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Abstract: The carbon sequestration of forest ecosystems plays a pivotal role in constraining global
warming and mitigating climate change. The landscape pattern of forests is being altered due to the
combined effects of climate change and human interference. Furthermore, the relationship between
forest pattern changes and carbon storage distribution in a long time series remains unclear. Therefore,
it is necessary to examine the relationship between forest patterns and carbon density, investigating
the variations and similarities in the changes in carbon density across different modes of pattern
change over time, and suggestions for forest planning were provided from a perspective focused
on pattern change to enhance carbon storage. The Google Earth Engine (GEE) platform’s random
forest model was used to map the spatial distribution of forests in Hunan Province for 1996 and 2020,
followed by analyzing the correlation between the changes in forest patterns using the morphological
spatial pattern analysis (MSPA) and carbon density simulated by the model. Results show that the net
growth rate ((area in 2020-area in 1996)/area in 2020) of the forest in Hunan increased 26.76% between
1996 and 2020. The importance scores for the decade average temperature, short-wave length infrared
band 1 (SWIR-1), and slope were the highest metrics in the model of carbon density, and were 0.127,
0.107 and 0.089, respectively. The vegetation carbon storage in Hunan Province increased by 31.02 Tg,
from 545.91 Tg to 576.93 Tg in 25 years. This study demonstrates that vegetation carbon storage
is influenced by the pattern type in both newly established and pre-existing forests (p < 0.05). The
findings of this study offer empirical evidence to support forest management strategies targeted at
enhancing carbon sequestration.

Keywords: global warming; vegetation carbon storage; Google Earth Engine (GEE); morphological
spatial pattern analysis (MSPA); Hunan province

1. Introduction

Forest ecosystems offer a crucial service for limiting global warming and mitigating
climate change. Global climate change is threatening the worldwide ecosystem due to
human activities, and the rate of the temperature increase is faster than expected [1,2].
Meanwhile, the forest ecosystem plays an important role in preserving the existing carbon
pool and increasing the carbon sink, which is considered to be critical to the restoration of
global warming [3,4]. Therefore, the improvement of forest carbon stock is an important
research topic regarding global climate change.

A nationwide effort is underway to improve the stock of forest carbon through af-
forestation and reforestation [5]. Specifically, the implementation of two policies—returning
farmland to forest and vegetation protection—has led to an increase in the vegetation cov-
erage and a reduction in the fragmentation within forest landscapes, which has caused
landscape pattern changes in forests [6]. However, the long-term consequences of landscape
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change on carbon density and storage remain uncertain. Therefore, accurate estimates
of the long-term carbon stocks of forest vegetation are critically important for effectively
evaluating how landscape pattern change will influence forest carbon dynamics [7].

Forest vegetation carbon stocks can be estimated using three types of methods: the
field-based method, satellite-based method, and process method [8]. Reliable information
about the spatial distribution is fundamental for carbon stock. Field-based methods esti-
mate forest carbon storage with field survey data, such as the stand age, diameter at breast
height (DBH), and height of trees. The area-weighted average was applied when adapting
the regional scale. Based on field surveys conducted from 2011 to 2015 in China, utilizing
regional area data and the corresponding carbon storage weights, the estimated national
forest carbon storage was determined to be 30.83 ± 1.57 Pg C [8]. However, field-based
methods cannot track carbon sink dynamics promptly, nor can they grasp spatial hetero-
geneity within regions. Therefore, remote sensing images with wide coverage that are
economical and timely are another option for carbon stock estimation [9]. The Moderate
Resolution Imaging Spectroradiometer (MODIS), Sentinel series satellite and SPOT series
satellite are some remote sensing data used for AGB estimation widely [10–12]. Landsat
series satellites have become a standard tool for estimating biomass and carbon stocks
due to their long time scales [13]. A study of the Amazon forest using Landsat imagery
from 1984 to 2016 found that the carbon storage of degraded forests was 45.1% of that in
intact forests [14]. A study of the forest carbon density in southern Iran using Landsat data
from 1987 to 2015 demonstrated that the conservation and renewal of damaged forests
is conducive to an increase in carbon density [15]. Therefore, how to use sampling data
combined with Landsat series data to accurately evaluate long-term carbon storage changes
needs to be further studied.

Numerous machine learning models have been widely used to develop remote sensing
estimation models benchmarked with field survey data, including the support vector ma-
chine (SVM) [16,17], maximum entropy (MaxEnt) [18], artificial neural network (ANN) [19]
and random forest (RF). Among them, random forest is an ensemble method used for
classification and regression problems by building decision trees [20], and the good ac-
curacy of RF has been well established [21]. However, previous work focused only on
aboveground biomass, and a correlation between aboveground and subsurface carbon
stocks of vegetation has been suggested.

Consequently, this analysis was conducted to examine the relationship between forest
patterns and carbon density, investigating the variations and similarities in changes in car-
bon density across different modes of pattern change over time. Furthermore, suggestions
for forest planning were provided from a perspective focused on pattern change with the
aim of enhancing carbon storage. Therefore, based on the GEE platform and sample plot
survey data, this study used a random forest model, Landsat series data, climate data, and
topographic data to estimate the vegetation carbon storage in the forest ecosystem of Hunan
province and its relationship with the landscape process, to provide theoretical support for
afforestation and the conversion of farmland to forest to improve carbon storage.

2. Materials and Methods
2.1. Study Area

Hunan province is situated in the middle reaches of the Yangtze River, in central and
southern China. Between the latitudes 24◦38′–30◦08′ N and longitudes 108◦47′–114◦15′ E,
Hunan has a total area of 21.18 × 104 km2, and accounts for 2.2% of China’s land area
(Figure 1). The GDP of Hunan increased from 355.149 billion yuan in 2000 to 3642.578 billion
yuan in 2018, while the per capita GDP increased from 5425 yuan in 2000 to 52.949 yuan
in 2018 [22].
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With a subtropical monsoon climate, the average annual precipitation of the study
area is 1200–1700 mm, and the mean annual temperature is 16–18 ◦C. Under this climate
condition, the vegetation in Hunan is mainly evergreen broad-leaved forest, deciduous
broad-leaved forest, coniferous forest, and bamboo forest, with rich tree species resources
and high forest coverage. In 2021, Hunan Province had 11.91 × 104 km2 of forest, account-
ing for 59.97 percent of the administrative area, according to statistics from the Hunan
Forestry Bureau.

2.2. Land Use Classification of 1996–2020 in Hunan Province
2.2.1. Training and Validation Sample Selection

Land-use types were categorized into two primary classes (forest and non-forest). A
minimum of 600 training samples for each class were chosen with the aid of high-resolution
imagery from Google Earth and fieldwork [23]. The precipitation, tree height, and leaf area
index were used as supporting information for selecting the training samples to improve
the classification accuracy. As a result, 70% of the polygons were used for training the
models, and 30% were used for assessing the accuracy of the models.

2.2.2. Satellite Data Sources and Processing

In Hunan province, Landsat images from 1996 to 2020 were used for land use mapping.
The images were derived from the Landsat 5 TM (1996) and Landsat 8 OLI/TIRS satellites
(2020) with 30 m × 30 m resolution, cloud removal was used for all images. All images were
chosen and processed on the Google Earth Engine (GEE) directly, which is a computing
platform that allows users to run a geospatial analysis on Google’s infrastructure [24].

2.2.3. Land-Use Mapping in Hunan

The land-use classification mapping in Hunan was performed with a random forest
machine learning classifier, also using the GEE platform. Random forest is an ensem-
ble learning algorithm designed to perform classification using an ensemble of decision
trees, each consisting of a randomly chosen set. Since each tree returns a decision, class
probabilities were estimated from the votes [20].

In the GEE, the land use classification by random forest was achieved by invoking
the ee.smileRandomForest function, which required the setting of three parameters: the
number of decision trees to create, the number of variables per split, and the randomization
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seed. Among the parameters, the first two parameters were used to improve the fitting
accuracy, another parameter was used to ensure model reproducibility.

2.2.4. Evaluation of Land-Use Classification Accuracy

The kappa coefficient as shown in Equation (1) was used to verify and evaluate
whether there was a consistency between the predicted and actual results, to test the
accuracy of the classification.

K =
N∑n

k=1 Pkk − ∑n
k=1

(
∑n

i=1 pki∑
n
j=1 pkj

)
N2 − ∑n

k=1

(
∑n

i=1 Pki∑
n
j=1 pkj

) (1)

The symbol K represents the kappa coefficient, while n denotes the total number
of categories. Pkk refers to the number of correct classifications for the k-th sample in
the confusion matrix, ∑n

i=1 Pki and ∑n
j=1 pkj represent the sample size on columns i and j,

respectively. N indicates the total number of samples used for accuracy evaluation.

2.3. Changes in Spatial Patterns of Forest between 1996 and 2020

A morphological spatial pattern analysis (MSPA) method was employed to examine
the changes in forest patterns across Hunan province from 1996 to 2020. The pattern
classes were identified into seven distinct types by MSPA: core, islet, perforation, edge,
loop, bridge, and branch. The core pixels were defined as foreground pixels that have
a greater distance to the background than the given size parameters. Islet pixels refer
to connected components in the foreground that do not contain any core pixel. Bridge
pixels are connector pixels originating from two or more core connected components.
Boundary pixels are unclassified foreground pixels whose distance to the core pixels is
lower than or equal to the given size parameters, outer boundaries as edges and inner
boundaries as perforations. Loop pixels are connector pixels emanating from the same core
connected component. The remaining pixels were classified as branches [25]. The MSPA
was implemented utilizing the GuidosToolbox v3.0 (ISPRA, Rome, Italy) [26], employed
with the forest as the foreground, while the non-forest served as the background. The
MSPA was conducted with a 30 m width of edge and eight neighbor connectivity [27].

2.4. Estimation of Forest Carbon Stocks between 1996 and 2020
2.4.1. Field Survey Data

To obtain the measured value of carbon stock required for establishing the model, 108
and 119 field survey plots were established in 2011 and 2012, respectively. The plots were
evenly distributed across the spatial extent of Hunan Province (Figure 1), consisting of
broadleaf forest (18), coniferous forest (149), mixed needle-width forest (42), bamboo forest
(6), and orchard (12). The height and DBH of each tree in each quadrat were measured, and
the root systems were dug up at the same time. As for the shrubs, three random 2 m × 2 m
plots were placed at each site to harvest and weigh them, and a 1 m2 plot was laid in them
for collecting the herb and leaf litter layer [28].

The total biomass was calculated as the sum of the tree biomass, shrub biomass, herb
biomass and leaf litter biomass. The tree biomass, including the leaf biomass, stem biomass,
and root biomass, was calculated from the tree height and DBH using published growth
equations. The shrub, herb biomass, and leaf litter biomass were directly expressed as their
dry weights [28].

The carbon stock was obtained by multiplying the aboveground biomass by the
carbon conversion coefficients [29], which were calculated based on the measured data, and
converted to density to build a carbon density model. The models were trained using 90%
of the sample plots, while the remaining 10% were used to assess the accuracy of the model.
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2.4.2. Variable Extraction of Carbon Storage Estimation Model

The predictor variables were classified into four categories for the spatial prediction of
carbon density [11,12]: single-band reflectance, topographic variables, vegetation indices,
and climate variables. In order to ensure robust model construction, we incorporated a
wide range of observed variables into these four categories for multiple testing. The final
model consists of the 15 variables below which have been selected based on their highest
contribution and accuracy. Detailed information regarding these predictor variables can be
found in Table 1.

Table 1. Details of Predictor Variables in Model of Carbon Density.

Variables Formula

Single band reflectance Blue (0.45–0.52 µm)
Green (0.52–0.60 µm)
Red (0.63–0.69 µm)

Near infrared band (NIR, 0.76–0.90 µm)
Short-wave length infrared band 1 (SWIR 1, 1.55–1.75 µm)
Short-wave length infrared band 2 (SWIR 2, 2.08–2.35 µm)

Topographic variable Slope

Vegetation indices Normalized difference vegetation index
(NDVI) = (NIR − Red)/(NIR + Red)

Differenced vegetation index (DVI) = NIR − Red
Ratio Vegetation Index (RVI) = Red/NIR

Blue Normalized difference vegetation index
(BNDVI) = (NIR − Blue)/(NIR + Blue)

Climate variable Annual minimum temperature (TMIN)
Total annual precipitation (TAP)

Annual maximum temperature (TMAX)
Decade mean of annual temperature (DMAT)

Single-band reflectance and vegetation variables were derived from the Landsat 5 TM
(1996), Landsat 7 ETM + (2011–2012), and Landsat 8 OLI/TIRS satellites (2020) with
30 m × 30 m resolution, gap fill was used for Landsat 7 only. Climate variables were
obtained from the China Meteorological Data Service Centre (http://data.cma.cn/en).
The topographic variable was obtained from digital elevation data of the Shuttle Radar
Topography Mission (SRTM) [30].

2.4.3. Simulation and Verification of Vegetation Carbon Density in Hunan Province

The vegetation carbon density mapping in Hunan was performed with random forest
in the GEE platform. Finally, 50 trees and 11 variables were selected for RF classification
by performing multiple fits. The coefficient of determination (R2) was used for model
evaluation as shown in Equation (2). Ultimately, the spatial distribution of vegetation
carbon density in Hunan Province in 1996 and 2020 was estimated using the random forest
model’s regression function in GEE.

R2 = 1 − ∑n
i=1(Ci− Ĉi)

2/∑n
i=1(Ci−C)2 (2)

where Ci are observed values, Ĉi are estimated values, C is the average of the observed
values, and n is the number of samples.

2.5. Relationship between Forest Pattern and Carbon Density

A one-way ANOVA was employed to investigate the association between the change
in forest patterns and carbon densities in 2020. A transition matrix was utilized to detect
changes in forest pattern types between 1996 and 2020, which were categorized into two
groups: forty-nine pre-existing forest types (forests present in both 1996 and 2020) and
seven newly added forest types (areas that were non-forest in 1996 but became forested by

http://data.cma.cn/en
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2020). A total of 10,000 spatially balanced points were randomly generated in each type, to
analyze the association between different forest patterns and carbon densities in 2020. Due
to the non-homogeneity of variance, the Kruskal–Wallis test for intra-group differences
was applied, followed by multiple comparisons using the Nemenyi test, implemented by
packages PMCMRplus in R 4.1.2.

3. Results
3.1. Accuracy Assessment of Land Use

A confusion matrix between the validation data and the classification result was
calculated. In 1996 and 2020, the overall accuracy (OA) of the classification result was
greater than 90%, and the producer’s accuracy (PA) and user’s accuracy (UA) of the forest
were all exceeding 80% (Table 2). The results indicated the precision and dependability of
the classification results.

Table 2. Forest classification accuracy of Hunan Province in 1996 and 2020.

Year Kappa Producer’s Accuracy User’s Accuracy Overall Accuracy

1996 0.79 87.6% 80.92% 91.77%
2020 0.80 86.7% 85.34% 91.82%

3.2. Evolution of Hunan’s Forest Spatial Patterns

The statistical result of the forest spatial distribution in Hunan Province in 1996 and
2020 (Figure 2) shows that the net growth rate of the forest in Hunan increased 26.76%
between 1996 and 2020, from 8.25 × 104 km2 to 11.27 × 104 km2.
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In 2020, the four cities with the largest forest area in Hunan Province were Huaihua
(1.88 × 104 km2), Yongzhou (1.27 × 104 km2), Chenzhou (1.24 × 104 km2), and Shaoyang
(1.13 × 104 km2), concentrated in the west, south, and southwest of Hunan Province
(Figure 3). The forest areas of cities in Hunan were also counted at various times. The
results showed that the forest areas of all cities in Hunan increased between 1996 and 2020.
Of those, the city with the most forest growth was Huaihua (4.99 × 103 km2), located in
the southwest of the province. Followed by Yongzhou (4.04 × 103 km2), which is in the
southern region. Similarly, the cities with the highest proportion of newly added forests
were Chenzhou and Yongzhou, which were 22.98% and 18.9%, respectively.
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Figure 3. Forest areas in cities of Hunan in 1996 (green pillar) and 2020 (orange pillar) and proportion
of newly added forest in the area of the urban administrative region (line chart).

The seven forest landscape types of Hunan province in 1996 and 2020 were obtained
based on the classification of forest patch types from the MSPA method (Figure 4). The
number of different morphological types showed that the proportion of the core area
increased from 21.9% in 1996 to 34.17% in 2020, increased by 25,893.58 km2 for 25 years.
The change in islet pixels was extremely low for Hunan, from 1.83% in 1996 to 1.66% in
2020. For the three connectors, including the bridge, loop, and branch, the percentage was
very small. The increases in the edge area, loop, and branch were simultaneous with the
increase in the core area. On the contrary, the bridge decreased by 1330.53 km2.
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The areas transferred between different types were obtained from the transfer ma-
trix (Figure 5). The primary type core in 1996, except 79.65% that remained unchanged,
was mainly converted to background (7.30%) by 2020, followed by the edge (4.68%) and
loop (4.31%). For the core in 2020, the transformation mainly occurred in the background,
accounting for 24.50% of the core area of 2020, followed by the bridge (4.72%) and perfora-
tion (3.83%).
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3.3. Spatial Distribution of Carbon Density in Hunan Province
3.3.1. Random Forest Modeling for Carbon Density

The spatial distribution analysis of the actual carbon density plots at the test sites
reveal that the average carbon density of the test sites was 4.83 kg/m2. At the same time,
the minimum carbon density recorded was 0.48 kg/m2, observed in a coniferous plot
situated in the northeastern region of Hunan Province, while the maximum value reached
12.128 kg/m2, observed in a mixed forest plot located in the southeastern part of the
research area. Through the comparison of the actual carbon density values and calibration
data of modeling using formula 2, the random forest regression model used to estimate the
forest carbon density generated by the GEE platform was accurate with a 0.73. Therefore,
the values of carbon density estimated from the random forest model could be suitable for
estimating carbon density and carbon storage in Hunan province.

The final random forest regression model generated by the GEE contained 15 variables.
All importance scores of variables were normalized (Figure 6). From the result of the
importance score, the BNDVI, and DVI were the most helpful vegetation indices for the
carbon storage of forests in Hunan. As for spectral bands, the two most contributing
bands were the SWIR1 and SWIR2. Among the climatic factors, the decade mean of
annual temperature (DMAT) and total annual precipitation (TAP) were the most significant
variables. In general, the importance scores for the DMAT, SWIR 1, slope, and TAP were the
highest metrics, the least were the annual minimum temperature (TMIN), annual maximum
temperature (TMAX), blue band, and green band.
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3.3.2. Spatial Distribution of Carbon Density

The spatial carbon density in Hunan between 1996 and 2020 was estimated from the
random forest in the GEE platform (Figure 7). In 1996, the maximum and minimum ranged
from 1.78 kg/m2 to 11.15 kg/m2 with a mean carbon density of 6.94 kg/m2. As of 2020, the
carbon density ranged from 4.04 kg/m2 to 7.80 kg/m2, with a mean density of 5.12 kg/m2.
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After converting to carbon storage, the vegetation carbon storage in Hunan Province
increased by 31.02 Tg, from 545.91 Tg to 576.93 Tg in 25 years.

3.4. Relationship between Forest Pattern and Carbon Density

The carbon density corresponding to the MSPA type of forest was obtained and a
one-way analysis of variance was performed. The results show that the carbon density in
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the islet area was significantly higher than that in other types of areas (Figure 8a), followed
by pixels of the edge, branch, and core. In contrast, the carbon density of the perforation
was significantly lower than that of all other types. In addition, there was no significant
difference between the carbon density of the loop and bridge pixels.
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The relationship between the carbon density and pattern type following the conversion
from non-forest to forest was also examined for the period spanning 1996 to 2020 (Figure 8b).
The findings revealed significant variations in carbon density among different forest types
(p < 0.05). Specifically, the islet and perforation exhibited significantly higher and lower
carbon densities, respectively, compared to other forest types within the newly established
forest area. Meanwhile, the differences between the branch and edge, as well as between
the core, bridge, and loop were not statistically significant.

4. Discussion
4.1. The Platform of the Google Earth Engine

The land use classification and carbon density modeling in Hunan Province between
1996 and 2020 were performed in a random forest model, based on the remote sensing
platform of the Google Earth Engine (GEE), promptly and precisely. According to the field-
work and Google high-resolution imagery, the overall accuracy of the forest type exceeded
80%, indicating that the results of the forest spatial distribution in Hunan were accurate
and reliable (Table 2). Simultaneously, the carbon density model was also more accurate
than 0.7, showing that the model was capable of estimating the spatial distribution of the
forest carbon density in Hunan Province. Therefore, the integration of the random forest
algorithm and GEE platform can effectively facilitate the analysis of the spatial distribution
and carbon density changes in forests. We considered orchards in the research object,
considering that orchards are also trees with a carbon sequestration function. Moreover,
in the primary classification of land use, the machine learning model was more likely to
identify orchards as forests than farmland. For the accuracy of the carbon storage mode,
we regard orchards as an agroforestry system.

The GEE is a free and cloud-based computing platform, which allows data browsing
and processing online [31]. Besides, the data catalog of the GEE encompasses not only
remote sensing satellites, but also includes climate and weather datasets and geophysical
datasets [24]. However, the meteorological data available for this study were primarily
global in scale and exceed our requirements [32]. Therefore, we opted for an offline–online
hybrid approach whereby the data was processed using QGIS v3.8 (Eastern Cape, South
Africa). before being uploaded to the GEE platform for analysis.
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Random forest, a nonparametric ensemble modeling approach that is resistant to over-
fitting, constructs multiple small regression trees that contribute to predictions, insensitivity
to noisy data in training datasets, and is capable of handling noise and large datasets [20,33].
The random forest algorithm has become a widely adopted approach for estimating carbon
stocks, and has been seamlessly integrated into the GEE platform.

4.2. The Factors of the Forest Carbon Density Model

Our results indicate that climatic factors play a role in estimating the carbon stock of
forests in Hunan (Figure 6). The spatial pattern of the carbon density is strongly correlated
with climate variables and has been well established [34]. Temperature is frequently
linked to plant metabolism, which in turn affects growth and respiration rates, ultimately
impacting forest productivity and carbon storage [35]. Meanwhile, precipitation has been
shown to be remarkably well correlated with carbon density [36]. The slope is an important
factor that affects plant growth and development, because the variation in slopes has an
impact on the angle of incidence and reflectivity of solar radiation [37,38].

The order of importance of the original bands in the model varies with the forest
structure [39]. The short-wave infrared 1 (SWIR1) band is the most important of all the
original bands in this study. In a Brazilian study, the fit degree of the biomass model
involved in the SWIR band was the highest [40]. The red and near-infrared bands, despite
their low importance in the model, were the main bands of the vegetation index (Figure 6).

The normalized difference vegetation index (NDVI) [41] is the most widely used vege-
tation index, which has a sensitive response to green vegetation and vegetation change [42].
The blue normalized difference vegetation index (BNDVI), modified based on the NDVI
with different visible spectra, is determined by the concentration of chlorophyll [43,44].
The ratio vegetation index (RVI) is based on the principle that red light is preferentially
absorbed by leaves compared with infrared light [45]. The difference vegetation index
(DVI) is capable of distinguishing vegetation from soil background information [46].

4.3. Forest Pattern and Carbon Density in Hunan Province

The MSPA has been widely used for various purposes such as mapping spatial pat-
terns, landscape connectivity, and indicating forest ecosystem quality. The results of
a morphological spatial pattern analysis (MSPA) provide spatially explicit information
regarding the pattern and composition of landscapes, in contrast to the conventional frag-
mentation analyses [47,48]. The analysis results of the MSPA (Figure 4) showed that the
proportion of core in the research area had witnessed a steady increase (21.94% in 1996
to 34.17% in 2020), suggesting a reduction in forest landscape fragmentation levels in
Hunan [49]. Simultaneously, the perforation and edge are boundary pixels, situated at a
certain distance from the core pixels. The proportion of perforation and edge also exhibited
an upward trend throughout the study, which may suggest an increase in the initiation
of forest landscapes [50]. On the contrary, the islet proportion had experienced a decline
(1.83% in 1996 to 1.66% in 2020) and may face encroachment due to urban expansion [51].
The pixels associated with the core pixels are called junctions and include loops, bridges,
and branches. Of these, the proportion of bridges, which serve as connectors linking
different core areas, had decreased while the proportions of the remaining two types had
increased, suggesting that although the core area of Hunan Province had expanded, urban
development would be likely impeding connectivity between forest patches.

The forest’s carbon sequestration function is closely linked to temporal changes in
landscape patterns. The investigation of the interplay among landscape configurations,
processes, and ecological functions has always been a fundamental issue in the fields of
landscape ecology and forest management [50]. This study demonstrates that vegetation
carbon storage is influenced by the pattern type in both newly established and pre-existing
forests (Figure 8a,b). Due to the forest margin effect and the forest window effect, the carbon
density of pattern types at the outer forest margin surpasses that of both the core area and
inner forest margin. The forest edges typically exhibit a greater abundance of pioneer and
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xeric plant species compared to the interior, along with higher densities of shrubs and
herbaceous ground layer vegetation extending several meters into the forest, as well as a
higher level of species richness than the interior. However, vegetation in marginal areas is
more vulnerable to wind and human activity, so it is also necessary to protect or restore
large core areas [52]. These findings provide valuable data for informing afforestation and
reforestation planning.

5. Conclusions

This study examined the relationship between changes in forest landscape patterns and
carbon density or carbon storage over a long time series. The random forest model in the
GEE platform and an MSPA method were employed to assess alterations in the spatial distri-
bution and patterns of forests in Hunan Province between 1996 and 2020. Over 25 years, the
forest area in Hunan Province increased from 8.25 × 104 km2 to 11.27 × 104 km2, with an
expansion observed in core areas while isolated island areas decreased. By integrating point
data, remote sensing data, climate data, and terrain data through a regression algorithm
within the random forest model on the GEE platform, we obtained a vegetation carbon
density model for Hunan Province. Furthermore, we estimated vegetation carbon storage
for both 1996 and 2020. The variance analysis of vegetation density across different forest
pattern types revealed significant differences in carbon density. We expect the findings of
this study to offer empirical evidence to support forest management strategies targeted at
enhancing carbon sequestration.
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