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Abstract: Improving the precision of remote sensing estimation and implementing the fusion and
analysis of multi-source data are crucial for accurately estimating the aboveground carbon storage in
forests. Using the Google Earth Engine (GEE) platform in conjunction with national forest resource
inventory data and Landsat 8 multispectral remote sensing imagery, this research applies four
machine learning algorithms available on the GEE platform: Random Forest (RF), Classification
and Regression Trees (CART), Gradient Boosting Trees (GBT), and Support Vector Machine (SVM).
Using these algorithms, the entire Yunnan Province is classified into seven categories, including
broadleaf forest, coniferous forest, mixed broadleaf-coniferous forest, water bodies, built-up areas,
cultivated land, and other types. After a thorough comparison, the research reveals that the RF
algorithm surpasses others in terms of accuracy and reliability, making it the most suitable choice for
estimating aboveground carbon storage in forests using remote sensing data. Therefore, the study
used the RF algorithm for both forest classification and the estimation of carbon storage. By extracting
remote sensing factors; by using the Pearson correlation coefficient to select the most relevant factors;
and by utilizing multiple linear regression, RF regression, and decision tree regression, a model for
estimating aboveground carbon stocks in forests was developed. The results indicate that among
the four classification algorithms, the RF classifier demonstrates superior performance, with an
overall accuracy of 84.96% and a Kappa coefficient of 76.46%. In the RF regression models, the R2

values for the coniferous forest, broadleaf forest, and mixed needle-broadleaf forest models are 0.636,
0.663, and 0.638, respectively. In both RF and CART, the R2 values for the three forest-type models
are greater than 0.6, indicating satisfactory model fitting performance. This study aims to explore
the possibility of improving the estimation of forest carbon stocks in large-scale areas through fine
land use classification. Additionally, the data sources used are completely free, and medium to low
resolution can provide a better reference value for practical applications, thereby reducing the cost
of utilization.

Keywords: Google Earth Engine; machine learning; models; forest carbon storage; random forest;
accuracy

1. Introduction

The carbon storage of forest ecosystems constitutes the largest and most active compo-
nent of terrestrial ecosystem carbon sinks, encompassing 80% of the aboveground carbon
stock and 40% of the underground carbon stock [1]. It plays a pivotal role in stabilizing the
global carbon cycle and mitigating global warming. Therefore, quantifying the distribution
characteristics of carbon storage in forest ecosystems and scientifically assessing the carbon
storage and sequestration potential of these systems is crucial for understanding carbon
cycling mechanisms and formulating emission reduction policies.

Estimating forest carbon storage is a complex endeavor that requires the consideration
of numerous factors. Traditional methods for quantifying forest carbon storage can yield
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accurate results but are labor-intensive and time-consuming processes. Additionally, they
face challenges with regard to measuring carbon storage on a large scale. In contrast,
remote sensing estimation techniques leverage factors extracted from remote sensing
data to formulate mathematical models for forest carbon storage. Passive remote sensing
systems offer several advantages compared to active remote sensing systems like laser and
radar data, including extensive coverage, ease of acquisition, high temporal and spatial
resolution, and being a well-established technology. In addition, the spectral characteristics
of remote sensing bands have achieved significant advancements in forest pest disturbance
monitoring and mapping. The red-edge and green-edge regions of multispectral data have
been proven to be highly sensitive to changes in chlorophyll content [2]. Consequently,
the utilization of optical remote sensing data for large-scale regional forest carbon storage
estimation and the establishment of mathematical models correlating spectral information
with forest carbon storage have become important approaches in forest carbon storage
remote sensing inversion research [3]. Heath et al. [4] combined Landsat 7 and medium-
resolution imaging spectrometer data with data from the United States Department of
Agriculture’s Forest Inventory and Analysis program to estimate forest aboveground
biomass in the New England region of the United States, achieving good estimation results.
Furthermore, Heinz Gallaun et al. [5] utilized an automatic updating method combining
satellite remote sensing data and field measurements to generate maps of forest growing
stock and aboveground biomass in Europe. The validation at the regional level shows a high
correlation between the classification results and the field-based estimates with correlation
coefficient R = 0.96 for coniferous, R = 0.94 for broadleaved, and R = 0.97 for total growing
stock per hectare. While traditional regression models can to some extent achieve the
estimation of aboveground biomass and have the advantage of being simple and easy
to understand, they require sample data to have normal distribution and independence,
conditions that actual data often struggle to meet. Furthermore, linear regression cannot
comprehensively explain the relationships among the data. Therefore, non-parametric
estimation methods have been introduced to forest parameter inversion [6,7].

Zhao Yinghui et al. [8,9] utilized multi-source remote sensing data to explore the
estimation accuracy of non-parametric machine learning algorithms (SVM, RF, and BCRF)
for forest biomass. The results indicated that RF exhibited the best fitting capability and
model accuracy. The combination of RF algorithm with remote sensing data can effectively
and accurately estimate vegetation biomass. The ground truth data used in this study
are the continuous forest resource inventory data from Yunnan Province in 2021. It has
broad coverage, encompasses all forest types, involves diverse survey subjects, allows for
easily obtainable determining factors, and possesses strong temporal continuity. Therefore,
research on forest carbon storage estimation is mostly based on the national continuous
forest resource inventory data using the volume-to-biomass method to estimate forest
carbon storage [10]. In recent years, extensive research has been conducted on forest carbon
stocks at both global and regional scales [11–13]. However, for accurate assessment of
forest carbon stocks and density, studies by RK Verma et al. [14], Pala A et al. [15], Chen
Yahui et al. [16], and Yang Mingxin et al. [17] have focused more on small to medium-scale
areas. For larger-scale regions, challenges arise in processing multispectral remote sensing
imagery, image registration, land cover classification, disturbance handling, extraction of
phenological characteristics, as well as data storage, access, and processing. Efficiently
managing imagery and swiftly extracting remote sensing information have thus become
significant challenges.

The GEE cloud computing engine is a platform developed by Google in collaboration
with Carnegie Mellon University and the United States Geological Survey, and was specifi-
cally designed for processing satellite imagery and other Earth observation data. It offers
free and open access to a multitude of remote sensing satellite data and the GEE cloud
platform archives. It also links various datasets, such as Landsat, MODIS, Sentinel, etc., al-
lowing users to openly access these datasets. This facilitates the extraction, exploration, and
analysis of various land surface parameters, rendering the process significantly easier [18].
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Currently, research on the prediction of forest carbon stocks is affected by differences
in scale, methods, forest types, and varying conditions, leading to substantial uncertainties.
Effective and rational methods to improve the accuracy of forest carbon stock estimation
are still lacking. However, numerous studies indicate that carbon stock estimation models
established using machine learning algorithms exhibit stronger fitness, better predictive
accuracy, and greater versatility. However, simply classifying the forests in the study area
in a rudimentary manner could impact the results of carbon stock estimation for the forest
in this region. Therefore, this study incorporated four classification algorithms provided
by the GEE platform along with additional feature variables such as vegetation indices,
texture, phenology, and terrain to conduct a pixel-based classification of the study area.
This approach has significantly enhanced the accuracy of image classification. Moreover,
when investigating carbon storage on a large scale within forest ecosystems, some scholars
simply divided the study area into forest and non-forest areas, resulting in a decline in
the accuracy of the forest carbon storage estimation model. However, due to the different
ecological and environmental conditions in different regions, the elevation, temperature,
and precipitation will also change, resulting in a variety of forest vegetation types in differ-
ent study areas. Moreover, different tree species have varying carbon content coefficients,
leading to different carbon storage capacities within different forest types. This study
categorizes the forests in the research area into three types: broadleaf forest, coniferous
forest, and mixed broadleaf-conifer forest, in order to construct a carbon storage estimation
model. This approach has, to a certain extent, enhanced the precision of forest carbon
storage estimation. Furthermore, utilizing Landsat satellite data provides the advantage of
long-term, continuous, and freely available data, offering seamless global coverage of long
time series surface reflectance data, thus significantly reducing the cost of estimating forest
carbon storage.

This study applies four different classification algorithms using the GEE platform,
integrating continuous forest inventory data from Yunnan Province in 2021 with Landsat
8 satellite imagery. Choosing Landsat 8 aims to investigate the classification effects of
four different algorithms using medium-resolution data and assesses the suitability of
forest above-ground carbon storage models. At a relatively low cost, Landsat data contains
rich spectral information, enabling real-time monitoring and intuitive visualization. This
rationale guides our selection of the Landsat 8 remote sensing dataset. The study aims
to explore the classification effectiveness of four machine learning algorithms in forest
classification within Yunnan Province and assess the suitability of constructing carbon stock
estimation models based on different forest types. The study used a variety of methods
for comparative analysis by adding a classification system and under refinement of the
classification system. The optimal estimation method for forest carbon stock in Yunnan
Province was developed by integrating land use classification with forest carbon stock
regression. This approach accounts for different forest types within the study area, thus
enhancing the accuracy of forest carbon stock estimation. In addition, the analysis of the
spatial distribution characteristics of forest carbon storage in Yunnan Province provides
fundamental data and scientific evidence for the management of carbon sequestration in
the forest ecosystem, as well as the development of policies related to carbon peak and
carbon neutrality.

2. Research Data and Methodology
2.1. Study Area Overview

Yunnan Province is located between 21◦8′–29◦15′ N and 97◦31′–106◦11′ E, with a
total area of 394.1 thousand km2. The topography features high in the northwest and low
in the southeast, exhibiting a characteristic step-like descent from north to south. It is
primarily a mountainous plateau region, with mountainous areas accounting for 88.64% of
the province’s total area. The terrain is divided into two major topographic zones, eastern
and western, demarcated by the Yuanjiang Valley and the southern part of the Yunling
Mountain Range. The western and southern boundaries of the study area share borders
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with Vietnam, Laos, and Myanmar, while its northern and eastern boundaries adjoin
Guangxi, Guizhou, Sichuan, and Tibet [19]. The province boasts rich and diverse forest
vegetation, which is categorized into four primary forest vegetation types, 17 subtypes, and
105 forest types in total. Yunnan is renowned for having the highest plant species diversity
in China and is often referred to as the ‘Kingdom of Plants’, Based on data from the Ninth
National Forest Resources Inventory of China, as of the year 2021, the total forest area in
the province measures 21.0616 million hectares, with a forest stock volume of 1.973 billion
cubic meters and a forest coverage rate of 55.04% [20]. The geographical location of the
study area is depicted in Figure 1.
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2.2. Data Acquisition and Preprocessing
2.2.1. Remote Sensing Image Acquisition and Preprocessing

The research utilizes the USGS Landsat 8 Level 2, Collection 2, Tier 1 dataset from
the GEE platform database as the source of Landsat 8 satellite image data. After careful
consideration and obtaining high-quality Landsat 8 image data, we utilized the median
of all available satellite image data from June to December 2021, resulting in a composite
satellite image with a cloud cover of less than 20%. The data collection period for the
continuous forest inventory in Yunnan Province in 2021 was from September to December,
which is not significantly different from the dates of the Landsat 8 images used (June to
December 2021), indicating no significant time gap between the Landsat 8 dates and the
field reference data. All “data” products are created with a single-channel algorithm jointly
created by the Rochester Institute of Technology and National Aeronautics and Space
Administration Jet Propulsion Laboratory.

The Digital Elevation Model (DEM) data utilizes the NASA NASADEM Digital El-
evation 30 m as the source of DEM data, which is a digital elevation model released by
the National Aeronautics and Space Administration, with a resolution of 30 m. This data
is a reprocessing of STRM data, with improved accuracy by incorporating auxiliary data
from “ASTER GDEM” “ICESat GLAS” and “PRISM” datasets. The selected Landsat 8 data
products have undergone orthorectification and atmospheric calibration, so this study will
not repeat the above operations, only performing cloud removal, fusion, and cropping
of images.
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2.2.2. Acquisition and Processing of Ground Survey Data

The ground survey data used in this study are from the continuous forest resource
inventory data of Yunnan Province conducted by the Southwest Survey and Planning Insti-
tute of the National Forestry and Grassland Administration from September to December
2021. A total of 1072 fixed sample plots with a square area of 800 m2 were surveyed. The
geographic coordinates of the center points of the sample plots were obtained through
differential GPS survey. The survey data include detailed information on dominant tree
species (groups), biomass, and origin. As this study did not involve the carbon storage
of shrubs, the understory, herbaceous layer, litter layer, or soil layer, the carbon storage
of these layers is not included in this study. In accordance with the technical regulations
outlined in the ‘Main Technical Specifications for Forest Resource Planning and Design
Survey’ (forest resources development (2003) 61) issued by the State Forestry and Grassland
Administration of China, and considering the research scope and practical considerations,
the forest classification types were ultimately determined to be broadleaf forests, coniferous
forests, and mixed broadleaf-conifer forests, comprising a total of three categories. Specific
sample category information can be found in Table 1.

Table 1. Type and number of sample plots surveyed.

Serial No. Type Number of Sample Plots

1 Broad-leaved forest 557
2 Coniferous forest 365
3 Mixed coniferous and broad-leaved forest 150
4 Water bodies 90
5 Builtup area 120
6 Cultivated land 120
7 Others 130

Total 1532

Utilizing high-resolution Google Earth imagery from the year 2021, a visual interpreta-
tion was conducted in Yunnan Province, China. The sample selection criterion employed
was random sampling, and a total of 460 non-forest sample points were chosen. The
dataset used for training the classification model consists of 1532 sample points, compris-
ing field survey data and visual interpretation data, as illustrated in Figure 1 to depict
their distribution.

2.2.3. Calculation of Aboveground Carbon Storage

Forest stock volume is the comprehensive outcome of forest growth, as current research
conducted by most scholars indicates there exists a significant correlation between forest
biomass and stock volume. The method for estimating forest carbon storage based on the
relationship between biomass and accumulation is a direct and efficient approach, which
has been widely applied in recent years for the estimation of forest carbon storage.

Based on the acquired sample plot standing volume, it is multiplied by the Biomass
Expansion Factor to obtain the aboveground biomass of the sample plot. To facilitate
calculations, the sample plot biomass is converted into biomass per hectare (t·hm−2).
Multiplying the biomass per hectare by the corresponding carbon content ratio yields
the aboveground carbon stock of the sample plot. The BEF is derived from the Yunnan
Province tree species (group) BEF data provided by Tu Hongtao [20]. Biomass relationship
equations for various dominant tree species (groups) are estimated as presented in Table A1
(Appendix A). Currently, in most domestic research, an average carbon content rate of
0.5 or 0.45 is used to estimate forest carbon stocks. However, due to variations in carbon
content coefficients among different tree species (groups), a fixed carbon content rate
for estimating carbon stocks may result in reduced precision. Therefore, in this study,
calculations were conducted China’s “Guidelines for Carbon Sequestration Measurement
and Monitoring in Afforestation Projects (LY/T 2253-2014)” and the research findings of
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relevant scholars [21–23]. For tree species (groups) for which carbon content has not been
directly measured, a reference approach was employed by substituting carbon content rates
from similar tree species (groups).

2.3. Research Methodology
2.3.1. Selection and Analysis of the GEE Classification Algorithm

In alignment with the actual circumstances of the research area, this study utilizes clas-
sification algorithms offered by the GEE cloud platform. Specifically, four distinct classifiers
RF, CART, GBT, and SVM are employed for comprehensive image classification procedures.

2.3.2. RF

RF achieves classification by constructing an ensemble of classification or regression
trees, thereby mitigating the risk of model overfitting [24]. RF requires users to make deci-
sions about two tuning parameters: the number of trees to grow and number of variables
to randomly sample as candidates at each split. Through parameter tuning, we successfully
prevented the occurrence of local optima in the classification results. After conducting
numerous experiments to strike a balance between model performance and efficiency, we
ultimately decided to set the number of grown trees to 150. The minimum number of
samples in a leaf node is set to 1, while the remaining parameters are kept at their default
values. The RF classification model was implemented using the ‘smileRandomForest’ pack-
age in GEE, while the RF regression algorithm was implemented using the ‘RF Regressor’
package in the Python programming language.

2.3.3. CART

The CART algorithm, introduced by Breiman and his colleagues in 1984 [25], is an
efficient regression method that does not require parameters for classification. The CART
algorithm continuously divides the training sample set, calculates the GINI coefficient for
each split point, and selects the one with the smallest GINI coefficient as the threshold
for that split point. After threshold division is performed using the GINI coefficient,
complex and large-scale decision trees are formed. In this study, we set the number of
trees to 120, the minimum number of samples in a leaf node to 1 and kept the remaining
parameters at their default values. The CART classification model was implemented using
the “ee.Classifier.cart” function within GEE, While the CART regression algorithm was
implemented using the ‘Scikit-learn’ package in the Python programming language.

2.3.4. GBT

The GBT algorithm employs regression decision trees as weak classifiers. The opti-
mization of the regression decision tree primarily relies on the leaf node splitting process.
By comparing the difference in loss values before and after the split between child nodes
and parent node, the optimal split point is identified, which in turn minimizes the classi-
fier’s loss and maximizes the difference between the split node and child nodes. In this
study, the optimal classification performance is achieved when the number of trees is set to
100, the learning rate is set to 0.2, and the depth of each tree is set to 3, with the remaining
parameters at their default values. The GBT classification model was implemented using
the “ee.Classifier.smileGradientTreeBoost” function within GEE.

2.3.5. SVM

The SVM algorithm, introduced in 1964, is a supervised classification method [26]
renowned for its robust data analysis and pattern recognition capabilities. It finds extensive
applications in the fields of remote sensing image classification and fusion, SVM utilizes the
hinge loss function to calculate the empirical risk and incorporates a regularization term into
the calculation system to optimize the structural risk. In this study, the radial basis function
was employed as the kernel function for the SVM, requiring the determination of two
parameters: the regularization parameter ‘cost’ and the kernel function parameter ‘gamma’.
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Optimal values, determined through iterative testing, were identified as cost = 10 and
gamma = 0.5. The SVM classification model is implemented using the “ee.Classifier.libsvm”
function in GEE.

2.4. Feature Factor Selection
2.4.1. Selection of Feature Factors for GEE Classification

The quality of remote sensing image classification is closely tied to the selection and
application of feature factors. Choosing and applying these feature factors can reduce
inter-feature correlations, maximize the inclusion of original image information in fewer
bands, and notably enhance the final classification results. Utilizing the GEE platform,
a feature dataset is constructed, based on the original spectral features, incorporating
texture features and terrain factors, among others. After repeated comparisons with related
literature [27,28], a final selection of 29 feature factors was made, which includes 7 bands,
3 components of the hood transformation, 10 vegetation indices, and 9 texture features that
participate in the classification.

2.4.2. Selection of Modeling Feature Factors

To construct a carbon stock estimation model, the consideration of modeling factors
is of primary importance. In this study, we rely on Landsat 8 imagery and DEM data,
incorporating spectral information, vegetation indices, Tasseled Cap Transformation, ter-
rain factors, and textural features as characteristic variables. The three extracted terrain
features, seven original band features, ten vegetation index features, three components of
the Tasseled Cap Transformation, and 56 texture features from the gray level co-occurrence
matrix are used [29]. The feature factors and related formulas can be found in Table A2
(Appendix A).

2.5. Construction of Forest Aboveground Carbon Storage Estimation Model

In this study, a random sample of 70% of the data was used for modeling through
multiple linear regression and RF methods, while the remaining 30% of the data was
reserved for accuracy validation. By employing data filtering, we ensured that the plots
utilized for accuracy validation are spatially non-adjacent to the plots employed during
model training. Yunnan Province’s forest ecosystem is categorized into three distinct types:
broadleaf forests, coniferous forests, and mixed broadleaf-coniferous forests. Subsequently,
construct models for each forest type using multiple linear stepwise regression, RF regres-
sion, and decision tree regression. In this study, it is worth noting that the modeling factors
used for the three regression models remain consistent. The Pearson correlation coefficient
analysis method was employed to conduct variable selection for the independent variables,
identifying highly significant variables.

Multivariate Linear Models

When a linear relationship exists between multiple independent variables and the
dependent variable, the regression analysis performed is referred to as a multivariable linear
regression model. The selected independent variables are then used in the construction
of a stepwise multivariable linear regression model [30]. The Variance Inflation Factor
(VIF) method was employed to address the issue of multicollinearity among variables.
The VIF, or Variance Inflation Factor, is defined as the ratio of the variance when there is
multicollinearity among explanatory variables to the variance when multicollinearity is
absent. It serves as the reciprocal of tolerance, where a higher VIF value indicates a more
severe level of multicollinearity [28]. Based on the pertinent literature sources [31,32], this
study establishes the criteria of 0 < VIF < 10 and tolerance > 0.1 for control and further
selection of independent variables. At the 0.01 significance level, variables demonstrating
consistent significance were chosen as independent variables. A multivariable stepwise
regression model was established for the relationship between forest aboveground carbon
storage and its characteristic factors, with entry criteria based on the T-test reaching a
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significance level of p < 0.05 [33]. The modeling equation for the multivariable stepwise
regression method is represented as Equation (1).

Y = b1 · x1 + b2 · x2 + b3 · x3 + · · · bi · xi (1)

where Y represents the sample biomass, Xi signifies the selected modeling factors, bi denotes
the regression coefficients, and C corresponds to the constant term within the equation.

2.6. Model Validation and Accuracy Assessment
2.6.1. Evaluation of Classification Accuracy for GEE

In this study, the research area was classified into seven categories: broadleaf forest,
coniferous forest, mixed coniferous and broadleaf forest, water bodies, built-up areas,
cultivated land, and other types, with a total of 1532 samples. These samples comprise
557 from broadleaf forests, 365 from coniferous forests, 150 from mixed coniferous and
broadleaf forests, 90 from water bodies, 120 from built-up areas, 120 from cultivated land,
and 130 from the ‘other’ category. Of these, 70% were used as training samples, and 30%
were allocated as validation samples. Various classification algorithms, including the RF
algorithm, the CART, the GBT algorithm, and the SVM algorithm, were employed for the
categorization of the study area.

The classification results were assessed for accuracy using a confusion matrix. To
validate the reliability of the classification results, various evaluation metrics, including the
overall accuracy (OA) and Kappa coefficient, were computed using a confusion matrix [34].
The overall classification accuracy and the Kappa coefficient were employed to assess the
global classification performance. The formulas for computing the overall classification
accuracy and the Kappa coefficient are as follows:

Overall Accuracy =
Y1
Y2

, Y1 =
n

∑
i=1

A[i, i], Y2 =
n

∑
i=1

n

∑
j=1

[i, j] (2)

Kappa =

Y1 · Y2 −
n
∑

i=1
(ki+ · k+i)

Y1 · Y2 −
n
∑

i=1
(ki+ · k+i)

(3)

where Y1 stands for the number of pixels in the classified results that correspond to the
actual land cover; A[i, i] represents the diagonal elements; Y2 represents the total sample
count; ki+ and k+i denote the summation of the matrix’s i row and j column, respectively.

2.6.2. Model Validation and Accuracy Assessment for Carbon Stock Estimation

To assess the reliability of the model, an evaluation of its predictive accuracy was
conducted. This evaluation involved the utilization of validation sample data in both the
context of multiple linear regression and RF regression models. The resultant predictions
made by the model were then compared against the actual measured values, serving to
gauge the model’s estimation performance within the study. The evaluation metrics used
in this study include the coefficient of determination (R2), RMSE, rRMSE, and MAE. These
metrics are utilized to gauge the model’s precision. A higher R2 indicates better model fit,
whereas lower values of RMSE, rRMSE, and MAE signify a higher prediction accuracy of
the model. The computation formulas for the three evaluation metrics are as follows:

R2 =
∑n

i=1 (ŷi − yi)
2

∑n
i=1 (yi − yi)

2 (4)

RMSE =
√

∑n
i=1 (ŷi − yi)

2/n (5)
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rRMSE =
RMSE

y
× 100% (6)

MAE =
|∑n

i=1(yi − yi)|
n

(7)

where n represents the sample data size, yi denotes the observed carbon storage values, ŷi
signifies the predicted carbon storage values, and yi represents the mean of the observed
carbon storage values.

2.7. Method Implementation

The GEE platform was employed for the classification processing of the research area;
ArcGIS 10.8 was utilized for the extraction of altitude, slope, and aspect; ENVI 5.6 was
used to extract factors such as vegetation indexes, Tasseled Cap Transformation, texture
information, etc.; SPSS26.0 was applied for Pearson correlation analysis, feature screening,
and the establishment of multivariable linear stepwise regression models for the three types
of forests. Python3.11 was used for the establishment of RF regression models for the three
types of forests and the inversion of carbon storage.

3. Results
3.1. Classification Results and Accuracy Evaluation
3.1.1. Classification Results

To achieve improved classification performance, this study conducted comparative
experiments on five different feature combination schemes (Figure 2a–e). In the initial set
of experiments, seven spectral features were utilized for classification with four different
algorithms. Subsequent experiments expanded upon this initial set by incorporating
additional factors for classification. The inclusion of other feature factors alongside spectral
features led to varying degrees of improvement in overall accuracy (OA) and Kappa
coefficients, as indicated in Figure 3. When utilizing only the spectral band feature, the
overall accuracies of the RF, CART, GBT, and SVM algorithms are 0.7165, 0.6813, 0.7130, and
0.6127, respectively, with Kappa coefficients of 0.6147, 0.5672, 0.6068, and 0.4781 (Figure 2a).
In contrast, incorporating five features, namely spectral bands, vegetation index, texture,
principal component analysis, and terrain, enhances the overall accuracies to 0.8496, 0.8133,
0.8273, and 0.7315 for the RF, CART, GBT, and SVM algorithms, accompanied by Kappa
coefficients of 0.7646, 0.7186, 0.7320, and 0.6388, respectively (Figure 2e). Upon the inclusion
of vegetation index features, four algorithms exhibited an upward trend in both overall
accuracy and Kappa coefficients (Figure 2b). However, with the incorporation of texture
features, a notable decrease was observed in the overall accuracy and Kappa coefficients
for four algorithms (Figure 2c). Subsequently, upon the addition of principal component
analysis and terrain features, there was a varying degree of improvement in both overall
accuracy and Kappa coefficients for the four algorithms (Figure 2d,e). When applying the
SVM classifier, it exhibited relatively poorer performance in comparison to other classifiers,
with an overall accuracy of 0.7315 and a Kappa coefficient of 0.6388.

Among the four classification algorithms, the RF algorithm exhibited superior perfor-
mance, with an overall accuracy of 0.8496 and a Kappa coefficient of 0.7646. Therefore, this
study relies on the classification results obtained through the RF algorithm to estimate the
aboveground carbon stock in Yunnan Province’s forests. The classification results of the
four algorithms are shown in Figure 2.
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3.1.2. Accuracy Assessment

The classification results of four different classification algorithms are evaluated for
precision using the Confusion Matrix method. The results from the Error Matrix for each
classification algorithm are presented in Figure A1 (Appendix A).

According to Figure 4, it is evident that the RF algorithm outperforms other machine
learning algorithms in terms of Cartographic Accuracy and Consumer Accuracy. Therefore,
the RF algorithm is more suitable for the classification of forest types in Yunnan Province
than other machine algorithms.

Forests 2024, 15, x FOR PEER REVIEW 13 of 29 

 

 

 
Figure 4. Comparison of Cartographic Accuracy and Consumer Accuracy using different features 
and classification algorithms (a) Spectral features (b) Spectral and vegetation index features (c) Spec-
tral, vegetation index, and texture features (d) Spectral, vegetation index, texture, and principal com-
ponent analysis features (e) Spectral, vegetation index, texture, principal component analysis, and 
terrain features. 

3.2. Analysis of Model Variable Correlation 
The Pearson correlation coefficient signifies the linear correlation degree between two 

model variables. The greater the absolute value, the stronger the correlation. Variables 
highly correlated with carbon storage are shown in Figure A2 (Appendix A). Out of the 
selected 80 independent variables, there are 21 variables demonstrating a very significant 
correlation (0 < p < 0.01) with carbon storage. In terms of band spectral characteristics, the 
carbon storage negatively correlates significantly with bands b1-b7 at the 0.01 level. Car-
bon storage positively correlates significantly with canopy density and elevation at the 
0.01 level. Carbon storage is significantly correlated with all other independent variables 
at the 0.01 level. 

3.3. Estimation of Aboveground Carbon Stock in Forests 
Seventy percent of the plot data were used to build multivariate stepwise regression, 

RF regression, and decision tree regression models for carbon stock estimation. The re-
maining thirty percent of the data was allocated for model accuracy validation. 

Utilizing sample data on carbon stock for various forest types and 21 highly corre-
lated modeling factors, optimal models for aboveground carbon stock in different forest 
types were constructed using multivariate stepwise regression, RF regression, and deci-
sion tree regression methods. RF and decision tree rank input factors based on their im-

Figure 4. Comparison of Cartographic Accuracy and Consumer Accuracy using different features
and classification algorithms (a) Spectral features (b) Spectral and vegetation index features (c) Spectral,
vegetation index, and texture features (d) Spectral, vegetation index, texture, and principal component
analysis features (e) Spectral, vegetation index, texture, principal component analysis, and terrain features.
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3.2. Analysis of Model Variable Correlation

The Pearson correlation coefficient signifies the linear correlation degree between two
model variables. The greater the absolute value, the stronger the correlation. Variables highly
correlated with carbon storage are shown in Figure A2 (Appendix A). Out of the selected
80 independent variables, there are 21 variables demonstrating a very significant correlation
(0 < p < 0.01) with carbon storage. In terms of band spectral characteristics, the carbon storage
negatively correlates significantly with bands b1–b7 at the 0.01 level. Carbon storage positively
correlates significantly with canopy density and elevation at the 0.01 level. Carbon storage is
significantly correlated with all other independent variables at the 0.01 level.

3.3. Estimation of Aboveground Carbon Stock in Forests

Seventy percent of the plot data were used to build multivariate stepwise regression,
RF regression, and decision tree regression models for carbon stock estimation. The
remaining thirty percent of the data was allocated for model accuracy validation.

Utilizing sample data on carbon stock for various forest types and 21 highly correlated
modeling factors, optimal models for aboveground carbon stock in different forest types were
constructed using multivariate stepwise regression, RF regression, and decision tree regression
methods. RF and decision tree rank input factors based on their importance and provide
modeling contribution values for each factor. The contribution percentages of modeling factors
for three forest types in this study are depicted in Figure A3 (Appendix A). The results of the
three regression models, obtained after tuning model parameters, are illustrated in Figure 5.
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The accuracy of the carbon storage estimation model is assessed using metrics such as
the coefficient of determination (R2), relative root mean square error, mean squared error,
and mean absolute deviation, derived from the computed values predicted by multivariate
linear stepwise regression, RF regression, and decision tree regression models. From
Figure 5, it is evident that the coefficient of determination (R2) for the broad-leaved forest
model under the multivariate linear stepwise regression framework is relatively low,
amounting to 0.23. The RMSE, rRMSE, and MAE for the same are 35.471, 32.881, and
24.442, respectively. The coefficient of determination (R2) for all three forest types is less
than 0.4, indicating that the values of RMSE, rRMSE%, and MAE are comparably larger. In
the RF regression model, the coefficient of determination (R2) for the broad-leaved forest
model is 0.663 with an RMSE of 24.722, rRMSE of 27.46, and a MAE of 17.64. For both
coniferous and mixed forests, the coefficient of determination (R2) is above 0.6, with R2

values exceeding 0.6 for both RF and decision tree models, indicating good fitting efficacy
for both models. After a detailed comparison, the RF model outperforms the decision tree
model. Consequently, this study employs the RF regression model to estimate the above-
ground carbon storage in Yunnan Province’s forests. Accuracy validation was conducted
using the actual values from the remaining 30% of broad-leaved, coniferous, and mixed
forests. The performance of the model can be interpreted with a scatter plot, which shows
the relationship between the actual carbon stock values and the predicted carbon stock
values (Figure 6). According to the scatter plot, the performance of both RF and decision
tree models is superior to that of the Multivariate Linear model under the same dataset.
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3.4. Spatial Distribution Characteristics of Aboveground Carbon Stock in Yunnan
Province’s Forests

In accordance with the RF regression model, the estimated distribution maps of carbon
storage in Yunnan Province’s broad-leaved forest (Figure 7A), coniferous forest (Figure 7B),
mixed forest (Figure 7C), and overall forest (Figure 7D) have been derived.
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From Figure 7, it is evident that the carbon stock of broadleaf forests is relatively
high (approximately 100–200 t·hm−2) in the high-altitude regions of southern Yunnan
Province, encompassing Puer, Xishuangbanna, Dehong, and the Nujiang Gorge area. This
phenomenon can be primarily attributed to the fact that these regions are situated in the
southern tropical zone of China, characterized by abundant rainfall, an extended frost-free
period throughout the year, and favorable temperatures, all of which are conducive to the
growth of broadleaf forests. Furthermore, the complex topography and the presence of
vast forested landscapes in these areas, such as tropical rainforests, seasonal rainforests,
and montane rainforests, contribute to the higher carbon stocks observed. Additionally,
these regions experience relatively lower anthropogenic disturbances and reduced human
activities, often resulting in greater carbon stocks when compared to more developed
areas. The carbon stock in coniferous forests is significantly higher in the northern regions
of Yunnan, particularly in the northwestern areas of Yunnan, where coniferous forests
comprise a substantial portion of the land cover, resulting in higher carbon stocks, ranging
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between 100 and 250 t·hm−2. However, assessing the carbon stock in the Puer region
of Yunnan is hindered by limited field data for coniferous forests and the uncertainties
introduced by classification errors, leading to suboptimal estimates in this specific area.
Mixed coniferous and broadleaf forests are relatively scarce in distribution across the entire
province, with carbon stocks being uniformly distributed within the range of approximately
50 to 150 t·hm−2. Broadleaf forests exhibit both higher per-unit volume and per-unit
biomass than coniferous forests, resulting in superior carbon sequestration capabilities and
overall carbon stocks. In general, broadleaf forests play a more significant role in carbon
sequestration within the forest vegetation of Yunnan Province compared to coniferous
forests. When compared to mixed coniferous and broadleaf forests, broadleaf forests exhibit
larger areas and higher carbon stocks. Therefore, in the context of expanding forested areas
and increasing forest carbon stocks, it is advisable to consider an appropriate increase in the
extent of broadleaf forests. Figure 7D shows that the distribution of forest carbon stocks in
Yunnan Province is both widespread and predominantly concentrated in the northwestern
and southwestern regions, following a pattern of higher values in the south and lower
values in the north, with a west-to-east decline.

By overlaying the aboveground carbon stock distribution in the forests of Yunnan
Province with DEM data, distinct carbon stock scenarios can be obtained for different
elevation gradients, slopes, and aspects, as illustrated in Figure 8. In the vertical space,
the carbon stock of broad-leaved forests is primarily distributed within the altitude range
of 1500 to 2000 m, accounting for 32.47% of the total aboveground carbon stock of broad-
leaved forests in Yunnan Province. The carbon stock of coniferous forests is predominantly
situated in regions above 2000 m elevation, while the carbon stock of mixed coniferous
and broad-leaved forests is mainly located in areas above 2500 m, constituting 42.60% of
the total aboveground carbon stock of mixed forests in Yunnan Province. Overall, the
carbon storage of forests in Yunnan Province is mainly concentrated in areas above 1500 m.
In terms of slope, the carbon stock in the forests of Yunnan Province is predominantly
distributed within the 10–30◦ range, accounting for 60.95% of the total aboveground carbon
stock in Yunnan’s forests. Regions with slopes exceeding 40◦ exhibit lower proportions of
forest carbon stock due to the steeper incline. Moreover, aside from areas without a specific
slope direction where the carbon stock proportion is relatively minor, the distribution
disparities of aboveground carbon stock in the forests of Yunnan Province among various
slope directions are comparatively small, with distinctions not being prominently evident.
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4. Discussion

Machine learning, as a focal point in the remote sensing field, holds significant impor-
tance in addressing the challenges of vast remote sensing data and the time-consuming
nature of traditional visual interpretation. Numerous machine learning algorithms are
extensively employed for the classification of remote sensing imagery [35–37]. However,
enhancing the classification performance of machine learning algorithms is emerging as
a significant topic of discussion among numerous research scholars. Ghimire [38] incor-
porates the GETIS statistic as a feature variable into the RF classification model, thereby
enhancing the classification performance of the RF algorithm. The resulting Kappa coeffi-
cient accuracy ranges from 0.85 to 0.92. Duro et al. [39], following parameter optimization,
conduct a comparative analysis of three machine learning algorithms: decision trees, RF,
and SVM. The results indicate that RF and SVM exhibit a competitive edge in agricul-
tural landscape classification, with higher overall accuracy and Kappa coefficients when
compared to decision trees.

The optimization of model parameters is of particular importance for non-parametric
models. In the context of RF, the subsampling rate is a crucial parameter for adjusting
both the model’s performance and its robustness [40]. The choice of subsampling rate
has the potential to significantly impact the model’s performance and training speed. A
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higher subsampling rate can reduce training time but may potentially result in model
underfitting. Conversely, a lower subsampling rate may prolong training time, yet it
aids in alleviating overfitting issues. Freeman et al. [41] found that the optimal model’s
subsampling rate was approximately 0.5, while Elith et al. [42] suggested choosing a value
between 0.5 and 0.75. In contrast, the RF optimization model in this study demonstrates
better performance when utilizing a subsampling rate of 0.7. Regarding the number of
trees, Probst et al. [43] advocated setting this parameter as high as possible, while Liaw
et al. [44] research findings suggested that, after a specific number of trees, the model’s
stable accuracy effectively represents its performance. In the present study, when the
number of trees was increased by 150 in the classification algorithm, the RF classification
model exhibited improved performance with higher accuracy, and overfitting was less
likely to occur. In CART and GBRT models, setting the number of trees to 120 and 100,
respectively, yields satisfactory classification performance. In the context of SVM, the key
parameters that influence model performance are the regularization parameter “cost” and
the radial basis function parameter “gamma.” In this study, a radial basis function (RBF)
was used as the SVM kernel function because Rodriguez-Galiano et al. [45] indicated that
RBF was superior to linear, polynomial and sigmoid functions. A larger “gamma” value
may lead to overfitting, while a higher “cost” value can result in the classifier emphasizing
correct classification of the training data, potentially causing overfitting [46]. Therefore,
after repeated testing, we ultimately determined that a “cost” value of 10 and a “gamma”
value of 0.5 yielded the best classification performance.

Most early studies on biomass and carbon storage estimation were based on classical
statistical regression methods, such as linear regression, which assumes a linear relation-
ship between the predictor and predicted variables [47,48]. Nevertheless, the connection
between forest carbon storage and remote sensing data is highly intricate, and conven-
tional statistical regression methods fall short in comprehensively elucidating this intricate
relationship machine learning algorithms such as RF can effectively establish intricate non-
linear relationships between remotely sensed image data with uncertain distributions and
vegetation information. Moreover, they exhibit versatility in integrating data from diverse
sources, thereby enhancing predictive accuracy [49,50]. Yingchang Li et al. [51] conducted
a comparative analysis for estimating biomass in subtropical forests using three algorithms:
Linear Regression, RF, and Extreme Gradient Boosting. The research findings reveal that the
XGBoost model achieved an R2 value of 0.75. Safari [52] employed multi-temporal Landsat
8 spectral data to assess carbon stock in upland Quercus semecarpifolia Sm. forests using
four machine learning algorithms. The outcomes indicate that the RF algorithm generally
exhibited robust results, with an R2 value of 0.66 and a root mean square error of 34.36.
Numerous studies have demonstrated that the collaborative interaction between machine
learning algorithms and remote sensing data can prevent overfitting and significantly im-
prove predictive accuracy compared to the traditional LR model. Gao et al. [53] employed a
variety of machine learning algorithms (K-Nearest Neighbors, Artificial Neural Networks,
SVM, RF) for estimating above-ground biomass in subtropical forests. The results indicate
that machine learning algorithms demonstrate robust performance in AGB estimation. Li
et al. [54] employed Linear Dummy Variable Models and Linear Mixed-Effects Models to
estimate biomass in the Xiangxi region of China. The R2 values for the entire vegetation
set were 0.41, while the R2 for the combined dataset’s LR model was only 0.22. In contrast,
results obtained in this study using the RF machine learning algorithm outperformed the
LR model in terms of R2, RMSE, rRMSE, and MAE. This suggests that the RF algorithm
demonstrates superior performance in carbon storage estimation, reducing the extent of
underestimation and overestimation to a certain degree. It is worth noting that the issue
of low values being overestimated and high values being underestimated when using
machine learning algorithms has not been completely eliminated. This problem has also
been observed in previous studies of non-parametric algorithms for carbon storage or
biomass estimation [55]. The algorithm itself governs the determination of this. Moreover,
a data saturation issue arises when estimating carbon stock using remote sensing data.
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Consequently, we conducted stratified estimation based on forest types, with the goal of
minimizing potential estimation errors.

In most studies on forest carbon stock estimation, the focus is predominantly on the
use of regression methods. Similarly, in studies related to land use classification, the empha-
sis is primarily on classification methods. Research that combines land use classification
with forest carbon stock estimation is relatively scarce. This study combines various classi-
fication methods with regression techniques to estimate carbon stocks in different types of
forests. Compared to traditional studies that focus solely on either land use classification
or forest carbon stock regression, this approach represents a novel challenge. One of the
advantages of machine learning in land use classification is that, compared to traditional
statistical regression methods, machine learning is more suitable for handling the complex
relationships between remote sensing data and vegetation information. This capability
allows for more accurate land use classification. Through a comparative analysis of mul-
tiple algorithms, this study selects the Random Forest algorithm, which is most suitable
for the current research objectives, and optimizes the algorithm parameters to improve
classification accuracy and efficiency. Furthermore, achieving rapid land use classification
is also a crucial issue. In this regard, this study employs data dimensionality reduction
and feature selection to enhance the speed and efficiency of classification. Additionally,
setting appropriate machine learning algorithm parameters can also influence the speed of
classification to some extent, such as adjusting parameters like subsampling rate, number of
trees, learning rate, etc., to achieve the goal of fast and accurate classification. In general, the
more detailed the classification level, the richer the information it can provide. However, it
also increases the complexity of classification and computational costs. When conducting
land use classification, it is important to choose an appropriate classification level based on
the research objectives and data availability. Therefore, this paper divides the study area
into seven categories, with forests categorized into three groups, thereby improving the
accuracy of forest carbon stock estimation. Overall, machine learning algorithms have clear
advantages in land use classification. By optimizing algorithm parameters and appropri-
ately dividing classification levels, it is possible to enhance the detail, speed, and accuracy
of classification. This improvement makes machine learning algorithms more suitable for
application in research and practice related to forest carbon stock estimation.

Furthermore, the study area is predominantly characterized by mountainous and
hilly terrain, featuring significant variations in elevation. These elevation changes lead
to shifts in temperature and precipitation with increasing altitude, resulting in a diverse
range of vegetation forms within the study area. Therefore, remote sensing images exhibit
rich and easily recognizable texture features, underscoring the undeniable importance of
texture images [54,56]. It is notable that the spatial distribution characteristics in our study
area align with the research of other scholars [57–59], indicating that constructing carbon
storage estimation models for different forest types within a large-scale region leads to
greater accuracy and better estimation of carbon sequestration values on a larger regional
scale [60,61]. The primary strength of this study lies in the utilization of the GEE platform
for image classification tasks. All four classification algorithms performed significantly
faster than traditional software classification methods. Research has shown that using this
method can significantly improve classification efficiency. Additionally, the GEE platform,
which can be accessed freely, utilizes Landsat satellite data. The long-term, continuous,
and cost-free nature of this data provides seamless global coverage of long temporal series
surface reflectance, all of which contribute to considerably lowered usage costs. Another
notable aspect of this study is the use of national continuous inventory data as classification
samples, which enhances accuracy. This study classified the forests within the study area
into three different types, thereby improving the accuracy of remote sensing estimation
models. Certainly, research in the field does have certain limitations. In forest classification
studies, numerous factors contribute to classification errors. The most significant factors
leading to misclassification of forest types are the phenomena of “distinct spectra for the
same object” and “the same spectra for different objects.” Additionally, the limitations
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of classification algorithms can introduce bias into the classification process. This study
only utilized four machine learning algorithms, and while these four algorithms achieved
relatively high classification accuracy, there some issues related to the misclassification of
mixed pixels remained. In this study, forest above-ground carbon storage includes only
the carbon stored in live trees and does not encompass the estimation of carbon storage in
other components of the forest, such as shrubs, herbaceous vegetation, the litter layer, and
the soil layer. Additionally, the study did not achieve a dynamic analysis of above-ground
carbon storage in forest vegetation or predict its change trends over time.

The aforementioned study lays the foundation for future endeavors in predicting
forest carbon stocks using continuous time series data. In the subsequent phase of our
research, we plan to leverage the advantages of continuous temporal observations from
Landsat satellites to further investigate the spatiotemporal dynamics of aboveground
carbon storage in the forested regions of the area. Additionally, the ongoing updates and
improvements in classification algorithms are expected to significantly boost the accuracy
of forest classification.

5. Conclusions

This study utilized the Google Earth Engine cloud platform to acquire image feature
parameters of forest vegetation in the study area through Landsat 8 satellite remote
sensing data. Furthermore, it integrated on-site forest survey data. Using four different
algorithms provided by the GEE cloud platform RF, CART, GBT, and SVM for image
classification, the RF classifier exhibited the best performance. It achieved an overall
accuracy of 84.96% and a Kappa coefficient of 76.46%. To account for the carbon se-
questration capacity and carbon storage differences between different forest types, the
modeling approach was refined. Multiple linear stepwise regression, RF regression,
and decision tree regression models were separately established for broadleaf forests,
coniferous forests, and mixed coniferous-broadleaf forests within the study area. The
RF regression model exhibited the best performance, with an R2 value of 0.663 for the
broadleaf forest model, an RMSE of 24.722, an rRMSE of 27.46, and a MAE of 17.64.
For both coniferous and mixed forests, the coefficient of determination (R2) is above
0.6. With R2 values exceeding 0.6 for both RF and decision tree models, indicating good
fitting efficacy for both models. The research results further demonstrate that combining
machine learning classification results with forest carbon stock estimates at a large scale
can yield satisfactory outcomes, providing a reference for rapid and accurate estimation
of forest carbon stocks in other large-scale regions. Moreover, the research findings hold
significant implications for ecological conservation and sustainable forest development
in Yunnan Province, China. The order of above-ground carbon storage in different forest
types in Yunnan Province is as follows: broadleaf forests > coniferous forests > mixed
coniferous-broadleaf forests. This is not only related to the carbon sequestration capacity
of different tree species but is also significantly influenced by the distribution area of
each forest type. The carbon storage in Yunnan Province’s forests is predominantly
concentrated in the northwestern and southwestern regions, with a pattern of higher
carbon storage in the west and south and lower carbon storage in the north and east.
Overall, the carbon storage of forests in Yunnan Province is mainly concentrated in
areas above 1500 m. Regions with slopes exceeding 40◦ exhibit lower proportions of
forest carbon stock due to the steeper incline. Moreover, aside from areas without a
specific slope direction where the carbon stock proportion is relatively minor, the dis-
tribution disparities of aboveground carbon stock in the forests of Yunnan Province
among various slope directions are comparatively small, with distinctions not being
prominently evident.
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Appendix A

Table A1. The volume (V) and biomass (Y) relationship equation and carbon content rate of dominant
tree species in Yunnan Province.

Number Tree Species Accumulation-
Biomass Equation

Carbon
Content

(%)
Number Tree Species Accumulation-

Biomass Equation
Carbon

Content (%)

1 Abies fabri
(Mast.) Craib. Y = 0.4642V + 47.499 49.99 12 Quercus L. Y = 1.1453V + 8.5473 50.04

2 Picea asperata
Mast. Y = 0.4642V + 47.499 52.08 13 Betula L. Y = 1.0687V + 10.237 49.14

3
Keteleeria

fortunei (Murr.)
Carr.

Y = 0.4158V + 41.3318 49.97 14
Schima superba

Gardner &
Champ.

Y = 0.7560V + 8.31 48.34

4 Pinus armandii
Franch. Y = 0.5856V + 18.7435 52.25 15

Liquidambar
formosana

Hance
Y = 0.7560V + 8.31 48.34

5
Pinus

yunnanensis
Franch.

Y = 0.5101V + 1.0451 51.13 16

Other
hard-leaved

broad-leaved
trees

Y = 0.7560V + 8.31 48.34

6
Pinus kesiya

Royle ex
Gordon

Y = 0.5101V + 1.0451 52.24 17
Populus

przewalskii
Maxim.

Y = 0.4969V + 26.9730 49.56

7 Pinus densata
Mast. Y = 0.517V + 33.238 50.09 18 Eucalyptus

robusta Sm. Y = 0.8873V + 4.5539 52.53

8 Other Pines Y = 0.5168V + 33.2378 51.1 19

Other
soft-leaved

broad-leaved
species

Y = 0.4750V + 30.6030 49.56

9
Cunninghamia

lanceolata
(Lamb.) Hook.

Y = 0.3999V + 22.541 52.01 20
mixed

broad-leaved
forest

Y = 0.6255V + 91.003 49.0

10 Cupressus
funebris Endl. Y = 0.6129V + 46.1451 50.34 21

coniferous and
broadleaved
mixed forest

Y = 0.8019V + 12.2799 48.93

11
mixed

coniferous
forest

Y = 0.5168V + 33.2378 51.68

Note: Y represents biomass per unit area in t/hm2; V represents volume per unit area in m3/hm2; carbon content
rate is in percentage. Formula source: Tu Hongtao [20].
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Table A2. Carbon Stock Estimation Modeling Characterization Feature and Calculation Formulas
and Sources.

Feature Types Feature Names Computational Formula

Vegetation Index

Normalized Difference Vegetation Index
(NDVI) NDVI =

(
NIR − RED
NIR + RED

)
Normalized Water Index (NDWI) NDWI = (GREEN − NIR)

(GREEN + NIR)

Ratio Vegetation Index (RVI) RVI = NIR/RED

Difference Vegetation Index (DVI) DVI = NIR − RED

Ratio Vegetation Index 1 (RVI65) RVI54 = SWIR1/NIR

Ratio Vegetation Index 2 (RVI75) RVI64 = SWIR2/NIR

Soil-Adjusted Vegetation Index (SAVI) SAVI = (1 + L)(NIR − RED)
(NIR + RED + L)

Non-Linear Vegetation Index (NLI) NLI = NIR2 − RED
NIR2 + RED

Atmospherically Resistant Vegetation
Index (ARVI) ARVI = (NIR − RED + r(BLUE − RED))

(NIR + RED − r(BLUE − RED))

Enhanced Vegetation Index (EVI) EVI = G × NIR − RED
NIR + C1×RED − C2×BLUE + L

Texture characteristics

Mean Mean = ∑N − 1
i,j=0 i

(
pi,j

)
Variance Variance = ∑N − 1

i,j=0 ipi,j(i − Mean)2

Homogeneity Homogeneity = ∑N − 1
i,j=0 i

pi,j

1 + (i − j)2

Contrast Contrast = ∑N − 1
i,j=0 ipi,j(i − j)2

Dissimilarity Dissimilarity = ∑N − 1
i,j=0 ipi,j|i − j|

Entropy Entropy = ∑N − 1
i,j=0 ipi,j

(
− ln pi,j

)
Second Moment Second Moment = ∑N − 1

i,j=0 ip2
i,j

Correlation Correlation =

∑N − 1
i,j=0 ipi,j

[
(i − Mean)(j − Mean)√

VarianceiVariancej

]
Topographic features Elevation, slope, aspect DEM data extraction in the study area

Tasseled Cap Transformation
Brightness

GEE Platform Database ExtractionGreenness
Wetness

Band Single-band b1, b2, b3, b4, b5, b6, b7

Note: BLUE represents Band 2, GREEN represents Band 3, RED represents Band 4, NIR represents Band 5, SWIR 1
represents Band 6, and SWIR 2 represents Band 7. In the SAVI index, the L value is 0.5. Within the EVI index,
the two correction coefficients for the gain factor G and the soil adjustment factor L, which are C1 and C2, are
respectively 2.5, 0.10, 6.0, and 7.5. In the ARVI index, r is set to 1.0. Texture features are extracted using the gray
level co-occurrence matrix from the seven bands b1–b7 of remote sensing imagery with a window size of 3 × 3.
Pi,j = Vi,j/∑N − 1

i,j=0 Vij where Vi,j denotes the pixel value at the i row and j column position. N signifies the size and
dimension of the moving window. RVI65 and RVI75 represent the Ratio Vegetation Index of Band 6, Band 7, and
Band 5, respectively. Source of vegetation index formula: Ren Yi et al. [27].
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Figure A2. Correlation between carbon stocks and 21 independent variables. Note: b1, b2, b3, b4,
b5, b6, and b7 correspond to the 1st, 2nd, 3rd, 4th, 5th, 6th, and 7th bands of the Landsat 8 imagery,
respectively. NLI stands for Non-linear Vegetation Index; ‘brightness’ and ‘wetness’ represent the
tasseled cap transformation factors. ‘Mean’, ‘entropy’, ‘second’, ‘correlation’, ‘variance’, ‘contrast’
and ‘dissimilarity’ respectively represent Mean Texture, Entropy Texture, Second-Order Angular
Moment Texture, Correlation Texture, Variance Texture, Contrast Texture, and Dissimilarity Texture.
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Figure A3. Contribution Percentages of Modeling Factors for Different Forest Types in Two Models. 
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