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Abstract: Climate change is projected to profoundly influence vegetation patterns and 
community compositions, either directly through increased species mortality and shifts in 
species distributions or indirectly through disturbance dynamics such as increased wildfire 
activity and extent, shifting fire regimes, and pathogenesis. Mountainous landscapes have 
been shown to be particularly sensitive to climate changes and are likely to experience 
significant impacts under predicted future climate regimes. Western white pine (Pinus 
monticola), a five-needle pine species that forms the most diverse of the white pine forest 
cover types in the western United States, is vulnerable to an interacting suite of threats that 
includes climate change, fire suppression, white pine blister rust (Cronartium ribicola), and 
mountain pine beetles (Dendroctonus ponderosae) that have already caused major changes 
in species distribution and abundance. We used the mechanistic simulation model 
FireBGCv2 to simulate effects of climate change and fire management on western white 
pines in a mountainous watershed in Glacier National Park, Montana, USA. Our results 
suggest that warming temperatures favor increased abundance of western white pine over 
existing climax and shade tolerant species in the study area, mainly because warmer 
conditions potentiate fire dynamics, including increased wildfire frequency and extent, 
which facilitates regeneration. Suppression of wildfires reduced the area dominated by 
western white pine, but fire suppression was less effective at limiting burned area extent 
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and fire frequency in a warmer and drier climate. Wildfires created canopy gaps that 
allowed for western white pine regeneration at a high enough rate to escape local  
extirpation from white pine blister rust. Western white pine appears to be a resilient species 
even under fairly extreme warming trajectories and shifting fire regimes, and may provide a 
hedge against vegetation community shifts away from forest types and toward grass  
and shrublands. 

Keywords: climate change; fire; mechanistic model; management; Strobus 
 

1. Introduction 

Climate change is projected to profoundly influence landscape patterns and biotic community 
compositions either directly through increased species mortality and shifts in species distributions, or 
indirectly through processes such as increased wildfire activity and extent, shifting fire regimes, and 
pathogenesis [1-5]. Forests of the western United States are expected to experience significant impacts 
in response to projected future climate change, particularly in mountainous ecosystems [6]. 
Comparison of climate projections with plant-climate profiles for the region suggests that by the end of 
the 21st century approximately 47 percent of the landscape may experience climate conditions outside 
of the current analog, resulting in an increase in montane forest and grassland communities at the 
expense of subalpine, alpine, and tundra ecosystem types [7]. Recent research shows that background 
tree mortality rates in the western United States have increased rapidly in recent decades, likely as the 
result of regional warming and increased water stress [8]. Widespread tree mortality, species range 
shifts, and changes in disturbance regimes have potentially severe negative consequences for 
biodiversity, wildlife habitat, snowpack accumulation and retention, timing and amount of surface 
water runoff, and carbon sequestration [6,9]. Climate-mediated shifts in terrestrial ecosystems are 
occurring in the context of other long-term anthropogenic influences such as land use change, resource 
development, and forest management. These interactions may further serve to shift ecosystems away 
from current conditions [5].  

We developed a simulation modeling experiment using the mechanistic ecosystem process model 
FireBGCv2 [10] to assess the effects of climate changes and fire management on a mountainous, 
forested landscape in the northern Rocky Mountains, USA. We focused on dynamics of western white 
pine (Pinus monticola), a five-needle white pine species that, prior to the 20th century, was a major 
component in forested ecosystems of the inland northwest United States but has been greatly reduced 
in distribution and abundance by a complex set of interacting disturbances—climate change, white 
pine blister rust (Cronartium ribicola), mountain pine beetles (Dendroctonus ponderosae), and 
anthropogenic fire exclusion [9]. Wildfires facilitate regeneration of western white pine forests by 
creating canopy openings that allow seedlings to establish competitively over associated late-seral 
species such as western red cedar (Thuja plicata), western hemlock (Tsuga heterophylla), and grand  
fir (Abies grandis). These climax species are highly susceptible to mortality from insects, root diseases, 
and wildfire; thus, disturbance events would historically have led to ongoing initiation of western  
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white pine forests. This successional pattern once formed the basis for a resilient, shifting mosaic of 
long-lived tree communities in both montane and subalpine habitats of the inland northwest [9].  

We hypothesized that (1) warming temperatures would result in more frequent fires and larger 
annual burned extent over baseline conditions, favoring western white pines over less fire-adapted 
montane tree species; (2) reduced levels of fire suppression would increase the abundance of western 
white pines across the simulation landscape; and (3) warming temperatures would shift western white 
pine communities to higher elevation sites as the result of upslope shifts in temperature isotherms. 
Warming temperatures are expected to alter fire regimes, potentially catalyzing profound shifts in 
vegetation composition [4,11,12]. Fire suppression, widely used in Rocky Mountain ecosystems to 
limit fire damage to human populations, property and perceived negative influences on vegetation, has 
degraded fire-prone forests, changed forest structure and successional patterns, and reduced 
heterogeneity across broad spatial scales [13]. Upward and latitudinal migration of high-elevation forests 
has been previously noted in response to long-term climate trends [14,15]. Temperature-mediated 
species range shifts may be further complicated by altered fire regimes [16-19]. For example, warmer 
temperatures and altered moisture patterns affect fuel availability (vegetation) and fuel moisture, thereby 
increasing fire frequencies in high-elevation forests that historically experienced stand-replacement 
wildfires at long fire return intervals.  

Climate, vegetation, and disturbance interactions are complex and do not operate independently. 
Simulation modeling provides a useful mechanism for assessing these complex and interacting dynamics 
and incorporating uncertainty associated with global climate model projections, particularly in 
ecosystems where primary productivity is constrained by water and/or temperature limitations [20,21] 
and variation in these climate drivers is likely to result in differences in vegetation species 
distributions. Climate projections for the next 20–100 years are consistent in their assessment of 
warming temperatures over the western United States, in most cases outside the estimated natural 
variability [22], although the magnitude of temperature increase varies by emissions scenario and 
general circulation model (GCM) [23].  

Increases in fire frequency and burned area extent are projected under warming future  
climates [3,24,25]. These conditions may provide a suitable environmental context for persistence of 
fire-adapted tree species like western white pine, particularly if shifts in temperature and precipitation 
constrain white pine blister rust infections that currently limit the abundance of the species [26-28]. 
The objectives of our study were to assess whether western white pine, as a disturbance-adapted and 
disturbance-dependent species, might be both resistant and resilient to changing environmental 
conditions, thus serving as an important forest component in future climates. 

2. Western White Pine Communities 

2.1. Ecology 

Western white pine is a North American pine species (genus Pinus subgenus Strobus) that is widely 
distributed across the interior west over 17° of latitude and 13° of longitude, from mesic to xeric 
environments across a range of slopes, aspects, elevations, and soil types [9] (Figure 1). Western white 
pine is a dominant seral species in mesic, montane forest ecosystems in northern Idaho and adjacent 
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areas of Montana, Washington, and British Columbia (inland northwest); and is a minor but 
widespread seral component of drier forests in southern Oregon and subalpine habitats at the southern 
end of its distribution in the Sierra Nevada mountains of California [9,29] (Figure 2). Climate patterns 
in those areas where the species occurs most abundantly include short, warm summer seasons of  
low precipitation and cold winters with heavy snowfall, and climatic controls over distribution are 
lower-elevation moisture deficits and upper-elevation temperature deficits that limit both germination 
and survival of seedlings [30].  

Figure 1. Historical range of western white pine [31,32]. Areas of greatest abundance 
include northern Idaho and adjacent areas of Montana, Washington, and British Columbia 
(inland northwest). 
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Figure 2. Dense, almost pure 160-year old western white pine stand on a lower north 
slope, Idaho, 1937. US Forest Service photo courtesy of the Forest History Society, Durham, 
NC, USA.  

 

Western white pine is a fire-dependent, fire-adapted species in that its regeneration is facilitated by 
periodic disturbance events such as wildfires that create canopy gaps and allow for competitive 
seedling establishment over shade-tolerant species [9]. The species is considered to be moderately fire 
resistant as the result of relatively thick bark, inflammable foliage, and high crown base [33,34]. 
Western white pines in Glacier National Park occur predominantly within the cedar/hemlock zone 
together with other pioneer species such as Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus 
contorta), and western larch (Larix occidentalis) [35,36]. Prior to the 20th century, wildfires in Glacier 
National Park occurred frequently enough so that few stands in these zones existed as climax forests of 
cedar and hemlock but were instead dominated by pioneer species at various stages of successional 
development [37]. Whereas episodic wildfire events led to establishment of western white pines, 
continuous pressure from native insects and pathogens maintained stand dominance through removal 
of less tolerant competing species. Thus, a landscape-scale complex of white pine dominated forest 
remained stable and productive through multiple disturbance cycles [38]. 

Western white pines are highly valued for both ecological and economic reasons. As a pioneer 
species trees facilitate landscape reforestration following wildfires [9]. In addition, the species is an 
important habitat component for a variety of mammals, avifauna, and insects [34], and because of its 
historically high productivity and long life contributed substantially to landscape carbon storage by 
live biomass [38,39]. Western white pine is highly valued as a timber species because of its 
productivity, height, and large diameter, and because its wood is straight-grained, non-resinous, and 
exhibits dimensional stability [9,34,40]. Sites ecologically suited for western white pine growth 
represent some of the most productive timber lands in the United States in terms of wood volume, and 
until 1980 lumber production exceeded 200 million board feet annually, peaking in 1937 at 563 million 
board feet [41,42]. 
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2.2. Threats to Persistence and Management Responses 

Principal threats to persistence of western white pine are fire suppression and subsequent 
replacement by shade-tolerant climax species, the fungal pathogen white pine blister rust, and to a 
lesser degree mountain pine beetles [43]. Prior to the 20th century, the species was dominant on more 
than 2 million ha in the inland northwest, although less than ten percent of that area currently contains 
a significant western white pine component [38,44]. Aggressive, nationwide fire suppression policies 
were initiated by the US Forest Service following the wildfire season of 1910, in which one and a half 
million hectares burned in the inland northwest [13]. Exclusion of wildfire from fire-prone western 
landscapes has resulted in a shift from tall western white pine-western larch stands to relatively short, 
closed grand fir and western hemlock-western red cedar stands in mesic forests [45]. 

White pine blister rust was introduced to the United States in the early 20th century and spread 
quickly throughout North American white pine communities [46,47], reducing western white pine 
abundance by up to 95 percent across the western United States [28]. Regeneration potential of these 
stands is considered limited, as remaining trees are widely scattered and genetic resistance to white 
pine blister rust is relatively low [38]. Early attempts to mitigate blister rust infection on white pines 
focused on eradication of shrubs of the genus Ribes (currants and gooseberries), the alternate and telial 
host for C. ribicola (for a thorough discussion of Ribes ecology and blister rust pathology see [48]). 
These efforts were abandoned in the 1960s in favor of current management strategies including 
conservation of heritable resistance traits, identification and protection of resistant trees, development 
of focused nursery breeding programs to increase resistance, outplanting of rust resistant stock, 
biological and chemical rust controls, silvilcultural practices designed to minimize Ribes germination, 
and removal of infected host trees or blister rust cankers [40,43]. Factors considered to be critical for 
white pine restoration efforts are incorporation of current science into management planning, timely 
and proactive intervention to protect intact stands, development of species-specific conservation and 
recovery plans, and prioritization of restoration areas based on access and funding [9,43]. Reduction in 
fire suppression or broad-scale prescribed fire treatments have not been explored as a management tool 
for restoring western white pine ecosystems, although thinning treatments have been used to reduce 
shade-tolerant competitors [49]. 

3. The FireBGCv2 Model 

FireBGCv2 is a cumulative effects model developed to assess long-term trends in landscape 
ecological regimes. The model is not intended as a prognostic tool for near-future predictions, but is 
best used to simulate interactions of disturbance, climate, and vegetation across ecological (centuries) 
time scales. Because the FireBGCv2 model contains many stochastic elements results must be 
summarized across multiple model replicates to determine trajectories of landscape behavior and 
response [10]. As with most mechanistic models, simulation results should be compared in a relative 
framework across multiple scenarios; the specific output values of FireBGCv2 simulations can often 
be inaccurate but they are precise, especially if averaged over many replicates. 

The FireBGCv2 modeling platform combines a mechanistic, individual tree succession model with 
a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components, all 
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with stochastic properties implemented in a spatial domain [10,50-52]. The model is designed around 
five hierarchical levels of spatial organization from coarse, fixed-boundary sites defined by similar 
topography, weather, soils, and potential vegetation; to dynamically-created stands that differ by 
existing vegetation composition and structure; to simulation plots on which ecosystem processes are 
modeled for computational efficiency; to species with well-defined physiological parameters 
(Supplement 1); to individual trees, each of which is explicitly represented with attributes such as age, 
height, diameter at breast height (DBH), and height to live crown (Figure 3). The FireBGCv2 model is 
a useful tool for evaluating climate change impacts on species because climate and weather explicitly 
influence vegetation through temperature and moisture controls on establishment, growth, and 
mortality, and timing and severity of disturbance processes.  

Figure 3. Hierarchical levels of spatial organization in the FireBGCv2 simulation 
modeling platform. Reprinted from [10]. 

 

The ecophysiological algorithms that drive the FireBGCv2 model have been described in detail 
elsewhere [10,53,54]. Briefly, tree growth is simulated using the complex interactions of daily 
temperature, precipitation, attenuated radiation, and soil moisture. For each species in the model, thermal 
limits are defined by minimum, maximum, and optimal growing degree days (GDD, base 3 °C). 
Temperatures outside of this range affect trees through a reduction in the annual growth increment  
and eventual mortality. Tree regeneration is driven by soil moisture, litter depth, and long-term 
climate-influenced cone crop production. Long-term temperature and precipitation data are used to 
compute fire ignitions and daily weather drives fuel moistures that dictate fire spread. Moreover, there 
are complex feedbacks among climate, disturbance, and vegetation; for example, fire dynamics are 
responsive to long-term interactions of climate and vegetation that determine spatial and temporal 
patterns of fuel availability. Individual tree mortality is simulated as the result of hydrologic stress, 
crowding, or light reduction; random mortality; or disturbance processes including fire, mountain pine 
beetle attacks, and white pine blister rust. We simulated blister rust infections for five-needle pines 
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when appropriate weather conditions for rust infection were met during the infection period of Julian 
days 230 to 260 (roughly mid-August to mid-September). Infections occurred during this period when 
site daily relative humidity was above 90 percent and daily mean temperature was above 10 °C [55,56]. 
Rust resistance was assigned to a randomly-selected cohort of 0.1 percent of trees for each five-needle 
pine species on the simulation landscape, including western white pine [57]. In infection years, 
remaining trees were infected with blister rust using a probability of mortality function. 

4. Materials and Methods 

4.1. Study Area 

We simulated climate-disturbance interactions on the McDonald watershed of Glacier National 
Park, Montana, USA (MD-GNP), a long, narrow, glaciated valley approximately 43,000 ha in area that 
contains a large lake at its base and is surrounded by rugged mountains (Figure 4). Elevations range 
from 830 to 2,900 meters above sea level (masl), and the landscape is characterized by diverse and 
complex topography, climate, vegetation, and fire regimes. Climate within the MD-GNP watershed  
is mainly inland-maritime with cool, wet winters and short, warm-dry summers [58]. Recorded 
average annual precipitation ranges from 760 millimeters at lower elevations to over 1980 millimeters 
at 1,920 masl, and the majority of annual precipitation occurs as snow [58]. Maximum July daily 
temperatures range from 26 °C in the lower valleys to 18 °C at upper elevations.  

Figure 4. McDonald drainage of Glacier National Park, Montana, USA (MD-GNP). 
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Much of the northern Rocky Mountains west of the continental divide are influenced by a Pacific 
coastal climate regime and as a result species such as western red cedar, and western hemlock (Tsuga 
heterophylla) are present even though their principal ranges lie further westward. Stands of western 
white pine in MD-GNP occur at the species’ eastern range limit [59]. Climax vegetation zones consist 
of low-elevation forests of western hemlock and western red cedar in relatively, warm, moist lakeside 
environments and western larch (Larix occidentalis), interior Douglas-fir, and lodgepole pine  
(Pinus contorta var. contorta) in drier low-elevation areas [36,60]. Upper subalpine forests consist 
primarily of subalpine fir (Abies lasiocarpa), Engelmann spruce (Picea engelmannii), and whitebark 
pine (Pinus albicaulis) [36]. Alpine environments (2,200 masl and above) support Krummholz conifer 
and forb meadow communities [61]. 

Two distinct fire regimes were historically evident on the MD-GNP landscape: large,  
stand-replacement fires at return intervals of 120 to 350 years on moist sites, and surface fires with 
approximately the same return intervals on drier areas of the watershed [62-64]. This mixed-severity 
fire regime featured a combination of fires that killed all trees in some areas and nonlethal underburns 
that killed only small trees and fire-intolerant species in other areas [36]. The complex topography of 
MD-GNP has considerable influence on fire behavior and effects via the spatial arrangement of fuels 
on the landscape. Rocky areas with low accumulation of woody fuels impede fire spread across and 
within the watershed, and moist conditions on north-facing slopes often prevent spread of fire from the 
drier south-facing slopes [36].  

4.2. Simulation Design 

We implemented a factorial simulation experiment with climate scenarios and fire management as 
factors, resulting in nine scenarios (Table 1). Simulations were run for a 600-year period, twice the 
length of the historical fire return interval for most of our study area. We performed five replicates for 
each scenario to account for the stochastic nature of many model processes including cone crop 
abundance, tree mortality, and wildfire origination [10]. Detailed simulation methods are given in 
Keane et al. [52]; briefly, site, stand and tree input spatial data layers and data files needed to 
parameterize and initialize the simulation landscape were quantified from field data, the literature, 
existing spatial data layers, and satellite imagery. We defined nine site types within the watershed 
based on biophysical setting and potential vegetation, including low-, mid-, and high-elevation wet and 
dry sites and a high-elevation site comprised of rock outcrops, perennial snowfields, and low 
shrublands (Figure 4 and Table 2). Spatial inputs used a 30-m grid cell resolution. The initial model 
vegetation for MD-GNP, extrapolated to a landscape scale from our plot-based field data, consisted 
mainly of Douglas-fir (22 percent) and subalpine fir dominated stands (33 percent), with lesser 
amounts of other conifer species and shrublands (Figure 5). 
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Table 1. Factorial simulation design with three climate factors and three fire  
management factors.  

Climate factors 
Fire management factors 

No fire suppression 50% fire suppression 98% fire suppression 
Baseline climate Base_f Base_50 Base_98 

A2 climate scenario A2_f A2_50 A2_98 
B2 climate scenario B2_f B2_50 B2_98 

Table 2. Biophysical site characteristics of the MD-GNP simulation landscape. 

Site Biophysical setting Potential vegetation 
Elevation 
range (m) 

Elevation 
mean (m) 

Area (ha) 

1 Low-elevation, wet 
Tsuga heterophylla,  
Abies lasiocarpa,  
Pseudotsuga menziesii var. glauca 

829–2,354 1,397 2,840 

2 High-elevation, dry 
Abies lasiocarpa,  
Picea engelmannii,  
Pinus albicaulis 

1,076–2,674 1,888 4,836 

3 Mid-elevation, dry 
Abies lasiocarpa,  
Pinus albicaulis,  
Picea engelmannii 

919–2,714 1,650 7,881 

4 High-elevation, wet 
Abies lasiocarpa,  
Picea engelmannii 

1,081–2,338 1,835 5,053 

5 Low-elevation, dry 
Pseudotsuga menziesii var. glauca,  
Pinus contorta var. contorta,  
Larix occidentalis 

831–1,855 1,279 7,480 

6 Mid-elevation, wet 
Pseudotsuga menziesii var. glauca,  
Picea engelmannii,  
Pinus contorta var. contorta 

1,013–2,054 1,488 4,523 

7 Low-elevation, wet 
Abies lasiocarpa,  
Pinus contorta var. contorta,  
Tsuga heterophylla 

877–1,434 1,074 1,582 

8 Low-elevation, dry 
Abies lasiocarpa,  
Tsuga heterophylla,  
Thuja plicata 

829–1,199 1,026 3,749 

9 
High-elevation, dry 

w/barren areas 
Low shrubs 1,205–2,909 2,211 5,091 
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Figure 5. MD-GNP initial stand-level dominant vegetation with percent of simulation 
landscape occupied (a) and site characteristics (b).  

 

4.2.1. Climate Factors 

Baseline climate data were developed from a 44-year (1950–1994) daily instrumental weather 
record from a National Climatic Data Center cooperative weather station located at West Glacier in the 
McDonald watershed [65]. We further used the Mountain Climate Simulator (MT-CLIM) to modify 
this weather stream for individual sites using elevation, slope, and aspect corrections for temperature and 
precipitation [66,67]. Baseline climate for the duration of the 600-year simulation was a repeated cycle 
of the resulting 44-year weather record.  

We developed climate change scenarios by adjusting the baseline weather with temperature and 
precipitation offsets applied over Julian day ranges corresponding to northern Rocky Mountain 
seasons. Values for these offsets and adjusted starting and ending atmospheric CO2 levels (Table 3) are 
relative to a 1950–1999 base period from the Hadley Centre (UK) HadCM3 general circulation model 
(GCM), using an average of grid points corresponding to the Pacific northwest region [68] for A2 and 
B2 emissions scenarios from the Intergovernmental Panel on Climate Change (IPCC) Special Report 
on Emission Scenarios (SRES) [69]. Differences in these climate projections result from alternate 
trajectories of global anthropogenic drivers [15], and are considered “high” (A2) and “medium low” 
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(B2) in terms of cumulative greenhouse gas emissions [69]. The A2 scenario leads to significant changes 
in regional climatology; specifically hotter-drier summers (+6.7 °C, −34 percent precipitation) and 
warmer-wetter winters (+2.5 °C, −11 percent precipitation) as compared with current conditions. The B2 
scenario projects warmer- wetter summer conditions (+2.1 °C, +24 percent precipitation) and warmer but 
slightly drier winters (+1.8 °C, −1.0 percent precipitation) across the study region. Temperature and 
precipitation offsets and CO2 levels were ramped up in even annual increments for the first 100 years 
of the simulation and then held at those levels for the following 500 simulation years. 

Table 3. Seasonal temperature (°C) and precipitation (%) offsets and starting and ending 
atmospheric CO2 concentrations (ppmv) for A2 and B2 climate scenarios.  

Julian day range A2 climate B2 climate 
1–60 2.5 °C, 1.11% 1.8 °C, 0.99% 

61–150 3.0 °C, 1.02% 1.0 °C, 1.17% 
151–242 6.7 °C, 0.66% 2.1 °C, 1.24% 
243–365 4.6 °C, 0.93% 1.6 °C, 1.05% 

starting CO2 369 369 
ending CO2 856 621 

4.2.2. Fire Management Factors 

We incorporated three fire regimes: a no suppression strategy in which all ignited fires were 
allowed to burn, and two fire management scenarios representing moderate (50 percent)  
and aggressive (98 percent) levels of fire suppression. The 50 percent level is aligned with a federal 
management strategy that was first implemented in the 1960’s as wildland fire use or wildland fire  
for resource benefit (WFU) [70], whereas 98 percent is the proportion of fires successfully suppressed 
during initial attack in recent decades [71]. For all fire regimes, the frequency of ignitions per site  
was scaled to historical fire return intervals calculated using fire chronologies, fire history data, and 
fire atlases for Glacier National Park and elsewhere [50]. The fire management routine randomly 
extinguished 50 or 98 percent of ignitions to simulate the effects of fire suppression. Points of origin of 
simulated fires were stochastically predicted at a yearly time step across the simulation landscape  
and climate, fuels and fire management were mechanistically linked such that the stand-level 
probability of fire occurrence was scaled to the size of the stand, level of fire management, and climate. 
The potential for a stand to experience ignition (burnability) was determined by the amount and type of 
fuel in the stand [10].  

4.3. Model Output and Analysis 

Our simulation experiment produced both non-spatial and spatial output files. Non-spatial, stand-level 
output contained an array of variables aggregated by simulation year. We summarized stand area and 
dominant tree species per stand by basal area using data management and analysis tools in the R 
statistical software package [72]. Non-spatial, landscape-level output included cumulative number of 
wildfires, average and maximum fire size, and cumulative area burned during each simulation year. 
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5.2. Wildfire Patterns 

We observed both climate-potentiated and management controls on fire dynamics. Climate changes 
resulted in increased mean number of fires, number of years in which fires burned (fire years), and area 
burned over baseline climate. Fire regime changes were distinctly more pronounced for the A2 than B2 
climate scenario. The warmer and drier A2 climate decreased fire rotation (number of years required to 
burn the entire simulation landscape) and mean and median fire size over baseline or B2 climates 
(Table 5). Further, the A2 scenario shifted the distribution of burn frequency on the simulation 
landscape such that pixels burned more frequently over the 600-year simulation period compared with 
baseline climate, regardless of fire management (Figure 8). The B2 climate scenario had little effect on 
the per-pixel burn frequency compared with baseline climate, suggesting that the warmer and drier 
conditions associated with the A2 climate represent a threshold for increased wildfire size and 
frequency. For all climate scenarios fires were concentrated in mid- and upper-elevation sites where 
fuels were plentiful and moisture was more limited; moist, low-elevation lakeside sites experienced 
fewer fires (Figure 9).  

Table 5. Mean number of fires and fire years, cumulative area burned, fire rotation, and 
mean and median fire size for all climate and fire management scenarios, averaged across 
replicates. Italicized values are one standard deviation. 

No fire suppression 
Base A2 B2 

Mean # fires (SD) 827 (24.71) 1,742 (35.53) 957 (21.75) 
Mean # fire yrs. (SD) 350 (4.72) 493 (10.89) 390 (4.85) 

Cumulative area burned, 
ha (SD) 

183,482  
(14,827.39) 

633,124  
(88,955.27) 

240,842  
(28,170.19) 

Fire rotation, yrs. 141 41 107 
Mean fire size, ha 11.66 3.99 8.41 

Median fire size, ha 2.79 0.81 1.89 
50% suppression 
Base A2 B2 

Mean # fires (SD) 407 (23.72) 918 (31.92) 519 (9.71) 
Mean # fire yrs. (SD) 225 (13.01) 382 (7.33) 274 (7.89) 

Cumulative area burned, 
ha (SD) 

98,003  
(17,614.48) 

431,528  
(61,551.76) 

124,746 
 (17,590.91) 

Fire rotation, yrs. 264 60 207 
Mean fire size, ha 18.89 7.92 15.57 

Median fire size, ha 6.03 1.71 4.23 
98% suppression 
Base A2 B2 

Mean # fires (SD) 14 (6.10) 38 (6.91) 19 (4.83) 
Mean # fire yrs. (SD) 9 (4.87) 28 (3.56) 15 (4.47) 

Cumulative area burned, 
ha (SD) 

3,508  
(4,102.43) 

18,597  
(17,128.46) 

4,183 
(4,274.28) 

Fire rotation, yrs. 7363 1389 6175 
Mean fire size, ha 28.99 36.12 25.20 

Median fire size, ha 8.33 13.23 9.77 
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Predictive landscape simulation models such as FireBGCv2 can be useful for forest ecosystem 
analysis and management because they combine both mechanistic and empirical approaches, are flexible 
enough to allow for the emergence of novel landscape patterns, and can incorporate key disturbance 
processes that shape landscape structure, composition, and productivity [80,81]. The FireBGCv2 
model is one of a small family of models that simulates ecological dynamics at fine-enough spatial and 
process scales to be useful for forest ecosystem management, while also accounting for broad-scale 
drivers and processes such as climate changes and wildfire [82-84].  

6.1. Wildfire Patterns 

We observed a pronounced increase in cumulative area burned and mean number of fire years for 
the A2 climate scenario compared with baseline or B2 climates. Warm and dry weather conditions 
have long been associated with large fire years in the northern Rocky Mountains and across the 
western United States [17,74,85,86], and shifts in fire frequency and extent have been predicted with 
changing climates [3,24,25]. Although the B2 climate scenario represents warmer conditions as 
compared with the baseline weather data, temperature shifts were lower in magnitude than in the A2 
scenario and were accompanied by a nearly 25 percent increase in precipitation over baseline conditions 
during the typical late summer fire season in the Northern Rocky Mountains. Fuel moistures are critical 
in determining fire potential and are highly responsive to ambient environmental conditions [19]; thus, 
the increased precipitation associated with the B2 scenario provided enough moisture to the landscape 
to buffer the effects of warming temperatures on wildfire behavior. 

Not surprisingly, for each climate scenario fire suppression factors reduced the number of fires, fire 
years, area burned, and fire rotation as compared with no the fire suppression scenario. However, a 
comparison of fire patterns across climate and fire management scenarios indicates that 50 percent fire 
suppression in A2 climate resulted in more fires and fire years and a larger cumulative area burned as 
compared with no fire suppression and baseline climate. This suggests that warming conditions may 
limit the effectiveness of fire suppression as a control on area burned, as has been previously noted, 
potentially requiring new fire and fuels management strategies and policies [87,88].  

Species composition influences fire dynamics via controls on fuel loading and forest structure. 
Species characteristic of fire-prone forests often exhibit morphological features that limit potential  
for stand-replacing crown fires; for example, western white pine has a lower bulk density, thinner 
crown, and higher crown base than climax species such as grand fir, western hemlock, and western red 
cedar [89]. Thus, increased wildfires that facilitate the establishment of western white pine over other 
less fire-adapted species also serve to reduce the risk of high intensity wildfires that are characteristic 
in areas of heavy biomass and fuels accumulation [13]. 

6.2. Western White Pine Dynamics 

Our objective was to test whether climate and disturbance interactions influenced abundance and 
distribution of western white pine-dominated stands within MD-GNP. The study location provided an 
ideal ecological context within which to perform this simulation experiment because of its diversity of 
vegetation zones, complex terrain, and varied fire regimes. As with other mountainous ecosystems in 
the western United States, MD-GNP is highly sensitive to climate changes and climate change effects 
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that are likely to transform aspects of its biophysical, botanical, ecological, and hydrologic 
characteristics in the coming decades [6,90-92]. Whereas recent model simulations suggest that 
synergistic interactions of climate change and wildfires may drive ecosystems away from historical 
analogs [12,93], our results showed the re-emergence of a species that once dominated similar systems 
across the inland northwest prior to fire suppression and white pine blister rust infection. The resilience 
of this species under warming climates and shifting fire regimes suggests that this species may serve as 
a hedge against shifts from forested ecosystems toward grass- and shrublands that have been projected 
with climate change and increased wildfire activity [12]. 

Wildland fire was an historically important component of many forests in the western US, as 
evidenced by many resident species that exhibit morphological and physiological adaptations that 
provide survival advantages during fire events [59,94]. It is believed that past uncontrolled fires did 
not, at any one point in time, completely burn over a given landscape, because many stages of 
successional development were usually present [59]. The resulting landscape mosaic was 
heterogeneous in terms of both species composition and structure, attributes that helped to protect 
landscapes from widespread wildfires and disease and pest epidemics [13]. 

The emerging predominance of western white pine on MD-GNP, especially in mid- and  
high-elevation stands, resulted from several interacting factors: (1) survival—fires increased in 
warming climates and with lower levels of higher suppression, and western white pine is better able to 
survive fire than many other conifer species in the watershed; (2) regeneration—western white pine, 
unlike many of the other species present on the simulation landscape, is a fire-adapted species that 
regenerates well following disturbance; (3) reproduction—the high rate of seedling regeneration 
allowed enough western white pines to escape blister rust infection and survive to reproductive 
maturity, providing an ongoing seed source; and (4) resilience—the species has superior height and 
diameter growth under a wide range of temperatures, as compared with most of its competitors. The 
widespread spatial distribution of western white pine across MD-GNP after the first 200 years of the 
simulation ensured that even in years with frequent, widespread fires reproductively mature trees exist 
to serve as seed sources for afforested stands. This suggests that spatial patterning of stands across 
landscapes is an important factor in determining persistence of species and communities in dynamic, 
disturbance-prone ecosystems. 

6.3. Model Limitations and Bias 

Western white pine was not a dominant tree species on our initial simulation landscape as 
characterized by our field data. However, the species increased in abundance under baseline climate 
and an aggressive fire suppression scenario that is aligned with current federal fire management policy. 
These results suggest that, if our model was simulating climate-disturbance-vegetation interactions 
appropriately, western white pine should have been dominant in at least some portion of the initial 
landscape. We posit several possible explanations for the difference between simulated and initial 
observed landscape composition. First, western white pine may actually be present on more of  
MD-GNP and at greater abundance than our field data suggested. Testing for this potential effect could 
be achieved through additional field validation of model results. Second, although our model included 
mortality from white pine blister rust and mountain pine beetles, our simulation algorithms may have 
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underestimated the effects of real-world host-pathogen and pest dynamics, particularly under rapidly 
changing climate regimes. For example, it has been noted that rust mortality has recently occurred in 
areas previously thought to be unsuitable for infections [95] and insect species have expanded their 
ranges in response to increasing temperatures [2]. Third, our model results are dependent on species 
parameters, especially with regard to thermal limits, stress tolerance, and seedling establishment rates. 
A high rate of western white pine seedling regeneration following simulated wildfires likely resulted in 
the survival of sufficient rust-resistant individuals to achieve stand dominance over less disturbance-
adapted species. Because we did not track rust infection in individual trees, we cannot provide 
infection and mortality rates for five-needle pine species, although future studies should include this 
information. Fourth, a century of very low fire activity in Glacier National Park may have suppressed 
western white pines, and even the limited fire activity associated with our 98 percent fire suppression 
scenario created sufficient canopy gaps over time for tree establishment. Fire atlas data document 
seven fires that burned in MD-GNP from 1926 to 2003, comprising approximately 85,000 hectares of 
cumulative burned area, although some fire perimeters overlap and much of the watershed did not burn 
during the 20th century [96]. Finally, as with all models that simulate climate change effects on species 
and ecosystems, our results were limited by the extent to which our models can account for potential 
novel effects and no-analog conditions. These include genotypic and phenotypic plasticity, migration 
processes, biotic interactions, feedback processes, emerging stressors, and climate-induced shifts in 
fundamental ecological processes such as seed germination phenology [78,97-99]. 

6.4. Conclusions 

Although models are seen as useful tools for assessing long-term changes in ecosystems in response 
to natural and anthropogenic stressors, they have been criticized for failing to provide near-future 
predictions with the level of accuracy and precision required by resource managers [100]. 
Alternatively, models have been recognized as useful tools for exploring possible futures, particularly 
given uncertainty associated with magnitude and rate of climate changes [78]. Emerging issues in forest 
management include development of treatments to facilitate resistance or resilience to climate changes 
by maintaining natural fire regimes, conserving diverse gene pools, and protecting primary forests [101]. 
Our results suggest that vegetation of the MD-GNP watershed will shift in response to warming 
temperatures and increased wildfire activity; and that current fire suppression policies may be less 
effective at limiting burned extent and fire frequency in future climates than under current conditions. 
These shifts in fire dynamics, coupled with changes in species distributions and abundance resulting 
from climate-disturbance interactions, suggest that future conditions may require new fire and fuels 
management strategies and policies. 

In addition, we observed that increased fire activity on the simulation landscape resulted in the  
re-establishment of a fire-adapted, resilient species that could successfully persist under future climate 
regimes. Because this species is at high risk for mortality from white pine blister rust, its future 
distribution and abundance may be limited by the presence of this disease and by the activity of native 
insects such as mountain pine beetles, presenting an additional management challenge. In order to 
ensure the continued presence of western white pine in Glacier National Park, we recommend 
continuation of efforts to develop genetic resistance to white pine blister rust, outplanting of trees with 
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improved resistance, and use of prescribed fire or wildfires to restore natural disturbance to western 
fire-adapted forests. 
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