As depicted in Figure 10, the area of statistical coniferous
forests derived from GLC_FCS30 is only 1031.57 km2, which is significantly smaller than
that of MCF (6013.67 km2).
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Figure 9. The coniferous forest distribution maps of five subareas obtained using two products
(MCF and GLC_FCS30). (a–e) The remote sensing images of five selected subareas with a spatial
resolution of 0.5 m. (a1–e1) The coniferous forest results extracted by MCF. (a2–e2) The coniferous
forest distribution maps from GLC_FCS30.
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Figure 10. The coniferous forest area of northwestern Liaoning calculated from MCF and GLC_FCS30.

4.5. The Statistics on Coniferous Forest Area in Northwestern Liaoning

In northwestern Liaoning, there are five cities and three counties. It can be observed
from Figure 11 that the distribution of coniferous forests varies across these eight adminis-
trative regions, exhibiting distinct geographical characteristics. Table 5 provides detailed
information about the coniferous forest area. Of the eight regions, Chaoyang has the largest
area of coniferous forests and the highest proportion of coniferous forests in relation to
its administrative area, which indicates that Chaoyang has effectively implemented the
Chinese government’s policies on forest conservation and restoration, making it suitable
for the growth of coniferous forests. Huludao, Fuxin, and Jinzhou rank second to fourth
in terms of the proportion of coniferous forests within their administrative areas. Xinmin,
Faku, Kangping, and Changtu have relatively smaller areas of coniferous forests, with
Xinmin containing the lowest proportion, accounting for only 0.48% of its administrative
area, despite not having the smallest administrative area. Among these regions, the ranking
of coniferous forest areas from largest to smallest is as follows: Chaoyang > Huludao >
Fuxin > Jinzhou > Changtu > Faku > Kangping > Xinmin. According to statistics, the
total area of northwestern Liaoning is about 62,701.71 km2, with a coniferous forest area of
6013.67 km2, accounting for nearly 10% of the administrative area.

Table 5. The area information of the five cities and three counties in the study area.

Name Non-Coniferous Forest (km2) Coniferous Forest (km2) Total (km2) Proportion (%)

Chaoyang 16,877.23 2839.55 19,716.78 14.40
Huludao 9068.63 1521.96 10,590.59 14.37

Fuxin 9544.86 764.72 10,309.58 7.42
Jinzhou 9427.17 590.75 10,017.92 5.90
Changtu 4181.11 142.27 4323.38 3.29
Xinmin 3282.34 15.86 3298.20 0.48

Faku 2201.42 78.59 2280.01 3.45
Kangping 2105.29 59.96 2165.25 2.77

Total 56,688.05 6013.67 62,701.71 9.59



Forests 2024, 15, 288 15 of 21

Forests 2024, 15, x FOR PEER REVIEW 15 of 22 
 

 

4.5. The Statistics on Coniferous Forest Area in Northwestern Liaoning 

In northwestern Liaoning, there are five cities and three counties. It can be observed 

from Figure 11 that the distribution of coniferous forests varies across these eight admin-

istrative regions, exhibiting distinct geographical characteristics. Table 5 provides detailed 

information about the coniferous forest area. Of the eight regions, Chaoyang has the larg-

est area of coniferous forests and the highest proportion of coniferous forests in relation 

to its administrative area, which indicates that Chaoyang has effectively implemented the 

Chinese government’s policies on forest conservation and restoration, making it suitable 

for the growth of coniferous forests. Huludao, Fuxin, and Jinzhou rank second to fourth 

in terms of the proportion of coniferous forests within their administrative areas. Xinmin, 

Faku, Kangping, and Changtu have relatively smaller areas of coniferous forests, with 

Xinmin containing the lowest proportion, accounting for only 0.48% of its administrative 

area, despite not having the smallest administrative area. Among these regions, the rank-

ing of coniferous forest areas from largest to smallest is as follows: Chaoyang > Huludao 

> Fuxin > Jinzhou > Changtu > Faku > Kangping > Xinmin. According to statistics, the total 

area of northwestern Liaoning is about 62,701.71 km2, with a coniferous forest area of 

6013.67 km2, accounting for nearly 10% of the administrative area. 

 

Figure 11. The distribution of the coniferous forests in northwestern Liaoning. (a–c) Three subar-

eas selected to display the coniferous forest extraction results, which located in the north, north-

east and south of the study area. 

  

Figure 11. The distribution of the coniferous forests in northwestern Liaoning. (a–c) Three subareas
selected to display the coniferous forest extraction results, which located in the north, northeast and
south of the study area.

5. Discussion
5.1. Implications of Mapping Coniferous Forests in Northwestern Liaoning

Northwestern Liaoning is a typical semi-arid area in China, and is adjacent to the
Horqin Sandy Land in Inner Mongolia. It experiences frequent windy and sandy weather,
limited rainfall, and infertile soil, which severely restrict local socio-economic development.
Coniferous forests (e.g., Chinese pine and Pinus sylvestris) exhibit good adaptability to the
arid environment of northwestern Liaoning. They serve as natural barriers for the Northeast
and North China Plain, playing a positive role in improving agricultural productivity,
addressing hunger, climate change adaptation, biodiversity conservation, and ecosystem
protection, which are all aligned with the United Nations’ SDGs. However, factors such
as pests and diseases, wildfires, and unsustainable timber harvesting, along with an
imbalanced forest structure, have led to the degradation of coniferous forests in this region.
Knowledge of the extent and distribution of these coniferous forests is crucial for sustainable
forest management and informed decision making.

Most existing studies have primarily focused on forest extraction [43–45], with limited
research on the fine-scale identification of coniferous forests. However, the significance of
coniferous forests in the semi-arid region of northwestern Liaoning cannot be overlooked,
and our current knowledge about them remains limited. Traditional methods relying
on manual surveys are costly, laborious, and dangerous and often involve inaccessible
areas. Identifying coniferous forests in large-scale areas requires a large number of remote
sensing images and reliable identification algorithms, which creates challenges for personal
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computers with limited computing power and storage space. In this study, a multi-classifier
fusion approach combined with multi-source remote sensing imagery was employed for
coniferous forest extraction using the GEE platform, achieving satisfactory results and
confirming the feasibility of the proposed method.

Most of the coniferous forests in northwestern Liaoning are distributed in the south-
western region, while they are relatively scarce in the northeastern region. Factors such
as topography, population, and hydrothermal conditions can affect the distribution of
coniferous forests in this region [46,47]. As an indispensable segment of the Three-North
Shelter Forest Program [48], northwestern Liaoning contains a considerable portion of
artificially planted coniferous forests, which are heavily influenced by human activities.
In the plains, most of the land is used for human settlements and agriculture, resulting
in a lower distribution of coniferous forests. This phenomenon is particularly evident in
the northeastern part of Fuxin, Xinmin, Kangping, Changtu, and Faku. The southwestern
part is characterized by mountains and hills, with abundant sunlight, dryness, and a cold
climate, which are highly suitable for the growth of coniferous forests. In addition, due
to the constraints of the terrain, these areas experience limited human activities, resulting
in less encroachment on the growth space of coniferous forests by humans. Therefore,
compared to the northeastern part of the study area, there is a relatively higher distribution
of coniferous forests in the southwestern part of the study area.

5.2. The Performance of the Proposed Methodological Framework

The proposed methodological framework employing multi-source remote sensing
images and multi-classifier fusion achieved high performance (OA = 97.6%) in coniferous
forest extraction.

It is not surprising that the methodology combining shallow learning and deep learn-
ing achieves such good results in coniferous forest identification. The SVM and RF algo-
rithm belonging to shallow learning have been widely used in various pattern recognition
fields [49] since their inception. Benefiting from the rigorous mathematical models, pixel-
based shallow learning can effectively obtain information in detail (with the drawback of
generating salt-and-pepper noise), resulting in limited identification accuracy in complex
scenes [50]. Deep learning, on the other hand, differs fundamentally from traditional
machine learning methods in terms of principles. It is a model that mimics the structure
and functionality of biological neural networks and is capable of automatically learning
higher-level features [51]. The combination of deep learning and shallow learning achieves
higher performance compared to the use of a single classifier in coniferous forest extraction.

In recent years, the technology of Chinese remote sensing satellites has developed
rapidly. As a medium-resolution satellite, Gaofen-1 was launched in 2013, and its data have
been freely available since 2019. Scholars used Gaofen-1 and Sentinel-1 data to conduct
research in various fields [52,53]. However, it was unknown whether the performance of
Gaofen-1 and Sentinel-1 was appropriate for coniferous forest identification. Therefore, we
employed Gaofen-1 combined with Sentinel-1 to extract coniferous forests in northwestern
Liaoning. In addition, compared with the revisit time of Sentinel-2 (5 days), Gaofen-1 has
a shorter revisit time of 4 days. The width of a Gaofen-1 image is 800 × 800 km, while
that of a Sentinel-2 image is 290 × 290 km. Therefore, it can be seen that Gaofen-1 images
have their own advantages and cannot be completely replaced by Sentinel-2. As far as we
know, this is the first time that the combination of Gaofen-1 and Sentinel-1 data was used
to identify coniferous forests in a large-scale area. It was found that coniferous forests are
clearly distinguishable in the four spectral bands of Gaofen-1 and the two backscattering
coefficients of Sentinel-1 (see Figure 6). As an optical remote sensing satellite, Gaofen-1
is sensitive to spectral information; thus, its imaging process is easily affected by clouds
and weather. Radar can obtain images at day and night, regardless of cloud cover and
weather [54]. When Sentinel-1 data are integrated with Gaofen-1 data, the recognition
of coniferous forests significantly improved compared to using Gaofen-1 alone, with the
overall accuracy and kappa increasing by 1.1% and 0.8%, respectively. From a visual
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perspective, the recognition of coniferous forests appears more comprehensive, indicating
the feasibility of utilizing Gaofen-1 and Sentinel-1 data in combination for extracting
coniferous forests in northwestern Liaoning.

The size of the administrative area of northwestern Liaoning is about 62,885 km2,
accounting for nearly half of the total area of Liaoning Province. Dozens to hundreds of
high-quality remote sensing images covering the study area are required to realize the
coniferous forests extraction task. Traditional methods of downloading and manually pre-
processing remote sensing imagery are time-consuming and computationally demanding,
and are limited by the performance of personal computers. GEE is characterized by its
computational capabilities and vast amounts of data. On the GEE platform, we utilized
deep learning and shallow learning classifiers to identify coniferous forests in northwest-
ern Liaoning using a combination of Gaofen-1 and Sentinel-1 data. These tasks can be
unimaginably burdensome for personal computing devices but can be easily accomplished
with GEE. The only time-consuming tasks are training the deep learning model, collecting
samples for training, and downloading and preprocessing Gaofen-1 images, as Gaofen-1
imagery has not yet been included in the GEE database.

5.3. The Generality of the Proposed Methodological Framework

The forest structure in the study area consists of coniferous and broadleaf forests. In
winter, the broadleaf forests in the study area lose their leaves, while coniferous forests
appear dark green. Based on this phenomenon, we analyzed the spectral separability of
coniferous forests from other land-cover types, including broadleaf forests. It can be seen
in Figure 2 [23] that the spectral curves of coniferous forests from February to April and
November to January are significantly different from those of other objects. Therefore,
we are able to identify coniferous forests accurately from November to April in remote
sensing images.

Liu et al. (2022) [9] employed three machine learning methods (i.e., DNN, SVM, and
RF) and three datasets (i.e., Sentinel-2, Gaofen-1, and Landsat-8 OLI) to extract coniferous
forests in Karaqin Banner of Inner Mongolia, China. The results show that as the spatial
resolution of images increases, the extraction accuracy of coniferous forests also increases.
When adding spectral indexes to these remote sensing images, the extraction accuracy of
coniferous forests using DNN and Sentinel-2 is the highest at 94.4%, and that using RF
combined with Landsat-8 OLI is the lowest at 84.8%. Additionally, Liu et al. (2023) [23]
utilized a deep learning algorithm (U2-Net) and Landsat series remote sensing images
(Landsat-5 TM, Landsat-7 ETM+, and Landsat-8 OLI) to extract coniferous forests in
northwestern Liaoning from 1985 to 2020. The results show that U2-Net has good temporal
transferability and a better performance than shallow learning algorithms (SVM and RF).
In this paper, we employed deep learning algorithms (U2-Net and Resnet-50) combined
with shallow learning algorithms (such as SVM and RF) as the classifier, which is a method
known as MCF, and the results show that the extraction accuracy of coniferous forests
can be further improved compared to any of the classifiers used individually (i.e., U2-Net,
Resnet-50, SVM, and RF).

In summary, MCF performs better than deep learning and shallow learning algorithms
alone in the process of coniferous forest extraction. Therefore, we believe that the MCF
proposed in this paper has the same temporal transferability as deep learning and can be
used for other datasets, as shallow learning algorithms can. It can be seen that the method
proposed in this paper has good repeatability and transferability, and we will conduct
further verification in future research.

5.4. Limitations and Future Work

Gaofen-1 imagery has been freely available since 2019 with good spatial resolution
and revisit time [9]. Experimental results have demonstrated that the combination of
Gaofen-1 and Sentinel-1 yields satisfactory results in the identification of coniferous forests.
Unfortunately, Gaofen-1 data have not yet been included in the GEE database. Currently, we
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can only preprocess Gaofen-1 images by utilizing professional software such as ENVI offline,
which we then upload to GEE Assets—a process that is time-consuming and laborious.
Additionally, the distribution of coniferous forests is affected by both natural and socio-
economic factors. However, the main driving factors affecting the distribution of coniferous
forests and the distribution characteristics of coniferous forests remain unknown, making it
difficult to formulate forest management plans and make informed decisions. As a cloud
computing platform made in China, PIE-Engine [55] will be employed for coniferous forest
extraction in the future as it has collected a vast number of Gaofen-1 images. Driving factor
analysis will be conducted to identify which factors have a significant influence on the
distribution of coniferous forests. To gain insights into the distribution characteristics of
coniferous forests, a statistical analysis will be employed, which can provide baseline data
for decision making and ensure the efficiency of forestry. Furthermore, the majority voting
strategy used in MCF can be replaced by the D-S evidence theory [56] to further improve
the extraction results of coniferous forests.

6. Conclusions

Forests play a vital role in global sustainable development, impacting both the natural
environment and economic prosperity. Coniferous forests are an important forest type,
known for their excellent ability to thrive in arid and barren environments, and they are
widely distributed in northwestern Liaoning. Identifying coniferous forests in a timely
and accurate manner is crucial to government decision-making and the formulation of
forest management strategies. In this paper, a cloud-based multi-classifier fusion algorithm
was proposed to identify coniferous forests in northwestern Liaoning, making use of
both deep learning (U2-Net and Resnet-50) and shallow learning (SVM and RF). The F1
score, precision, recall, OA, and kappa values were 98.1%, 97.9%, 98.3%, 98.6%, and 0.97,
respectively, outperforming any of these classifiers used alone. Multi-source remote sensing
images were utilized in the identification process, combining Gaofen-1 and Sentinel-1
data. The results revealed that incorporating Sentinel-1 data improved identification
performance compared to using Gaofen-1 alone, with an overall accuracy increase of
1.1%. In summary, the methodological framework proposed in this paper can quickly and
accurately extract coniferous forests in the area of northwestern Liaoning, an area with
a semi-arid environment. This provides baseline data for government decision making,
reasonable forest management policy formulation, and the acceleration of the realization of
the United Nations’ Sustainable Development Goals.
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