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Abstract: Variability in the effects of disturbances and extreme climate events can lead to changes in
tree cover over time, including partial or complete loss, with diverse ecological consequences. It is
therefore critical to identify in space and time the change processes that lead to tree cover change.
Studies of change are often hampered by the lack of data capable of consistently detecting different
types of change. Using the Landsat satellite record to create a long time-series of land cover and
land cover change, the U.S. Geological Survey Land Change Monitoring Assessment and Projection
(LCMAP) project has made an annual time series of land cover across the conterminous United
States for the period 1985 to 2018. Multiple LCMAP products analyzed together with map validation
reference plots provide a robust basis for understanding tree cover change. In LCMAP (Collection
1.2), annual change detection is based on harmonic model breaks calculated at each Landsat pixel
from the Continuous Change Detection and Classification (CCDC) algorithm. The results showed
that the majority of CCDC harmonic model breaks (signifying change) indicated partial tree cover
loss (associated with management practices such as tree cover thinning) as compared to complete
tree cover loss (associated with practices like clearcut harvest or fire disturbance). Substantially fewer
occurrences of complete tree cover loss were associated with change in land cover state. The area of
annual tree cover change increased after the late 1990s and stayed high for the rest of the study period.
The reference data showed that tree harvest dominated across the conterminous United States. The
majority of tree cover change occurred in evergreen forests. Large estimates of disturbance-related
tree cover change indicated that tree cover loss may have previously been underreported due to
omission of partial tree cover loss in prior studies. This has considerable implications for forest
carbon accounting along with tracking ecosystem goods and services.

Keywords: change processes; tree cover change in condition; disturbances; CCDC; LCMAP

1. Introduction

Information on the patterns of tree cover change associated with forest disturbances
and interannual climate variability is essential for the effective management and conserva-
tion of tree-dominated ecosystems [1,2] and tracking carbon stock fluxes [3–6]. Historical
land use knowledge can also often be important in understanding the above contemporary
ecosystems [7,8]. Depending on the type and intensity, the effects of disturbances and
extreme climatic events can vary greatly [9–11] and hence lead to either changes in tree
cover state or condition. In forested environments, the nature of change process and the
accompanying type of change influence multiple ecosystem services [12–14], including
tree-held carbon [15,16], biodiversity [12], hydrological services [17] and macro- and micro-
climate regulation [18,19]. Here, we consider disturbances as events that alter the forest
environment, thereby engendering changes in species composition, ecosystem structure
and carbon budget. Thus, change processes are the immediate causal agents driving dis-
turbance events, and these include fire, logging, insect outbreaks, landslides, windstorms
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and drought events [5,20]. In addition to altering the distribution, composition, structure
and function [21,22], the nature of change process also influences the trajectory of forest
responses to disturbances [23–26]. Thus, in the study of forest disturbances, identifying not
only the causal agents but also where these events lead to either complete or partial loss of
tree cover is important.

However, studies of change are often hampered by the lack of data products capable
of detecting both types of change consistently in space and time [27]. Time-series analyses
of satellite remote sensing data enable the investigation of changes in an ecosystem’s state
and condition resulting from various disturbances [28–31]. For instance, methods such
as the Landsat-based detection of Trends in disturbance and recovery (LandTrendr) [32]
and Vegetation Change Tracker (VCT) [33] algorithms utilize annual time series Landsat-
derived spectral indices to detect disturbances. Nonetheless, it is much more challenging to
detect and assess change in condition because the changes are mostly muted and of lower
magnitude, resulting in more subtle spectral changes [34–36]. What makes a remote sensing-
based study of change in condition even more challenging is the paucity of reference data
to validate the changes detected.

The U.S. Geological Survey (USGS) through its Land Change Monitoring, Assessment
and Projection (LCMAP) project developed a suite of data products for characterizing land
cover and land surface change across the United States. In particular, multiple LCMAP
products can be integrated to investigate not only land cover-type change but also change
in land cover condition, thus making LCMAP products suitable for investigating both types
of change. In LCMAP (Collection 1.2), change detection is based on model breaks from the
Continuous Change Detection and Classification (CCDC) algorithm applied to the Landsat
archive [37,38]. The LCMAP project has the unique advantage of having a vast collection
of high-quality map validation reference datasets sampled across the entire conterminous
United States (CONUS). The availability of the reference dataset detailing annual land cover
and change as well as change agents provides a unique capacity for investigating both tree
cover conversion and tree cover change in condition over a multi-decadal period across the
CONUS. In this study, we explored linkages among LCMAP tree cover change, spectral
segment break change and reference dataset tree cover change and change processes to
better understand the types and the patterns of tree cover change across the CONUS for
the study period 1986–2018 (Figure 1). Our study objective was to characterize tree cover
change by major change processes across the CONUS during the study period by analyzing
change in both LCMAP map products and reference dataset. Our research questions were:

1. What proportions of CCDC harmonic model breaks in tree cover were tree cover
conversion or change in tree cover condition (partial tree cover change)?

2. How accurate was the CCDC harmonic model in detecting change in tree cover over
the CONUS?

3. How did the CCDC harmonic model breaks differ by forest type?
4. What was the distribution of different change processes affecting tree cover in the

CONUS during the 1986–2018 study period?
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Figure 1. LCMAP Primary Land Cover (2000) [38] indicating the four mega-regions of CONUS (black
boundary). Points on map are location information from the map validation reference data showing
the distribution of change processes affecting tree cover change during 1986–2018.

2. Materials and Methods
2.1. Study Area

A two-step spatial scale was used for the study area. The largest geographic area
is the entire conterminous United States (CONUS). This area is broken down into four
“mega-regions” based on assemblies of U.S. Environmental Protection Agency Level III
ecoregions (a 1999 version) that were used in the USGS’ Land Cover Trends project [39,40].
The four mega-regions are almost exactly the same as the large region assemblies used in
USGS Professional Paper 1794 [41] and its sub-parts [42–45].

2.2. Data
2.2.1. Land Cover and Land Change Dataset

Land cover and land change data at an annual frequency provided the temporal speci-
ficity to explore the location and timing of change. We obtained annual land cover and land
surface change products of LCMAP Collection 1.2 from the USGS Earth Resources Observation
and Science (EROS) Center. Thirty-meter resolution LCMAP products are based on the USGS
implementation of the Continuous Change Detection and Classification (CCDC) algorithm [29]
on the Landsat archive (Collection 1) to monitor land cover and land cover change [37,38].
The LCMAP product suite has ten science products (https://www.usgs.gov/centers/eros/
science/usgs-eros-archive-lcmap-continuous-change-detection-classification-v12-ccdc, ac-
cessed on 15 March 2023), comprising five spectral change and five landcover products, as
shown in Table 1.

More information on the LCMAP datasets as well as USGS implementation of CCDC
can be found in Brown et al. [38]. In this study we used LCPRI, LCACHG, SCTIME and
SCMAG (Table 1).

In this study, Tree Cover refers to one of the eight land cover classes in the land
cover legend of the LCMAP annual LCPRI product, which is often called “forest” in other
mapping efforts. LCMAP defines the tree-cover class as a vegetated land containing 10% or
greater tree cover. The LCACHG product provides an indicator of annual land cover change
by each of the eight land cover classes. The LCMAP Collection 1.2 land cover product
was validated using 26,971 independently collected reference plots distributed across the

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-lcmap-continuous-change-detection-classification-v12-ccdc
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-lcmap-continuous-change-detection-classification-v12-ccdc
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CONUS. The validation was conducted for each year in the time series and summarized
to obtain overall accuracy across all years. Aside from the CONUS, the validation was
also conducted for the four mega regions, namely west, west central, east central and
east [46,47]. The primary land cover exhibited consistently high classification accuracy
throughout the time series, with 82.6% overall accuracy across all years [46].

Table 1. LCMAP products dataset. Products used in this study are shown in bold text.

LCMAP Product Name Short Name Product Description

Spectral change products

Time of Spectral Change SCTIME Indicator of a spectral change in the current year and the specific
timing (day-of-year) within the year.

Change Magnitude SCMAG Indicator of a spectral change in the current year and degree of change.

Spectral Stability Period SCSTAB Time, in days, that the spectral time series has been in its current state.

Time Since Last Change SCLAST Time, in days, since the last identified Spectral Change (SCTIME).

Spectral Model Quality SCMQA Information regarding the type of time series model applied to the
current year.

Land cover products

Primary Land Cover LCPRI The most likely Level-1 land cover class.

Primary Land Cover Confidence LCPCONF Measure of confidence that the Primary Land Cover label matches the
training data.

Secondary Land Cover LCSEC The second most likely Level-1 land cover class.

Secondary Land Cover Confidence LCSCONF Measure of confidence that the Secondary Land Cover label matches
the training data.

Annual Land Cover Change LCACHG Synthesis of Primary Land Cover of current and previous year
identifying changes in land cover class.

2.2.2. LCMAP Reference Dataset

The LCMAP reference dataset was used to evaluate map-derived change in tree cover
as well as to provide a summary of their associated change processes. LCMAP has a spatial
database of reference dataset (https://www.sciencebase.gov/catalog/item/5e42e54be4
b0edb47be84535, accessed on 15 March 2023) obtained through visual interpretation of
high-resolution imagery along with an ancillary dataset by trained interpreters using a
Landsat time series visualization and data collection tool called TimeSync [47–49]. This
reference dataset consists of just under 25,000 plots (size of a Landsat pixel, 30 m × 30 m)
randomly selected across CONUS for the years 1984–2018. An additional 2000 reference
samples were selected from the LCACHG maps derived from leading types of change
found in the reference dataset and binned into four strata of types of change. For each
plot, the dataset has detailed descriptions of dominant and secondary land cover/land-use
change (if any) and change processes that affect the plot area. Change processes include fire,
harvest (clearcutting, thinning), mechanical, structural decline, spectral decline, wind/ice,
hydrology, debris, growth/recovery, stable and others. To ensure consistency and quality
data, the process for acquiring the dataset incorporates well-defined quality assurance and
quality control procedures [37,47].

2.3. Methods

Detection of tree cover conversion and tree cover change in condition
To monitor tree cover change comprising both tree cover conversion and tree cover change

in condition, we relied on the LCMAP data products. In this study, tree cover conversion or tree
cover loss denotes complete loss of tree canopy cover resulting from change processes including
harvest, fires and land use change. Thus, tree cover conversion or tree cover loss is explicitly
identified in the calendar year when a reference plot of tree cover class (class 4) changed to

https://www.sciencebase.gov/catalog/item/5e42e54be4b0edb47be84535
https://www.sciencebase.gov/catalog/item/5e42e54be4b0edb47be84535
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another land cover type. Tree cover change in condition or partial tree cover change denotes
partial loss of tree canopy cover resulting from various change processes, usually of a lower
intensity. Thus, we use the term “tree cover change in condition” or partial tree cover change
to describe a change in tree cover condition without a tree cover conversion [28]. Tree cover
change in condition can result from several change processes including harvest, structural and
spectral decline, fire and other disturbances that reduce tree canopy cover but not to below the
10% threshold adopted in the LCMAP classification of the tree cover class.

In LCMAP (Collection 1.2), change detection is based on time-series model breaks
from the CCDC algorithm applied to the Landsat archive [37,38]. When applied to all
available cloud-free surface reflectance measurements, the CCDC computes a time series
model for the spectral response of each Landsat pixel and detects change based on observed
divergence from the model predictions [29,50]. Divergence from the time-series model,
referred to as model break, could result from abrupt change (such as logging, wildfire
and land use conversions) or from gradual change in the spectral signal (such as forest
regrowth, drought and insect/pest attacks) [38].

Following Brown et al., 2020 [38], Figure 2 is an illustration of CCDC change detection
for a forested pixel that experienced both tree cover conversion and tree cover change in
condition during the study period. In this figure, the green dots are the surface reflectance
measurements from two Landsat spectral bands, the red and the short-wave infrared
(SWIR) 1, used to derive the actual CCDC models. Smaller gray dots represent masked
out reflectance values due to poor data quality. The orange lines represent the CCDC time
series models generated by estimating the surface reflectance values. The purple vertical
lines indicate dates of model breaks [38]. In this example, the pixel experienced tree cover
conversion or complete tree cover loss resulting from clearcut harvest in 1988 and 2015,
the latter of which is shown in the Landsat images to the right. In 1999 and 2005, the pixel
also experienced tree cover change in condition or partial tree cover loss resulting from
thinning harvest. For this forested pixel, the spectral discontinuities are clearly observed in
both Landsat bands when the disturbance events occurred (Figure 2).
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the white box on the Landsat images to the right, in true color composite) that experienced both tree cover
conversion and tree cover change in condition during the study period. Spectral information is shown for
the short-wave infrared (SWIR) 1 and red bands from Landsat 4, 5, 7 and 8 data. Figure adapted from [38].
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2.3.1. Proportions of CCDC Harmonic Model Breaks That Were Tree Cover Conversion or
Change in Tree Cover Condition (Partial Tree Cover Change)

For each calendar year, we identified tree cover change in condition by selecting
reference plots of tree cover pixels with Spectral Change Magnitude (SCMAG) values
greater than zero for which the corresponding Annual Land Cover Change (LCACHG)
indicated no class change before and after the CCDC harmonic model break. We then used
the Time of Spectral Change (SCTIME), which has the time of change information per the
CCDC harmonic model break, to identify the day (and the year) of change for each changed
reference plot. Plots with tree cover to grass/shrub transitional segments do not have day
of change information in the SCTIME product because the transition is more gradual with
no one specific time [37]. This analysis does not include those gradual changes, and as
such, tree cover change for each calendar year consists of change identified by only the
CCDC harmonic model breaks.

To obtain time-series model breaks in tree cover class, we selected CCDC harmonic
model breaks (i.e., both SCMAG and SCTIME values greater than zero) in the annual time
series maps matching the same type of change in the reference dataset during the study
period. We summarized the total number of CCDC harmonic model breaks involving tree
cover class. We then partitioned the time-series model breaks in tree cover that were either
tree cover conversion or change in condition. Based on reference data change processes,
change in condition was further separated into whether it was disturbance-driven, growth
or recovery-related or stable. A flowchart summarizing the entire process for obtaining
the CCDC harmonic model breaks that were tree cover conversion or change in tree cover
condition is provided in the Supplementary Materials (SM), Figure S1.

2.3.2. Accuracy of CCDC Harmonic Model Breaks in Detecting Change in Tree Cover

The accuracy of the CCDC algorithm for detecting a type of change in tree cover was
analyzed using the reference plots. We evaluated the accuracy of the LCMAP map-based
tree cover change by comparing change detected by CCDC time-series model breaks with
change captured in the reference dataset across CONUS during the study period. The map
and reference comparisons were based on the exact location of the reference points and
their correspondent pixel values. We used the confusion matrix to evaluate the change
accuracy by comparing the change type of the reference plots with those found by the
LCMAP map products. The overall accuracy, user’s accuracy and producer’s accuracy
were used to evaluate the change results.

2.3.3. CCDC Harmonic Model Breaks by Forest Type

We relied on the USGS-led National Land Cover Database (NLCD) land cover maps [51]
to identify forest types corresponding to time-series model breakpoints in tree cover class
(Figure S1). The NLCD version 2019 used in this study had land cover maps for the years
2001, 2004, 2006, 2008, 2011, 2013 and 2016. Thus, our identification of forest types was
based on the NLCD maps for those years. This version of NLCD has three forest types,
namely deciduous, evergreen and mixed forests. To obtain the proportions by forest type,
we added up time-series model breaks for all years and then expressed a final percentage
of each category. We note that the NLCD forest types may change over time for a specific
reference plot or that the NLCD class may not be forest at the time of the LCMAP SCMAG
change because of their multi-year intervals.

2.3.4. Distribution of Change Processes Affecting Tree Cover

We used the reference data to identify change and change processes in reference and
to evaluate change identified in maps.

All analyses were performed in the R programming environment (version 4.3.2,
R Core Team, 2023).
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3. Results
3.1. Proportions of CCDC Harmonic Model Breaks That Were Tree Cover Conversion or Change in
Tree Cover Condition

A substantially higher number of CCDC harmonic model breaks concerning tree cover
were change in tree cover condition. Figure 3A shows the overall proportions of model
breaks corresponding to reference plots. Out of all the reference plots indicating change
in tree cover, 27.2% and 72.8% of the time-series model breaks were tree cover conversion
and change in tree cover condition, respectively. Figure 3B indicates that most of the
changes in tree cover condition were either stable (35.3%) or disturbance related (27.8%),
and nearly 10% identified as growth or recovery related. The “stable” in the reference
change processes denotes disturbance so slight that it really may not be easily seen and
agreed upon as a change by the reference data analysts. In this study, because we were
interested in categorizing change under only two types (tree cover conversion or tree cover
change in condition), reference plots with stable change processes were considered as
change in condition. We also note that individual reference plots can have more than one
such time-series model break, for instance thinning early and tree cover conversion later;
thus, each such change was grouped into those categories. Although a few reference plots
with stable change processes indicated a class change to tree cover gain, those changes
were not captured by the CCDC harmonic model breaks.
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Figure 3. (A) Overall proportion of CCDC harmonic model breaks corresponding to reference plots
that were either tree cover conversion (TCC) or change in tree cover condition for 1986–2018 study
period; (B) separation of identified CCDC harmonic model breaks into either disturbance related
or not. Note: dCondition = change in condition; TCC Loss = tree cover conversion resulting in tree
cover loss; TCC Gain = tree cover conversion resulting in tree cover gain.

Figure 4 shows the annual number of CCDC harmonic model breaks corresponding to
reference plots that were related to the tree cover conversion during the 1986–2018 study
period. The number of time-series breakpoints peaked around 1999 and 2000. The number
of time-series breaks was moderately high in the 2000s and ticked up again towards the
end of the study period. Time-series breakpoints related to tree cover conversion were high
in the early part of the study period into the mid-1990s but came down moderately and
fluctuated within a narrow range in the 2000s until the end of the study period. Breakpoints
related to tree cover change in condition generally increased from the beginning to the end
of the study period, although there were annual fluctuations especially after the year 2000.
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3.2. Accuracy of LCMAP Data Products for Detecting Disturbances in Tree Cover

The overall accuracy of LCMAP for capturing either a tree cover conversion or a
change in condition of tree cover was 69.44%. The user’s accuracy (UA) and producer’s
accuracy (PA) were 45.61% and 82.63%, respectively, for tree cover conversion (Table 2).
The UA and PA were 91.24% and 64.72%, respectively, for tree cover change in condition.

Table 2. Confusion matrix of LCMAP-based tree cover change generated by comparing change
detected by CCDC harmonic model breaks with change captured in the reference dataset.

Reference

Predicted Tree Cover
Conversion

Change in Condition
(Partial Tree Cover Change) Total User Accuracy (%)

Tree Cover Conversion 628 749 1377 45.61
Change in Condition

(Partial Tree Cover Change) 132 1374 1506 91.24

Total 760 2123 2883
Producer Accuracy (%) 82.63 64.72
Overall Accuracy (%) 69.44

3.3. CCDC Harmonic Model Breaks by Forest Type

Figure 5 shows the distribution of tree cover-linked CCDC harmonic model breaks by
forest type per NLCD landcover (2019 version) for the years when maps were available
during the study period. As indicated in Figure 5A, most of the CCDC harmonic model
breaks were detected in evergreen forest (57.5%), followed by grasslands/herbaceous
(19.3%), mixed forest (9.3) and deciduous forest (5.5%). When considering the CCDC
harmonic model breaks just for the three forest classes, 79.5% were detected in evergreen
forest, 12.8% in mixed forest and 7.6% in deciduous forest (Figure 5B). The large number of
CCDC harmonic model breaks corresponding to the grasslands/herbaceous class is likely
due to errors in agreement between NLCD and LCMAP and/or mismatch in dates of tree
cover changing events.
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3.4. Distribution of Change Processes Affecting Tree Cover

Analysis of the reference data change processes indicate that overall, across the
CONUS, harvest dominated the change process (42.7%), followed by stable (35.7%),
growth/recovery (14%), fire (4.2%) and other (3.4%) (Figure 6A). There were interan-
nual variation in the dominance of change processes (Figure 6B). There was also regional
variability in the types of change and change processes that were associated with tree
cover disturbances (Figure 7). The reference dataset indicates that across the four CONUS
mega-regions, leading change processes were harvest in the east and east-central regions
(Figure 7A,C), while wildfires and harvest dominated in the west (Figure 7B). In the west,
harvest used to dominate but wildfires picked up from the 2000s and were elevated to the
end of the study period (Figure 7B). In the east, the predominance of harvest was evident
throughout the study period (Figure 7A). A substantial proportion of the time-series model
breaks were identified as stable, and this change process dominated for many years in all
the mega-regions, especially in the west and west-central (Figure 7B,D).
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4. Discussion

Our study documented a substantial amount of change in tree cover condition in
tree-dominated areas across the CONUS during the study period. Large estimates of
disturbance-related tree cover change in condition indicate that tree cover loss estimates
based only on tree cover conversion (complete tree cover loss) are likely under-reporting,
with considerable implications for forest carbon accounting and other ecosystem goods
and services. Moreover, identification of change processes causing disturbances is cru-
cial for reporting effects of forest change and for characterizing forest dynamics, carbon
consequences, sustainable forest management and long-term functioning of forest ecosys-
tems [34,52,53]. The LCMAP map validation reference data indicated that although change
processes varied spatially and temporally across regions, tree harvest dominated overall.

The NLCD land cover showed that over half of all CCDC harmonic model breaks
occurred in evergreen forests when all NLCD land cover classes were included. This
observation indicates that across CONUS, forest change, both in state and condition, is
happening more in evergreen forest than deciduous forest. The reasons why evergreen
forests have more change happening to them is because (1) softwood species are the basis
for U.S. industrial wood consumption compared to hardwoods, (2) evergreen forests in the
west are more prone to fire because of generally less moisture than most eastern forests,
although southern pine forests can certainly and do burn on occasion and (3) western
evergreen forests also appear to show more stress indicators from their environment
because most are found in drier areas than eastern deciduous forests.

The mapping, with correct labels, of land cover change is more difficult, especially when
mapping large areas, than mapping the land cover composition of multiple classes [49,54]. In
the CONUS, most individual land cover pixels do not change in any given year; in fact, most
have not changed in land cover class in 15 years [55] or altogether over 30 years [49]. Even
a change metric such as “Change/No Change” is highly influenced by the non-changing
pixels [54]. The widely used USGS NLCD had a PA of 74 (±3) % for “forest loss” for their
2011–2016 change mapping accuracy and a UA of 75 (±8) %. Their accuracy efforts for
“forest loss” were determining if a forest class pixel had changed to a non-forest class pixel.
Our effort in this work was not only to see how well class change had been captured but to
determine the accuracy of change in tree cover condition; thus, our accuracy of change was
similar to other large-area operational mapping programs.

Forest land ownership played an important role in tree cover disturbances during our
study period in the CONUS. Regionally, the U.S. forests outside of Alaska are commonly
divided up as the south, north and the west [56]. The west, primarily the sub-region of the
Pacific Northwest, at the beginning of the study period was the leading wood-producing
region in the United States by volume, specializing in using timber coming from publicly
owned national forests that was often from still-existing old-growth trees [56,57]. The U.S.
south had the largest forestry industry by geographic extent but because most of its existing
and growing trees were smaller and younger, the region produced less wood volume
from its harvesting. The CONUS north was in a distinct third place after the two other
regions [56].

Governmental policy started to change substantially in the late 1980s for publicly
owned national forest land in the west as growing concerns about the declining amounts of
old growth forest in the Pacific Northwest sparked the “Spotted Owl controversy” (listing
this bird, Strix occidentalis caurina, on the federal endangered species list) that helped closed
off almost all such older forests to widespread harvesting [57,58]. The environmental
aspects of tree-covered land besides the wood it could produce for human use gained
traction in the 1990s and most public forest land in the west ended up with greatly reduced
timber harvesting events [57]. These decisions are reinforced by documentation that
showed timber harvest from many of the western national forests in the Rocky Mountain
sub-region was not cost effective, given that the costs of building the needed transportation
infrastructure often exceeded the wood value that could be extracted, as well as increasingly
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unsustainable harvest volumes [58]. By the 1990s, the U.S. south, with much of its forested
land in private ownership, became the dominant tree-harvesting region in the country [56].

Fire policy, primarily for government-owned land, also changed (or continued to
change) during the study period. The Wilderness Act of the 1960s started the move towards
other land management tactics besides aggressive wildfire suppression in some areas of
federal forest land, mostly in the U.S. west [59,60]. The shift in the 1990s from the past mas-
sive emphasis on timber cutting in national forests to more ecosystem management policies,
such as “ecosystem restoration” (often without fully defined goals and benchmarks, at least
initially), also allowed federal land managers to try more adaptive uses of fire, although
some of this was stymied by increases in the area extent of the WUI (wildland/urban
interface) and a continued culture (mostly) of fire suppression [60,61]. The active political
pressure of the timber industry on federal policy may have been greatly diminished as their
access to federal land became limited, but the near century legacy of such pressure helped
leave a largely altered forested landscape [62].

Socioeconomic drivers also had various effects on wood removal from tree cover land
over time. Softwood output from evergreen, mostly conifer, forests is the majority amount
of wood used in various consumptive uses such as building materials and fiber (paper)-
based products. Building materials, much of it used to construct residential dwellings in
the United States, uses the most softwood output so harvesting trees often follows the new
housing unit market. The housing financial crisis that set off the Great Recession of 2008
greatly affected the amount of wood harvest in the CONUS for several years afterwards [56].
The highpoint of wood used in new housing during our study period was from the later
1990s through 2006, with 2005 having record high wood prices [56]. Governmental policy
intersected directly with potential wood harvesting in the CONUS as more and more
Canadian softwood was allowed to be imported into the United States. The Canadian and
U.S. governments had several different trade skirmishes over these imports but, in the end,
Canadian wood maintained a noticeable part of the U.S. softwood market and use over
time [56].

Hardwood from deciduous forests has fewer socioeconomic uses than softwood
material. The overall land cover change across the CONUS during most of the study
period shows that areas in the northeast quadrant of the country that are dominated by
deciduous forests had little change [63]. An important use of hardwood is in furniture
making but the demand for U.S.-sourced material has lessened over time as imported
Asian-based hardwood furniture made inroads fueled by a strong U.S. dollar that allowed
cheaper imports to gain a competitive advantage [56]. A hardwood consumer good that
has increased over time has been compressed pellets for modern wood burning stoves,
although it is hard to gauge the multi-geographical scales of either fuel wood pellets or
furniture making with tree cover removals on the ground. Hardwood also plays a role in
U.S. paper-based consumer products, but it remains as the minority source when compared
to softwood materials for such usage [56].

5. Conclusions

Change in condition of forest cover constituted the majority of CCDC harmonic model
breaks across the CONUS, accounting for nearly three-quarters of tree cover change during
the study period. Forest change in the CONUS, both in class and condition, is happening
more in evergreen forest than deciduous forest. The traditional way of tree cover conversion
is missing this aspect of change, and although it has probably been surmised and perhaps
explored to a certain degree, LCMAP data (in the entire suite including the map validation
reference dataset) now can provide some quantified numbers of change in possibly a more
direct way than other sources.

Our findings indicate that change processes such as harvest thinning, low severity
wildfires and other low intensity disturbances potentially lead to considerable declines
in tree cover that are often missed in tree cover loss estimates based only on tree cover
conversions. There was regional variability in the types of change and change processes
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that were associated with tree cover disturbances. Thus, through the power of continuous
monitoring and an annual time-series reference dataset, the LCMAP dataset has a unique
potential for better characterizing both tree cover conversions and tree cover condition
change associated with various change processes across diverse landscapes of the CONUS.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/f15030470/s1, Figure S1. A flowchart of methods for obtaining Continuous
Change Detection and Classification (CCDC) harmonic model breaks that were tree cover conversion
or change in tree cover condition based on Land Change Monitoring Assessment and Projection
(LCMAP) data products and map validation reference data.

Author Contributions: Conceptualization, F.K.D. and R.F.A.; methodology, F.K.D.; formal analysis,
F.K.D.; writing—original draft preparation, F.K.D.; writing—review and editing, F.K.D. and R.F.A.;
supervision, R.F.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the U.S. Geological Survey National Land Imaging (NLI)
program under contract 140G0119C0001.

Institutional Review Board Statement: Any use of trade, firm, or product names is for descriptive
purposes only and does not imply endorsement by the U.S. Government. This article has been peer
reviewed and approved for publication consistent with U.S. Geological Survey Fundamental Science
Practices (https://pubs.usgs.gov/circ/1367/, accessed on 15 March 2023).

Data Availability Statement: All datasets used in this study are publicly accessible in the sources
indicated in the text.

Acknowledgments: We thank the academic editor and the reviewers who helped us substantially
improve the manuscript. We are very grateful to Melanie K. Vanderhoof of the USGS for her helpful
comments that improved earlier drafts of this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Cobb, R.C. The intertwined problems of wildfire, forest disease, and climate change interactions. Curr. For. Rep. 2022, 8, 214–228.

[CrossRef]
2. Woodbridge, M.; Keyser, T.; Oswalt, C. Stand and environmental conditions drive functional shifts associated with mesophication

in eastern US forests. Front. For. Glob. Chang. 2022, 5, 214–228. [CrossRef]
3. Meeussen, C.; Govaert, S.; Vanneste, T.; Haesen, S.; Van Meerbeek, K.; Bollmann, K.; Brunet, J.; Calders, K.; Cousins, S.A.O.;

Diekmann, M.; et al. Drivers of carbon stocks in forest edges across Europe. Sci. Total Environ. 2021, 759, 143497. [CrossRef]
4. Williams, C.A.; Collatz, G.J.; Masek, J.; Huang, C.; Goward, S.N. Impacts of disturbance history on forest carbon stocks and fluxes:

Merging satellite disturbance mapping with forest inventory data in a carbon cycle model framework. Remote Sens. Environ. 2014,
151, 57–71. [CrossRef]

5. Williams, C.A.; Gu, H.; MacLean, R.; Masek, J.G.; Collatz, G.J. Disturbance and the carbon balance of US forests: A quantitative
review of impacts from harvests, fires, insects, and droughts. Glob. Planet. Chang. 2016, 143, 66–80. [CrossRef]

6. Liu, J.; Sleeter, B.; Selmants, P.C.; Diao, J.; Zhou, Q.; Worstell, B.; Moritsch, M. Modeling watershed carbon dynamics as affected
by land cover change and soil erosion. Ecol. Model. 2021, 459, 109724. [CrossRef]

7. Monsted, J.; Matlack, G.R. Shaping the second-growth forest: Fine-scale land use change in the Ohio Valley over 120 years. Landsc.
Ecol. 2021, 36, 3507–3521. [CrossRef]

8. Motzkin, G.; Wilson, P.; Foster, D.R.; Allen, A. Vegetation patterns in heterogeneous landscapes: The importance of history and
environment. J. Veg. Sci. 1999, 10, 903–920. [CrossRef]

9. Stueve, K.M.; Perry, C.H.; Nelson, M.D.; Healey, S.P.; Hill, A.D.; Moisen, G.G.; Cohen, W.B.; Gormanson, D.D.; Huang, C.
Ecological importance of intermediate windstorms rivals large, infrequent disturbances in the northern Great Lakes. Ecosphere
2011, 2, 1–21. [CrossRef]

10. Tao, X.; Huang, C.; Zhao, F.; Schleeweis, K.; Masek, J.; Liang, S. Mapping forest disturbance intensity in North and South Carolina
using annual Landsat observations and field inventory data. Remote Sens. Environ. 2019, 221, 351–362. [CrossRef]

11. Ping, X.; Chang, Y.; Liu, M.; Hu, Y.; Huang, W.; Shi, S.; Jia, Y.; Li, D. Carbon emission and redistribution among forest carbon pools,
and change in soil nutrient content after different severities of forest fires in Northeast China. Forests 2022, 13, 110. [CrossRef]

12. Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev.
2016, 91, 760–781. [CrossRef]

13. Cantarello, E.; Newton, A.C.; Martin, P.A.; Evans, P.M.; Gosal, A.; Lucash, M.S. Quantifying resilience of multiple ecosystem
services and biodiversity in a temperate forest landscape. Ecol. Evol. 2017, 7, 9661–9675. [CrossRef]

https://www.mdpi.com/article/10.3390/f15030470/s1
https://www.mdpi.com/article/10.3390/f15030470/s1
https://pubs.usgs.gov/circ/1367/
https://doi.org/10.1007/s40725-022-00161-2
https://doi.org/10.3389/ffgc.2022.991934
https://doi.org/10.1016/j.scitotenv.2020.143497
https://doi.org/10.1016/j.rse.2013.10.034
https://doi.org/10.1016/j.gloplacha.2016.06.002
https://doi.org/10.1016/j.ecolmodel.2021.109724
https://doi.org/10.1007/s10980-021-01323-6
https://doi.org/10.2307/3237315
https://doi.org/10.1890/ES10-00062.1
https://doi.org/10.1016/j.rse.2018.11.029
https://doi.org/10.3390/f13010110
https://doi.org/10.1111/brv.12193
https://doi.org/10.1002/ece3.3491


Forests 2024, 15, 470 14 of 15

14. Trumbore, S.; Brando, P.; Hartmann, H. Forest health and global change. Science 2015, 349, 814–818. [CrossRef]
15. Wei, X.; Hayes, D.J.; Fraver, S.; Chen, G. Global pyrogenic carbon production during recent decades has created the potential for a

large, long-term sink of atmospheric CO2. J. Geophys. Res. Biogeosciences 2018, 123, 3682–3696. [CrossRef]
16. Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449.

[CrossRef] [PubMed]
17. Stevens, J.T.; Boisramé, G.F.S.; Rakhmatulina, E.; Thompson, S.E.; Collins, B.M.; Stephens, S.L. Forest vegetation change and its

impacts on soil water following 47 years of managed wildfire. Ecosystems 2020, 23, 1547–1565. [CrossRef]
18. Li, Y.; Liu, Y.; Bohrer, G.; Cai, Y.; Wilson, A.; Hu, T.; Wang, Z.; Zhao, K. Impacts of forest loss on local climate across the

conterminous United States: Evidence from satellite time-series observations. Sci. Total Environ. 2022, 802, 149651. [CrossRef]
[PubMed]

19. Alkama, R.; Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 2016, 351, 600–604. [CrossRef]
[PubMed]

20. Frolking, S.; Palace, M.W.; Clark, D.B.; Chambers, J.Q.; Shugart, H.H.; Hurtt, G.C. Forest disturbance and recovery: A general
review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. Res.
Biogeosciences 2009, 114, JG000911. [CrossRef]

21. Adámek, M.; Hadincová, V.; Wild, J. Long-term effect of wildfires on temperate Pinus sylvestris forests: Vegetation dynamics and
ecosystem resilience. For. Ecol. Manag. 2016, 380, 285–295. [CrossRef]

22. Burton, P.J.; Parisien, M.A.; Hicke, J.A.; Hall, R.J.; Freeburn, J.T. Large fires as agents of ecological diversity in the North American
boreal forest. Int. J. Wildland Fire 2008, 17, 754–767. [CrossRef]

23. Marcos, B.; Gonçalves, J.; Alcaraz-Segura, D.; Cunha, M.; Honrado, J.P. Assessing the resilience of ecosystem functioning to
wildfires using satellite-derived metrics of post-fire trajectories. Remote Sens. Environ. 2023, 286, 113441. [CrossRef]

24. Qiu, L.; Fan, L.; Sun, L.; Zeng, Z.; Feng, L.; Yue, C.; Zheng, C. Higher burn severity stimulates postfire vegetation and carbon
recovery in California. Agric. For. Meteorol. 2023, 342, 109750. [CrossRef]

25. Davis, K.T.; Robles, M.D.; Kemp, K.B.; Higuera, P.E.; Chapman, T.; Metlen, K.L.; Peeler, J.L.; Rodman, K.C.; Woolley, T.;
Addington, R.N.; et al. Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across the
western United States. Proc. Natl. Acad. Sci. USA 2023, 120, e2208120120. [CrossRef]

26. Hislop, S.; Jones, S.; Soto-Berelov, M.; Skidmore, A.; Haywood, A.; Nguyen, T.H. High fire disturbance in forests leads to longer
recovery, but varies by forest type. Remote Sens. Ecol. Conserv. 2019, 5, 376–388. [CrossRef]

27. Zhu, Z.; Zhang, J.; Yang, Z.; Aljaddani, A.H.; Cohen, W.B.; Qiu, S.; Zhou, C. Continuous monitoring of land disturbance based on
Landsat time series. Remote Sens. Environ. 2020, 238, 111116. [CrossRef]

28. Woodcock, C.E.; Loveland, T.R.; Herold, M.; Bauer, M.E. Transitioning from change detection to monitoring with remote sensing:
A paradigm shift. Remote Sens. Environ. 2020, 238, 111558. [CrossRef]

29. Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote
Sens. Environ. 2014, 144, 152–171. [CrossRef]

30. Vogelmann, J.E.; Xian, G.; Homer, C.; Tolk, B. Monitoring gradual ecosystem change using Landsat time series analyses: Case
studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 2012, 122, 92–105. [CrossRef]

31. Vanderhoof, M.K.; Hawbaker, T.J.; Ku, A.; Merriam, K.; Berryman, E.; Cattau, M. Tracking rates of postfire conifer regeneration vs.
deciduous vegetation recovery across the western United States. Ecol. Appl. 2021, 31, e02237. [CrossRef]

32. Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1.
LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [CrossRef]

33. Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent
forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [CrossRef]

34. Coops, N.C.; Shang, C.; Wulder, M.A.; White, J.C.; Hermosilla, T. Change in forest condition: Characterizing non-stand replacing
disturbances using time series satellite imagery. For. Ecol. Manag. 2020, 474, 118370. [CrossRef]

35. Morin-Bernard, A.; Achim, A.; Coops, N.C. Attributing a causal agent and assessing the severity of non-stand replacing disturbances
in a northern hardwood forest using Landsat-derived vegetation indices. Can. J. Remote Sens. 2023, 49, 2196356. [CrossRef]

36. Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Regional detection, characterization, and attribution of annual
forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 2015, 170, 121–132. [CrossRef]

37. Xian, G.Z.; Smith, K.; Wellington, D.; Horton, J.; Zhou, Q.; Li, C.; Auch, R.; Brown, J.F.; Zhu, Z.; Reker, R.R. Implementation
of the CCDC algorithm to produce the LCMAP Collection 1.0 annual land surface change product. Earth Syst. Sci. Data 2022,
14, 143–162. [CrossRef]

38. Brown, J.F.; Tollerud, H.J.; Barber, C.P.; Zhou, Q.; Dwyer, J.L.; Vogelmann, J.E.; Loveland, T.R.; Woodcock, C.E.; Stehman, S.V.;
Zhu, Z.; et al. Lessons learned implementing an operational continuous United States national land change monitoring capability:
The Land Change Monitoring, Assessment, and Projection (LCMAP) approach. Remote Sens. Environ. 2020, 238, 111356. [CrossRef]

39. Loveland, T.; Sohl, T.; Stehman, S.; Gallant, A.; Sayler, K.; Napton, D. A strategy for estimating the rates of recent United States
land-cover changes. Photogramm. Eng. Remote Sens. 2002, 68, 1091–1099.

40. Sleeter, B.M.; Sohl, T.L.; Loveland, T.R.; Auch, R.F.; Acevedo, W.; Drummond, M.A.; Sayler, K.L.; Stehman, S.V. Land-cover change
in the conterminous United States from 1973 to 2000. Glob. Environ. Chang. 2013, 23, 733–748. [CrossRef]

https://doi.org/10.1126/science.aac6759
https://doi.org/10.1029/2018JG004490
https://doi.org/10.1126/science.1155121
https://www.ncbi.nlm.nih.gov/pubmed/18556546
https://doi.org/10.1007/s10021-020-00489-5
https://doi.org/10.1016/j.scitotenv.2021.149651
https://www.ncbi.nlm.nih.gov/pubmed/34525747
https://doi.org/10.1126/science.aac8083
https://www.ncbi.nlm.nih.gov/pubmed/26912702
https://doi.org/10.1029/2008JG000911
https://doi.org/10.1016/j.foreco.2016.08.051
https://doi.org/10.1071/WF07149
https://doi.org/10.1016/j.rse.2022.113441
https://doi.org/10.1016/j.agrformet.2023.109750
https://doi.org/10.1073/pnas.2208120120
https://doi.org/10.1002/rse2.113
https://doi.org/10.1016/j.rse.2019.03.009
https://doi.org/10.1016/j.rse.2019.111558
https://doi.org/10.1016/j.rse.2014.01.011
https://doi.org/10.1016/j.rse.2011.06.027
https://doi.org/10.1002/eap.2237
https://doi.org/10.1016/j.rse.2010.07.008
https://doi.org/10.1016/j.rse.2009.08.017
https://doi.org/10.1016/j.foreco.2020.118370
https://doi.org/10.1080/07038992.2023.2196356
https://doi.org/10.1016/j.rse.2015.09.004
https://doi.org/10.5194/essd-14-143-2022
https://doi.org/10.1016/j.rse.2019.111356
https://doi.org/10.1016/j.gloenvcha.2013.03.006


Forests 2024, 15, 470 15 of 15

41. U.S. Geological Survey. Status and Trends of Land Change in the United States—1973 to 2000; U.S. Geological Survey: Reston, VA,
USA, 2016.

42. Sleeter, B.M.; Wilson, T.S.; Acevedo, W. (Eds.) Status and Trends of Land Change in the Western United States—1973 to 2000; U.S.
Geological Survey Professional Paper 1794–A; U.S. Geological Survey: Reston, VA, USA, 2012.

43. Taylor, J.L.; Acevedo, W.; Auch, R.F.; Drummond, M.A. (Eds.) Status and Trends of Land Change in the Great Plains of the United
States—1973 to 2000; U.S. Geological Survey Professional Paper 1794–B; U.S. Geological Survey: Reston, VA, USA, 2015; p. 180.
[CrossRef]

44. Auch, R.F.; Karstensen, K.A. (Eds.) Status and Trends of Land Change in the Midwest–South Central United States—1973 to 2000; U.S.
Geological Survey Professional Paper 1794–C; U.S. Geological Survey: Reston, VA, USA, 2015. [CrossRef]

45. Sayler, K.L.; Acevedo, W.; Taylor, J.L. (Eds.) Status and Trends of Land Change in the Eastern United States—1973 to 2000; U.S.
Geological Survey Professional Paper 1794–D; U.S. Geological Survey: Reston, VA, USA, 2016. [CrossRef]

46. Pengra, B.W.; Stehman, S.V.; Horton, J.A.; Wellington, D.F. Land Change Monitoring, Assessment, and Projection (LCMAP) Collection
1.2 Annual Land Cover and Land Cover Change Validation Tables (1985–2018) for the Conterminous United States; U.S. Geological Survey
Data Release; U.S. Geological Survey: Reston, VA, USA, 2021. [CrossRef]

47. Pengra, B.W.; Stehman, S.V.; Horton, J.A.; Dockter, D.J.; Schroeder, T.A.; Yang, Z.; Cohen, W.B.; Healey, S.P.; Loveland, T.R. Quality
control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring
program. Remote Sens. Environ. 2020, 238, 111261. [CrossRef]

48. Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2.
TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [CrossRef]

49. Stehman, S.V.; Pengra, B.W.; Horton, J.A.; Wellington, D.F. Validation of the U.S. Geological Survey’s Land Change Monitoring,
Assessment and Projection (LCMAP) Collection 1.0 annual land cover products 1985–2017. Remote Sens. Environ. 2021, 265, 112646.
[CrossRef]

50. Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting
Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67–83. [CrossRef]

51. Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion
of the 2011 National Land Cover Database for the conterminous United States—Representing a decade of land cover change
information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354.

52. White, J.C.; Wulder, M.A.; Hermosilla, T.; Coops, N.C.; Hobart, G.W. A nationwide annual characterization of 25 years of forest
disturbance and recovery for Canada using Landsat time series. Remote Sens. Environ. 2017, 194, 303–321. [CrossRef]

53. Meng, R.; Dennison, P.E.; Huang, C.; Moritz, M.A.; D’Antonio, C. Effects of fire severity and post-fire climate on short-term
vegetation recovery of mixed-conifer and red fir forests in the Sierra Nevada Mountains of California. Remote Sens. Environ. 2015,
171, 311–325. [CrossRef]

54. Wickham, J.; Stehman, S.V.; Sorenson, D.G.; Gass, L.; Dewitz, J.A. Thematic accuracy assessment of the NLCD 2016 land cover for
the conterminous United States. Remote Sens. Environ. 2021, 257, 112357. [CrossRef]

55. Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Wickham, J.; Stehman, S.; et al. Conterminous
United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS J. Photogramm. Remote
Sens. 2020, 162, 184–199. [CrossRef]

56. Howard, J.L.; Liang, S.U.S. Timber Production, Trade, Consumption, and Price Statistics, 1965–2017; U.S. Forest Service, Research
Paper FPL-RP-701; U.S. Department of Agriculture: Washington, DC, USA, 2019. [CrossRef]

57. Wear, D.N.; Murray, B.C. Federal timber restrictions, interregional spillovers, and the impact on US softwood markets. J. Environ.
Econ. Manag. 2004, 47, 307–330. [CrossRef]

58. Hirt, P.W. A Conspiracy of Optimism: Management of the National Forests Since World War Two; University of Nebraska Press: Lincoln,
NE, USA, 1994.

59. Conard, S.; Hartzell, T.; Hilbruner, M.; Zimmerman, G. Changing fuel management strategies—The challenge of meeting new
information and analysis needs. Int. J. Wildland Fire 2001, 10, 267–275. [CrossRef]

60. Pyne, S. Review of Hudson, Mark, Fire Management in the American West: Forest Politics and the Rise of Megafires; H-Environment,
H-Net Reviews: Lansing, MI, USA, 2011.

61. Crow, T.R. A framework for restoration in the national forests. In Integrated Restoration of Forested Ecosystems to Achieve Multiresource
Benefits: Proceedings of the 2007 National Silviculture Workshop; Deal, R.L., Ed.; Gen. Tech. Rep. PNW-GTR-733; U.S. Department of
Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2008; pp. 13–21.

62. Hudson, M. Fire Management in the American West: Forest Politics and the Rise of Megafires; University Press of Colorado: Denver,
CO, USA, 2011.

63. Auch, R.F.; Wellington, D.F.; Taylor, J.L.; Stehman, S.V.; Tollerud, H.J.; Brown, J.F.; Loveland, T.R.; Pengra, B.W.; Horton, J.A.;
Zhu, Z.; et al. Conterminous United States Land-Cover Change (1985–2016): New Insights from Annual Time Series. Land 2022,
11, 298. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3133/pp1794B
https://doi.org/10.3133/pp1794C
https://doi.org/10.3133/pp1794D
https://doi.org/10.5066/P9M6T45Z
https://doi.org/10.1016/j.rse.2019.111261
https://doi.org/10.1016/j.rse.2010.07.010
https://doi.org/10.1016/j.rse.2021.112646
https://doi.org/10.1016/j.rse.2015.02.009
https://doi.org/10.1016/j.rse.2017.03.035
https://doi.org/10.1016/j.rse.2015.10.024
https://doi.org/10.1016/j.rse.2021.112357
https://doi.org/10.1016/j.isprsjprs.2020.02.019
https://doi.org/10.2737/fpl-rp-701
https://doi.org/10.1016/S0095-0696(03)00081-0
https://doi.org/10.1071/WF01027
https://doi.org/10.3390/land11020298

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Land Cover and Land Change Dataset 
	LCMAP Reference Dataset 

	Methods 
	Proportions of CCDC Harmonic Model Breaks That Were Tree Cover Conversion or Change in Tree Cover Condition (Partial Tree Cover Change) 
	Accuracy of CCDC Harmonic Model Breaks in Detecting Change in Tree Cover 
	CCDC Harmonic Model Breaks by Forest Type 
	Distribution of Change Processes Affecting Tree Cover 


	Results 
	Proportions of CCDC Harmonic Model Breaks That Were Tree Cover Conversion or Change in Tree Cover Condition 
	Accuracy of LCMAP Data Products for Detecting Disturbances in Tree Cover 
	CCDC Harmonic Model Breaks by Forest Type 
	Distribution of Change Processes Affecting Tree Cover 

	Discussion 
	Conclusions 
	References

