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Abstract: Distribution models of invasive plants are very useful tools for conservation 

management. There are challenges in modeling expanding populations, especially in a 

dynamic environment, and when data are limited. In this paper, predictive habitat models 

were assessed for three invasive plant species, at differing levels of occurrence, using two 

different habitat modeling techniques: logistic regression and maximum entropy. The 

influence of disturbance, spatial and temporal heterogeneity, and other landscape 

characteristics is assessed by creating regional level models based on occurrence records 

from the USDA Forest Service’s Forest Inventory and Analysis database. Logistic 

regression and maximum entropy models were assessed independently. Ensemble models 

were developed to combine the predictions of the two analysis approaches to obtain a more 

robust prediction estimate. All species had strong models with Area Under the receiver 

operator Curve (AUC) of >0.75. The species with the highest occurrence, Ligustrum spp., 

had the greatest agreement between the models (93%). Lolium arundinaceum had the most 

disagreement between models at 33% and the lowest AUC values. Overall, the strength of 

integrative modeling in assessing and understanding habitat modeling was demonstrated. 
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1. Introduction 

Invasive species are now a major threat to ecosystems, with the rapid anthropogenic acceleration of 

species introductions over the last century [1] and the subsequent impact of the species on economies 

and ecosystems [2]. Invasive species are now recognized as a major component of global 

environmental change [3–5]. Tools that can accurately assess the impacts of invasive species are 

becoming essential for identifying areas where management and monitoring efforts should be focused. 

Species distribution models (SDMs) are one such tool. They are widely used in ecology [6,7] and have 

broad applications in assessing the relationships between species occurrence, the environment and the 

impact of ecological change [8]. For invasive species, SDMs are useful for predicting species 

distributions and ecological niches, and also for assessing potential spread and the suitability of areas 

that have not yet been invaded. SDMs can be used to assess the impacts of external environmental 

conditions such as climate change on species distribution [9] and the potential impacts of the species 

on the landscape [10]. 

The strength of a SDM is determined, in part, by the correlation of species distribution to input 

parameters [11] and the number of observation points. Input parameters are often derived from 

landscape-level digital information and provide a representation of the environmental heterogeneity of 

the landscape. Typical parameters used in SDM are those that represent climate, habitat diversity, 

landscape characteristics, habitat patch size and shape, connectivity, regional and local diversity of 

biota, vegetation structure, and the intensity, frequency and magnitude of disturbance [12–14], all of 

which vary across spatial and temporal scales [12,15]. Collectively, these factors result in interlaced 

patterns of species distribution at multiple spatial and temporal scales [16]. Geospatial datasets 

including remotely sensed data offer significant opportunities for providing information on these 

characteristics on a larger scale. 

There are numerous methods for developing SDMs, many of which have been applied to invasive 

plants including logistic regression [17,18], fuzzy envelope models [19], genetic algorithms [20], 

maximum entropy [18,21], and general additive models [22]. These models differ in the underlying 

assumptions and algorithms, and in their requirement for presence-only species data or for both 

presence and true absence data. These approaches can be used individually or collectively in an 

ensemble approach. Ensemble SDMs combine the strengths of several models while limiting the 

weakness of any one model [23,24] and offer a broad perspective to model results. 

In this paper, we illustrate the application of two modeling techniques, logistic regression and 

maximum entropy, and the ensemble model approach. We discuss the impact of the size of the dataset 

on the resulting model by comparing the results from three species with different levels of prevalence. 

We focus on three of the invasive plant species of concern in the Cumberland Plateau and Mountain 

Region in the United States: privet (Ligustrum spp.), tall fescue (Lolium arundinaceum) and silktree 

(Albizia julibrissin). 
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2. Methods 

2.1. Study Area 

The Cumberland Plateau and Mountain Region (CPMR) extends from northern Alabama, through 

Tennessee and Kentucky, and into Virginia [25–28] (Figure 1). The region covers 59,000 km2 and has 

one of the most diverse woody plant communities in eastern North America [29]. Forest resources and 

management are a major part of the CPMR economy, particularly in rural communities. Approximately 

70% of the land in this area is forested, with over 75% of this comprised of hardwoods [29,30]. 

Elevations range from 200 to 1200 m [31], with annual rainfall varying from 940 to 1900 mm, and 

mean minimum winter temperatures of −7 °C to 1.5 °C [32]. Like many of the forests in eastern North 

America, the native deciduous hardwood forests of the CPMR are characterized by a long history of 

land-use change driven by agricultural conversion and timber extraction. More recently, urban sprawl 

and large-scale conversion of land to intensively managed pine plantations have become major 

contributors to land cover change [33]. McGrath and others [34] found that 14% of native forest cover 

was lost between 1981 and 2000, predominantly as a result of native forest conversion to pine 

plantations. Of the 33 invasive species monitored by the United States Forest Service (USFS) [35],  

25 of them are found in the CPMR: four trees, seven shrubs, seven vines, five grasses and two forbs. 

Figure 1. Study area location map: Cumberland Plateau and Mountain region in the 

southeastern United States. 
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2.2. Species of Interest 

Study species were selected to represent a range of life forms (grass, shrubs, and trees) and 

occurrence levels (moderate and low percentage of Forest Inventory and Analysis database (FIA) plots 

occupied) across the CPMR. Privet (the shrub) had moderate occurrence (16% occupied plots), and tall 

fescue (the grass) and silktree had low occurrence (5% and 2% respectively). 

2.2.1. Privet 

There are at least eight species of invasive privets (Ligustrum spp.) that have been introduced from 

Asia and Europe into the southern United States as ornamentals [36–38]. The USFS collects 

information on two species of privet, Chinese privet (L. sinense) and European privet (L. vulgare) [35]. 

It can be difficult to distinguish between privet species and instead we have modeled the Ligustrum 

genus as a whole. Privets are the second most abundant invasive plants in the southern region and the 

most prevalent in the understory of bottomland hardwood forests [39,40]. Chinese privet is the most 

common species, being present in 20 states ranging from Texas to Massachusetts [36]. All species are 

still being produced, sold and planted as ornamentals. Privets severely alter natural habitat and critical 

wetland processes, forming dense stands to the exclusion of most native plants and replacement 

regeneration. The abundance of specialist birds and the diversity of native plants and bees are 

dramatically reduced by privet thickets [41,42]. The dense thickets impact forest communities by 

shading and out-competing many of the native species. Privet can survive in a variety of habitats, 

including wet or dry areas, but dominates best in mesic forests [39]. Privets produce abundant seeds 

that are viable for about a year [43], which are predominately spread by birds [44]. Privet also has the 

ability to increase in density by stem and root sprouts. The fruit produced, however, provides a 

substantial food source for birds and other wildlife [45]. 

2.2.2. Tall Fescue 

Tall fescue is a grass native to Europe and was first introduced into the United States in the early to 

mid-1800s. It has been widely planted for turf, forage and erosion control [46]. Tall fescue occurs 

throughout the continental United States [36] and has been reported as invasive in natural areas [47]. It 

is still promoted by a variety of agricultural agencies; however, the USFS Southern Region has 

prohibited the use of endophytically enhanced tall fescue on USFS lands [39]. Tall fescue is a  

cool season grass that invades native grasslands, savannahs, woodlands and other high-light natural  

habitats [46]. It spreads mainly through rhizomes and can form extensive colonies that compete with 

and displace native vegetation. Viable seeds can be dispersed by grazing animals and birds, and remain 

in the seed bank for extended periods of time [39]. Some varieties of tall fescue have a mutualistic 

fungal endophyte (Neotyphodium coenophialum) that gives them a competitive advantage over some 

plants, including legumes [48]. As a result, communities dominated by tall fescue are often low in 

plant species richness [49]. In addition, alkaloids produced by endophyte-infected tall fescue may be 

toxic to small mammals and of low palatability to ungulates [50]. Tall fescue, which has replaced 

many acres of native grass, does not supply the type of food and cover that many birds need in order to 

thrive [51]. The grass supports only a limited number of insects [52], which in turn, are an important 
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food for both quail and turkey. Grasslands dominated by endophyte-infected tall fescue are expected to 

support less total herbivore biomass and less predator biomass [51,52]. Tall fescue tolerates nutrient-poor 

and compacted soils, and grows well in disturbed areas such as highway and railroad right-of-ways. 

Annual nitrogen inputs are needed to maintain optimal grazing conditions [46]. Tall fescue is adapted 

to cool, humid climates with moist soils of a pH 5.5 to 7.0 [46]. It will produce top growth when soils 

are as low as 5 °C and it continues growing into late autumn in the southern United States [46]. 

2.2.3. Silktree 

Silktree is a legume native to south and eastern Asia. It is a small to medium-sized tree that can 

grow up to 11 m tall. It was introduced to the United States in 1745 and widely planted as an 

ornamental. Silktree is now found throughout the southern United States along roadsides, beside 

parking lots bordering power lines and encroaching into forests. Silktree reproduces both vegetative 

and by seed [39]. The seeds are encased with impermeable seed coats that allow them to remain 

dormant for many years [53]. Because silktree is sun tolerant, it can grow in a variety of soils and can 

produce large seed crops and re-sprout when damaged. It is a strong competitor of native trees and 

shrubs in open areas and forest edges. Dense stands of silktree severely reduce the sunlight and 

nutrients available for other plants [39]. Silktree can tolerate partial shade but is rarely found in forests 

with full canopy cover or at higher elevations (above 900 m) where cold hardiness is a limiting factor. 

However, silktree can become a serious problem along riparian areas where it becomes established 

along scoured shores and where its seeds are easily transported in water [39]. Although it has been 

identified as being invasive in forests in the southern United States [39], silktree is still being 

encouraged as a tree crop species [54]. Ares and others [54] state that in the southern United States, 

silktree has been considered in agroforestry practices as a forage species for goats and cattle [55,56], 

and for soil fertility improvement in permaculture systems [57–59]. However, planting of silktree 

should be evaluated on a site-specific basis because it can become invasive, especially in riparian  

areas [60]. This mixed message may increase the planting of silktree in the next decade and thus its 

invasion potential. 

2.3. Invasive Plant Occurrence 

The USFS, Forest Inventory and Analysis (FIA) program, analyses and reports information on the 

status, trends and conditions of forests within the United States. It is a periodic survey of all forested 

land in the United States and has occurred since 1928 [61]. Recent inventories have typically been 

conducted every 5–7 years in the southeastern states, with approximately 20% of the points assessed 

every year [35]. In the CPMR there are 2814 FIA sites [35]. An extension of the FIA database focuses 

on invasive plants, and this database was made available for our study. Data were available for the last 

completed inventory cycle (2000–2005) and consisted of species absence/presence records. 

2.4. Landscape Variables 

Landscape variables were categorized into six groups: Landsat, anthropogenic, environmental, 

climate, land use and water. Using ArcGIS [62] and ERDAS [63], all variables were extracted from 
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available digital information including Landsat imagery, classified land use data, roads, rivers, human 

population census data and climatic information. All variables were converted to 30 m × 30 m cells 

across the CPMR [18]. The total number of variables was 41 (Table 1). This initial set was reduced 

using exploratory data analysis to remove variables that were highly correlated (Pearson’s correlation 

coefficient, r). For any two variables that were highly correlated (r > 0.8) only one was selected for 

input into further models. All input variables needed to be able to be displayed on a map. Two 

variables based on the Normalized Difference Vegetation Index (NVDI), NDVI75 and NDVI90-75, 

could not be mapped due to inconstancies across Landsat scenes, an artifact of instrumentation, and 

thus were not suitable for use in further analysis. This left a set of 28 variables (see Table 1). 

Table 1. Description of landscape variables categorized into six groups, the resolution of 

the original data (Res), the citation for other studies that have used the variable, and the 

original data source. Descriptive statistics are shown for the 28 variables that were used in 

modeling. (TIGER = Topologically Integrated Geographic Encoding and Referencing, 

USGS = United States Geological Services, LULC = Land Use Land Cover,  

NED = National Elevation Dataset, PRISM = Parameter-elevation Regressions on 

Independent Slopes Model). 

 Variable Variable code Citation Res Source Mean SD Min Max

L
an

ds
at

 

Disturbance Index for 

1975 
DI75 [64] 900 m2 Landsat 9.5 1.3 −11.8 65.5

Disturbance Index for 

1990 
DI90 [64] 900 m2 Landsat −0.3 1.8 −10.5 38.4

Disturbance Index for 

2000 
DI00 [64] 900 m2 Landsat 0.0 2.0 −9.8 48.1

Change in Disturbance 

Index between 1975  

and 1990 

DI90-75 [64] 900 m2 Landsat     

Change in Disturbance 

Index between 1990  

and 2000 

DI00-90 [64] 900 m2 Landsat 0.4 2.2 −40.7 59.9

NDVI in 1975 NDVI75 [65] 900 m2 Landsat     

NDVI 1990 NDVI90 [65] 900 m2 Landsat 0.57 0.10 −0.94 0.98

NDVI 2000 NDVI00 [65] 900 m2 Landsat 0.45 0.15 −0.96 0.99

Difference in NDVI 

between 1975 and 1990 
NDVI90-75 [65] 900 m2 Landsat     

Difference in NDVI 

between 1990 and 2000 
NDVI00-90 [65] 900 m2 Landsat     

  



Forests 2012, 3 805 

 

 

Table 1. Cont. 
 Variable Variable code Citation Res Source Mean SD Min Max

A
nt

hr
op

og
en

ic
 

Number of people  

per km2 in 2000 
CENSUS [66] 

Census 

block 

Census 2000 

TIGER 
24 46 3 2805

Distance to road RD_DIST [66] 900 m2 
Census 2000 

TIGER 
397 375 0 3755

Density of roads within a 

km2 area in 2000 
RD_DEN [66] 900 m2 

Census 2000 

TIGER 
1.3 1.0 0 15.6

Distance to major road MRD_DIST [66] 900 m2 
Census 2000 

TIGER 
5614 4717 0 26122

Residential in 2000 or 

1990 within a 500 m 

buffer  

RES ALL [67] 900 m2 USGS LULC     

Residential presence 

within a 100 m buffer in 

2000 

RES100 [67] 900 m2 USGS LULC 0.31 0.49 0 1 

Residential presence 

within a 500 m buffer in 

2000 

RES500 [67] 900m2 USGS LULC 0.71 0.49 0 1 

E
nv

ir
on

m
en

ta
l 

North NORTH [68] 900 m2 USGS NED     

East EAST [68] 900 m2 USGS NED     

Northness NORTHNESS [69] 900 m2 USGS NED 0 0.18 −0.88 0.83

Eastness EASTNESS [69] 900 m2 USGS NED 0 0.19 −0.83 0.84

Slope SLOPE [62] 900 m2 USGS NED 12.9 8.9 0 62.3

Hillshade HILL [62] 900 m2 USGS NED 237 17 59 254 

Curvature CURV [62] 900 m2 USGS NED     

Elevation DEM [31] 900 m2 USGS NED 383 168 0 1283

C
li

m
at

e 

Average temperature 

from a 30-year average 

(1971–2000) 

AVET [32] 900 m2 PRISM     

Minimum temperature 

from a 30-year average 

(1971–2000) 

MINT [32] 900 m2 PRISM 26.5 3.4 19 35 

Maximum temperature 

from a 30-year average 

(1971–2000) 

MAXT  [32] 900 m2 PRISM     

Average yearly rainfall 

from a 30-year average 

(1971–2000) 

RAIN [32] 900 m2 PRISM 54 5 41 75 
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Table 1. Cont. 
 Variable Variable code Citation Res Source Mean SD Min Max

L
an

d 
C

ov
er

 

Change in forest between 

2000 and 1990 within a 

100-m buffer 

FC100 [67] 900 m2 USGS LULC     

Change in forest between 

2000 and 1990 within a 

500-m buffer 

FC500 [67] 900 m2 USGS LULC 0.12 0.13 −1 0.99

Proportion of forest in 

2000 with in a 100-m 

buffer 

F00 100 [67] 900 m2 USGS LULC 0.90 0.17 0.03 1 

Proportion of forest in 

2000 with in a 500-m 

buffer 

F00 500 [67] 900 m2 USGS LULC     

Proportion of farming in 

2000 with in a 100-m 

buffer 

FARM100 [67] 900 m2 USGS LULC     

Proportion of farming in 

2000 with in a 500-m 

buffer 

FARM500 [67] 900 m2 USGS LULC 0.07 0.13 0 0.98

Categorical land use in 

1990 based on Andersons 

groupings 

LULC90 [67] 900 m2 USGS LULC Categorical 

Categorical land use in 

2000 based on Andersons 

groupings 

LULC00 [67] 900 m2 USGS LULC Categorical 

W
at

er
 

Distance from a stream RIV DIS [70] 900 m2 USGS 336 267 0 3288

Density of streams within 

a km2 area 
RIV_DEN [70] 900 m2 USGS 0.96 0.51 0 6.65

Occurrence of a wetland 

or stream within 100 m 
WATER100 [67] 900 m2 USGS LULC 0.05 0.51 0 1 

Occurrence of a wetland 

or stream within 500 m 
WATER500 [67] 900 m2 USGS LULC 0.30 0.50 0 1 

Descriptive statistics (mean, standard deviation (SD), minimum (Min) and maximum (Max)) for the 

28 variables were calculated for both the land area covered by the FIA plots and the forested land area 

in the CPMR. The forested land area in the CPMR was the area depicted by the 2001 National Land 

Cover Database. This comparison was to determine if FIA data could be extrapolated to the entire 

forested CPMR (Table 1). The FIA points had a mean that was within one SD of the mean for the 

forested area of the CPMR for all variables (all but two variables had means within 0.2 SDs). In both 

cases, the maximum and minimum were very similar, suggesting that although there was some 

variation in the means, they still represented the full range of the CPMR. Overall, the FIA data are 

considered to be an adequate representation of the CPMR for this study. 
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2.5. Models 

Two modeling techniques were used: binary logistic regression (using a binomial distribution and 

logit link) [71] and maximum entropy (MaxEnt) [72]. The important difference between the two 

techniques is that logistic regression uses information on both occurrence and absence to estimate a 

predictive linear model, whereas MaxEnt uses information from occurrences only [18]. The 

distribution of each species was modeled, following the methods of Lemke and others [18], using each 

group of variables (Landsat, anthropogenic, environmental, land use, water and climate) separately 

(Table 1). These “sub-models” were built using each of the two techniques. Using only variables 

selected in the final sub-model for each variable group, a final composite model was determined. 

Logistic regression models were conducted using SAS [73] and MaxEnt models were conducted using 

a specialized package of MaxEnt [72]. Logistic regression models were derived using a stepwise 

regression method with Akaike’s Information Criterion (AIC) [74] as the selection criterion. MaxEnt 

models were derived using a manual backward selection method, and variables that had little or no 

impact on the model were removed. A measure of variable contribution was calculated to identify the 

key variables determining the occurrence of each species. 

The omission rate and Area Under the receiver operator Curve (AUC) were used to assess the 

reliability and validity of the models. The omission rate is the false negative or the proportion of sites 

where the species was present but the model predicted absence. To calculate the omission rate, the 

predicted model values are converted to a binary value (predicted occurrence = 1; predicted absence = 0). 

The threshold value for this binary conversion was set, for each species, as the value that maximized 

the sum of the sensitivity and specificity [75]. The AUC provides a single measure of model 

performance independent of any particular choice of threshold [76]. 

Rasters were imported from MaxEnt into ArcGIS and the raster calculator was used in creating the 

logistic regression model. Initial maps with continuous rasters were reclassified into binary rasters 

based on the cut-off values determined by maximizing the sum of the sensitivity and specificity. 

We integrated information from both logistic and MaxEnt using an ensemble approach. While 

logistic and MaxEnt models may be compared individually to select the best overall model for 

particular datasets, methods that combine the two models have the potential to reduce the uncertainty 

associated with any one particular algorithm [23,24]. A number of approaches have been proposed for 

combining the outputs of individual models for ensemble predictions [23]. Here, we adopt a consensus 

approach, adding the binary output rasters together to identify areas of agreement and disagreement in 

the models. Areas of agreement were where both models predicted occurrence or absence, and areas of 

disagreement were where the predictions of the composite models (the logistic regression or MaxEnt 

models) differed. 

2.6. Data Selection 

Models were built for each species, using 70% of the data with the remaining 30% used to test the 

models (Table 2). For the logistic regression models, the balance between occurrence and absence data 

points was fixed as 20:80 [77] for the three species, to reduce any effect of having a large binary class 

imbalance. This was done by under-sampling the absence data points [77]. 
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Table 2. Total number of points, for the occurrence and absence of three species, separated 

into training and test datasets. 

 
Training Test 

Occurrence Absence Occurrence Absence 

Privet 200 (10.4%) 1125 (59.0%) 100 (5.2%) 482 (25.4%) 
Tall fescue 65 (3.4%) 1270 (66.6%) 28 (1.5%) 544 (28.5%) 

Silktree 31 (1.6%) 1304 (68.4%) 13 (0.7%) 559 (29.3%) 

3. Results and Discussion 

Of the 42 models run, 41 had better than random predictions (Table 3). All three species had low 

omission rates and high AUCs. The final composite models were combined to create ensemble models 

(Figure 2). The species with the strongest agreement was the more prevalent species, privet (93% 

agreement), while the two low-prevalence species, with the smaller number of occurrence data points, 

had lower agreement between their composite models (67% agreement for tall fescue and 87% for 

silktree) [78]. However, despite low prevalence and small datasets, composite models for all three 

species were acceptable. 

Table 3. Threshold (defined as maximum sensitivity plus specificity) and accuracy 

assessment for the three species (bold denotes strong models with AUC >0.80 and 

omission rate <0.20) using logistic regression (L) and MaxEnt (M). The variables were 

grouped into four groups: Landsat, Anthropogenic (Anthro), Environmental (Enviro) and 

Climate. The composite model is the final, best model. 

Species Model Group Threshold
Omission rate AUC 

Train Test Train Test 

P
ri

ve
t 

L Landsat 0.18 0.07 0.10 0.70 0.66 

M Landsat 0.47 0.25 0.37 0.74 0.68 

L Anthro 0.16 0.06 0.08 0.76 0.72 

M Anthro 0.33 0.09 0.20 0.77 0.70 

L Enviro 0.16 0.04 0.05 0.84 0.82 

M Enviro 0.34 0.10 0.10 0.80 0.80 

L Climate 0.16 0.20 0.25 0.83 0.82 

M Climate 0.42 0.18 0.30 0.83 0.82 

L Land use 0.13 0.05 0.11 0.83 0.82 

M Land use 0.30 0.10 0.13 0.81 0.79 

L Water 0.17 0.10 0.21 0.66 0.65 

M Water 0.52 0.51 0.51 0.66 0.67 

L Composite 0.17 0.02 0.05 0.91 0.89 

M Composite 0.28 0.07 0.14 0.86 0.83 
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Table 3. Cont. 

Species Model Group Threshold
Omission rate AUC 

Train Test Train Test 

T
al

l F
es

cu
e 

L Landsat 0.06 0.32 0.54 0.74 0.65 

M Landsat 0.45 0.34 0.64 0.76 0.61 

L Anthro 0.05 0.41 0.40 0.65 0.63 

M Anthro 0.40 0.26 0.32 0.70 0.67 

L Enviro 0.05 0.49 0.38 0.60 0.62 

M Enviro 0.49 0.34 0.50 0.75 0.66 

L Climate 0.06 0.28 0.30 0.73 0.70 

M Climate 0.44 0.15 0.10 0.77 0.84 

L Land use 0.06 0.36 0.42 0.66 0.59 

M Land use 0.46 0.24 0.39 0.72 0.60 

L Water No Model 

M Water 0.47 0.20 0.32 0.61 0.54 

L Composite 0.05 0.25 0.21 0.78 0.75 

M Composite 0.42 0.25 0.35 0.82 0.75 

T
al

l F
es

cu
e 

L Landsat 0.06 0.32 0.54 0.74 0.65 

M Landsat 0.47 0.29 0.36 0.73 0.73 

L Anthro 0.02 0.22 0.41 0.75 0.73 

M Anthro 0.47 0.29 0.21 0.84 0.90 

L Enviro 0.02 0.10 0.15 0.83 0.80 

M Enviro 0.30 0.06 0.29 0.82 0.78 

L Climate 0.02 0.19 0.17 0.77 0.75 

M Climate 0.42 0.13 0.07 0.77 0.82 

L Land use 0.02 0.35 0.37 0.81 0.85 

M Land use 0.42 0.25 0.43 0.80 0.70 

L Water 0.02 0.29 0.35 0.74 0.75 

M Water 0.49 0.32 0.28 0.76 0.76 

L Composite 0.02 0.16 0.38 0.89 0.80 

M Composite 0.27 0.06 0.07 0.91 0.90 

Of the 28 original variables used in developing the models, 15 were ultimately incorporated into at 

least one of the final composite models, but only seven were used in more than one model (Table 4). 

Overall, the composite models were dominated by environmental variables (32% of all composite 

model contributions) and climatic variables (42% of all composite model contributions) with minimum 

temperature as the single most important variable (40% of all composite model contributions; Table 4). 

This confirms the validity of matching the ranges of native species with the range of potential invasion, 

and the approach of integrating elevation, latitude and longitude, as is used to estimate potential 

invasive distribution [79]. It also suggests that climate change will influence the distribution, and this 

variation should be integrated into models. Variables in the Landsat and water groups contributed very 

little to the models, contributing only one variable each to the composite models, and both were at low 

rates (disturbance index in 2001 at 1%, and water within 500 m at 3%, for all composite model 

contributions; Table 4). Information on human population, roads and land use (proportion of forest and 
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proportion of farming) were the most useful anthropogenic variables (Table 4). All of this information 

is readily available for North America and much of the world, making this level of landscape level 

modeling very practical. 

Figure 2. Spatial representation of the ensemble models combining the logistic regression 

and MaxEnt composite models (A: privet, B: silktree, C: tall fescue). Areas of high risk 

and areas of no invasion are where both composite models agree, and areas of moderate 

invasion are where one composite model predicted invasion and the other did not. 

 

 

 

Table 4. Contribution of variables to the final composite models (−, negative; +, positive; 

∩ or U for bimodal relationship), dominant variables given in bold (>25%). L = logistic 

regression; M = MaxEnt. 

 Species Privet Tall fescue Silktree 

 Model L M L M L M 

Landsat DI00     (+)6  

Anthropogenic 

CENSUS      (+)24 

RD DEN (+)4 (+)15   (+)35 (+)16 

RD DIST (−)3      

MRD DIST (−)3      

RES100   (−)8    

Environmental 

DEM (−)13 (−)7  (∩)19 (−)58 (−)48 

NORTHNESS   (−)30 (−)7   

SLOPE  (−)6     

Climatic 
MINT (+)66 (+)55 (−)62 (−)54   

RANN  (U)5  (∩)10   

Land use 

F00 100  (−)10     

FARM500 (+)4   (∩)10   

LULC90 7      

Water WATER500     (−)1 (+)12 

Proportion forest area invaded 24% 28% 46% 16% 20% 21% 

Privet composite models used a range of environmental and anthropogenic variables, with the 

logistic model having seven variables and MaxEnt having six variables. The logistic model predicted 

24% of the forest as having the potential to be invaded, and MaxEnt predicted 28%. Currently, 15% of 
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FIA plots have privet. Overall, privet was predicted to occur across 22% of the forests by both models. 

Both composite models were strong, with logistic regression producing a slightly better model. 

Environmental variables dominated both models, at 73% (MaxEnt) and 79% (logistic regression). 

Minimum temperature was the single most dominant variable, with higher minimum temperatures 

having a higher probability of invasion. Both models showed a negative correlation with elevation and 

a positive correlation with road density, suggesting that privet will be found at lower elevation in areas 

of higher road density (increased human occupation). The logistic model also suggested privet had a 

higher chance of occurrence closer to roads and with more farming in the near vicinity. MaxEnt 

highlighted the trend that the less the forest cover, the more likely the area was to have privet. The 

logistic model used historical land use as one of the independent variables, associating privet with 

areas with less forest, more residential land use and more water in 1990. Overall, this suggests that 

areas of higher human use and disturbance will have more privet. The MaxEnt model also identified 

slope and rainfall as important, with low slope being more likely to have privet. 

For tall fescue, the MaxEnt composite model had the highest AUC (Table 3); however, the MaxEnt 

model that used only climatic variables had a slightly better omission rate. The logistic regression 

models had slightly lower validation statistics. Both the MaxEnt and logistic regression composite 

models were dominated by climatic variables. The MaxEnt composite model showed that tall fescue 

occurrence was influenced greatly by temperature, elevation, rainfall, farming and aspect. Lower 

temperature; intermediate levels of farming, rainfall and elevation; and a more southerly aspect were 

related to a higher occurrence of tall fescue. The logistic regression composite model only used three 

variables, minimum temperature, aspect and amount of residential land use within 100 m, with low 

temperature, more southerly slopes and less residential land use having a higher occurrence of tall fescue. 

The silktree was the only species to integrate a high portion of anthropogenic variables into the 

composite models (Table 4). The MaxEnt composite model predicted 21% of the area to have probable 

occurrence of silktree, and showed its occurrence to be influenced by elevation, population density, 

road density and water bodies. The variables lower elevation, higher population and road density, and 

nearby water bodies were related to a higher occurrence of silktree. The composite logistic model also 

utilized a number of anthropogenic variables. The logistic model was dominated by elevation but road 

density also had a major role in the model. The logistic composite model was the only composite 

model to use a Landsat variable. The logistic model also suggested that low elevation and high road 

density are important contributors to silktree occurrence, with higher disturbance in the landscape also 

being important. 

4. Conclusions 

Remote sensing has been identified as an emerging tool for biodiversity science and conservation [80]. 

However, in this work, the introduction of remotely sensed medium resolution (30 m) data had little 

value in the overall model development. Only one of the composite models, the logistic regression 

model for silktree, used any Landsat variables. The silktree model used the Landsat disturbance index 

for 2001 but this only had a 5% contribution to the model. Given the time put into developing the 

Landsat variables, we would suggest that for future work, this information adds little value to the 

predictive ability of models and is probably unnecessary at a landscape scale. The large size of the 
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study area (59,000 km2) made it impractical to use remotely sensed data at a finer resolution due to the 

computer processing power required for analysis. Exploring different abstraction resolutions, as 

suggested by Sester [81], would be a worthwhile study, possibly on a smaller scale, to identify an 

optimal resolution. 

The use of the two different modeling approaches, logistic regression and MaxEnt, strengthens the 

validity of the results. The inclusion in the models of similar variables with the same direction of 

relationships gives confidence to any inference about the importance of these variables. In examining 

all the composite models, there was only one variable that had a different relationship between the two 

types of modeling: water in the tall fescue composite models. In this model, water had a positive 

relationship with MaxEnt (12% contribution) but a small weak relationship in the logistic regression (1% 

contribution to the model). 

The ensemble approach and mapping the agreement and disagreement of composite models within 

each species showed privet to have a very strong agreement (93%), silktree a moderate agreement (87%) 

and tall fescue a limited agreement (67%). This is a reflection of the model strength, the number of 

occurrence points and the applicability of the independent variables in predicting the species of interest. 

Tall fescue had the lowest agreement of the three species, even though it was not the species with the 

smallest number of occurrence points. There may be a number of reasons for this; for example, only 

forested landscapes were modeled rather than grasslands. Other reasons could be the suitability of the 

independent variables or the scale of the independent variables. Independent variables were used at a 

30 m × 30 m resolution and habitat characteristics that function at a smaller scale may be driving the 

distribution of tall fescue. 

Models such as those developed by this research can be used as tools for landscape management, 

forest stand assessment or long-term forest monitoring programs. We recommend the use of an 

ensemble modeling approach to combine different models. One of the greatest benefits of large-scale 

GIS models is that they can outline the main characteristics of species distribution areas and be used to 

predict environmental favorability in regions where their distribution is less documented [82]. They 

can also be integrated into forest management decision support systems [83] and assist in developing 

long-term management plans. 

Acknowledgments 

We thank the United States National Science Foundation for supporting this work (Grant #0420541), 

the United States Department of Agriculture Forest Service Southern Research Station for access to 

FIA data, assisting in data extraction and funding (cooperative agreement 10-DG-11330101-107). Also, 

we thank Philip Hulme, Kathy Roberts and three anonymous reviewers for their review and 

suggestions on the manuscript. 

Conflict of Interest 

The authors declare no conflict of interest. 
  



Forests 2012, 3 813 

 

 

References 

1. Hulme, P.E.; Pyšek, P.; Nentwig, W.; Vila, M. Will threat of biological invasions unite the 

European Union? Science 2009, 324, 40–41. 

2. Vilà, M.; Basnou, C.; Pyšek, P.; Josefsson, M.; Genovesi, P.; Gollasch, S.; Nentwig, W.;  

Olenin, S.; Roques, A.; Roy, D.; et al. How well do we understand the impacts of alien species on 

ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 2010, 8, 135–144. 

3. Mainka, S.A.; Howard, G.W. Climate change and invasive species: Double jeopardy. Integr. Zool. 

2010, 5, 102–111. 

4. Ricciardi, A. Are modern biological invasions an unprecedented form of global change?  

Conserv. Biol. 2007, 21, 329–336. 

5. Vitousek, P.M.; D’Antonio, C.M.; Loope, L.L.; Rejmanek, M.; Westbrooks, R. Introduced 

species: A significant component of human-caused global change. N. Z. J. Ecol. 1997, 21, 1–16. 

6. Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. 

Ecol. Lett. 2005, 8, 993–1009. 

7. Smolik, M.G.; Dullinger, S.; Essl, F.; Kleinbauer, I.; Leitner, M.; Peterseil, J.; Stadler, L.M.; Vogl, 

G. Integrating species distribution models and interacting particle systems to predict the spread of 

an invasive alien plant. J. Biogeogr. 2010, 37, 411–422. 

8. Guisan, A.; Lehmann, A.; Ferrier, S.; Austin, M.; Overton, J.M.C.; Aspinall, R.; Hastie, T. 

Making better biogeographical predictions of species’ distributions. J. Appl. Ecol. 2006, 43, 386–392. 

9. Kearney, M.R.; Wintle, B.A.; Porter, W.P. Correlative and mechanistic models of species 

distribution provide congruent forecasts under climate change. Conserv. Lett. 2010, 3, 203–213. 

10. Ficetola, G.F.; Thuiller, W.; Miaud, C. Prediction and validation of the potential global 

distribution of a problematic non-native invasive species; the American bullfrog. Divers. Distrib. 

2002, 8, 49–56. 

11. Hoffman, J.D.; Aguilar-Amuchastegui, N.; Tyre, A.J. Use of simulated data from a process-based 

habitat model to evaluate methods for predicting species occurrence. Ecography 2010, 33, 656–666. 

12. Kumar, S.; Stohlgren, T.J.; Chong, G.W. Spatial heterogeneity influences native and alien plant 

species richness. Ecology 2006, 87, 3186–3199. 

13. Stohlgren, T.J.; Binkley, D.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.; Bull, K.A.; Otsuki, Y.; 

Newman, G.; Bashkin, M.; Son, Y. Exotic plant species invade hot spots of native plant diversity. 

Ecol. Monogr. 1999, 69, 25–46. 

14. With, K.A.; Crist, T.O. Critical thresholds in species’ responses to landscape structure. Ecology 

1995, 76, 2446–2459. 

15. Pickett, S.T.A.; Cadenasso, M.L. Landscape ecology: Spatial heterogeneity in ecological systems. 

Science 1995, 269, 331–334. 

16. Wagner, H.H.; Fortin, M.J. Spatial analysis of landscapes: Concepts and statistics. Ecology 2005, 

86, 1975–1987. 

17. Collingham, Y.C.; Wadsworth, R.A.; Huntley, B.; Hulme, P.E. Predicting the spatial distribution 

of non-indigenous riparian weeds: Issues of spatial scale and extent. J. Appl. Ecol. 2000, 37, 13–27. 



Forests 2012, 3 814 

 

 

18. Lemke, D.; Hulme, P.E.; Brown, J.A.; Tadesse, W. Distribution modelling of Japanese 

honeysuckle (Lonicera japonica) invasion in the Cumberland Plateau and Mountain Region, USA. 

For. Ecol. Manag. 2011, 262, 139–149. 

19.  Robertson, M.P.; Villet, M.H.; Palmer, A.R. A fuzzy classification technique for predicting 

species’ distributions: Application using invasive alien plants and indigenous insects.  

Divers. Distrib. 2004, 10, 461–474. 

20. Underwood, E.C.; Klinger, R.; Moore, P.E. Predicting patterns of non-native plant invasions in 

Yosemite National Park, California, USA. Divers. Distrib. 2004, 10, 447–459. 

21. Hoffman, J.D.; Narumalani, S.; Mishra, D.R.; Merani, P.; Wilson, R.G. Predicting potential 

occurrence and spread of invasive plant species along the North Platte River, Nebraska. Invasive 

Plant Sci. Manag. 2008, 1, 359–367. 

22. Dullinger, S.; Kleinbauer, I.; Peterseil, J.; Smolik, M.; Essl, F. Niche based distribution modelling 

of an invasive alien plant: Effects of population status, propagule pressure and invasion history. 

Biol. Invasions 2009, 11, 2401–2414. 

23. Araujo, M.B.; New, M. Ensemble forecasting of species distributions. Trends in Ecol. Evol. 2007, 

22, 42–47. 

24. Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N. 

Ensemble habitat mapping of invasive plant species. Risk Anal. 2010, 30, 224–235. 

25. Smalley, G.W. Classification and Evaluation of Forest Sites on the Southern Cumberland Plateau; 

General Technical Report Southern-23; U.S. Department of Agriculture, Forest Service, Southern 

Forest Experiment Station: New Orleans, LA, USA, 1979. 

26. Smalley, G.W. Classification and Evaluation of Forest Sites on the Mid-Cumberland Plateau; 

General Technical Report Southern-38; U.S. Department of Agriculture, Forest Service, Southern 

Forest Experiment Station: New Orleans, LA, USA, 1982. 

27. Smalley, G.W. Classification and Evaluation of Forest Sites in the Cumberland Mountains; 

General Technical Report Southern-50; U.S. Department of Agriculture, Forest Service, Southern 

Forest Experiment Station: New Orleans, LA, USA, 1984. 

28. Smalley, G.W. Classification and Evaluation of Forest Sites on the Northern Cumberland Plateau; 

General Technical Report Southern-60; U.S. Department of Agriculture, Forest Service, Southern 

Forest Experiment Station: New Orleans, LA, USA, 1986. 

29. Ricketts, T.H.; Dinerstein, E.; Olson, D.M.; Loucks, C.J.; Eichbaum, W. Terrestrial Ecoregions of 

North America: A Conservation Assessment; Island Press: Washington, DC, USA, 1999. 

30. Homer, C.; Huang, C.; Yang, L.; Wylie, B. Development of a 2001 national land cover database 

for the United States. Photogramm. Eng. Remote Sens. 2004, 70, 829–840. 

31. Gesch, D.; Oimoen, M.; Greenlee, S.; Nelson, C.; Steuck, M.; Tyler, D. The national elevation 

dataset. Photogramm. Eng. Remote Sens. 2002, 68, 5–11.  

32. PRISM Group. 30-year average (1971–2000) PRISM data. Oregon State University: Corvallis, 

OR, USA; Available online: http://www.prismclimate.org (accessed on 9 December 2007). 

33. Wear, D.N.; Greis, J.G. Southern forest resource assessment: Summary of findings. J. For. 2002, 

100, 6–14. 
  



Forests 2012, 3 815 

 

 

34. McGrath, D.A.; Evans, J.P.; Smith, C.K.; Haskell, D.G.; Pelkey, N.W.; Gottfried, R.R.;  

Brockett, C.D.; Lane, M.D.; Williams, E.D. Mapping land-use change and monitoring the impacts 

of hardwood-to-pine conversion on the Southern Cumberland Plateau in Tennessee.  

Earth Interact. 2004, 8, 1–24. 

35. U.S. Department of Agriculture, Forest Service. The Forest Inventory and Analysis Database: 

Database Description and Users’ Guide, Version 3.0; USDA FS: Washington, DC, USA, 2007. 

36. U.S. Department of Agriculture (USDA) Plants. National Plants Database. USDA: National Plant 

Data Team, Greensboro, NC, USA, 2011. Available online: http://plants.usda.gov (accessed on  

10 April 2011). 

37. Dirr, M.A. Manual of Woody Landscape Plants: Their Identification, Ornamental Characteristics, 

Culture, Propagation and Uses; Stipes Publishing: Champaign, IL, USA, 1998. 

38. Maddox, V.; Byrd, J.; Serviss, B. Identification and control of invasive privets (Ligustrum spp.) in 

the middle southern United States. Invasive Plant Sci. Manag. 2010, 3, 482–488. 

39. Miller, J.H.; Chambliss, E.B.; Loewenstein, N.J. A Field Guide for the Identification of Invasive 

Plants in Southern Forests; General Technical Report Southern Research Station-119;  

U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC,  

USA, 2010. 

40. Merriam, R.W.; Feil, E. The potential impact of an introduced shrub on native plants diversity and 

forest regeneration. Biol. Invasions 2002, 4, 369–373. 

41. Wilcox, J.; Beck, C.W. Effects of Ligustrum sinense Lour. (Chinese privet) on abundance and 

diversity of songbirds and native plants in a southeastern nature preserve. Southeast. Nat. 2007, 6, 

535–550. 

42. Hanula, J.L.; Horn, S.; Taylor, J.W. Chinese privet (Ligustrum sinense) removal and its effect on 

native plant communities of riparian forests. Invasive Plant Sci. Manag. 2009, 2, 292–300. 

43. Shelton, M.G.; Cain, M.D. Potential carry-over of seeds from 11 common shrub and vine 

competitors of loblolly and shortleaf pines. Can. J. For. Res. 2002, 32, 412–419. 

44. Greenberg, C.H.; Walter, S.T. Fleshy fruit removal and nutritional composition of winter-fruiting 

plants: A comparison of non-native invasive and native species. Nat. Areas J. 2010, 30, 312–321. 

45. Stromayer, K.; Warren, R.J.; Johnson, A.S.; Hale, P.E.; Rogers, C.L.; Tucker, C.L. Chinese privet 

and the feeding ecology of white-tailed deer: The role of an exotic plant. J. Wildl. Manag. 1998, 

62, 1321–1329. 

46. Hannaway, D.; Fransen, S.; Cropper, J.; Teel, M.; Chaney, M.; Griggs, T.; Halse, R.; Hart, J.; 

Cheeke, P.; Hansen D. Tall Fescue (Festuca arundinacea Schreb). A Pacific Northwest Extension 

Publication PWN 504; Oregon State University: Corvallis, OR, USA, 1999. 

47. Fleming, C.A.; Wofford, B.E. The vascular flora of Fall Creek Falls State Park, Van Buren and 

Bledsoe Counties, Tennessee. Castanea 2004, 69, 164–184. 

48. Pedersen, J.F.; Lacefield, G.D.; Ball, D.M. A review of the agronomic characteristics of 

endophyte-free and endophyte-infected tall fescue. Appl. Agric. Res. 1990, 3, 188–194. 

49. Spyreas, G.; Gibson, D.J.; Middleton, B.A. Effects of endophyte infection in tall fescue  

(Festuca arundinacea, Poaceae) on community diversity. Int. J. Plant Sci. 2001, 162, 1237–1245. 

50. Clay, K.; Schardl, C. Evolutionary Origins and Ecological Consequences of Endophyte Symbiosis 

with Grasses; University Chicago Press: Chicago, IL, USA, 2002. 



Forests 2012, 3 816 

 

 

51. Schardl, C.L.; Leuchtmann, A.; Spiering, M.J. Symbioses of grasses with seedborne fungal 

endophytes. Annu. Rev. Plant Biol. 2004, 55, 315–340. 

52. Rudgers, J.; Clay, K. An invasive plant-fungal mutualism reduces arthropod diversity. Ecol. Lett. 

2008, 11, 831–840. 

53. Creager, R.A. Seed Germination, physical and chemical control of catclaw mimosa  

(Mimosa pigra var. pigra). Weed Technol. 1992, 6, 884–891. 

54. Ares, A.; Burner, D.M.; Brauer, D.K. Soil phosphorus and water effects on growth, nutrient and 

carbohydrate concentrations, d13C, and nodulation of silktree (Albizia julibrissin Durz.) on a 

highly weathered soil. Agrofor. Syst. 2009, 76, 317–325. 

55. Addlestone, B.J.; Mueller, J.P.; Luginbuhl, P.M. The establishment and early growth of three 

leguminous tree species for use in silvopastoral systems in the southern USA. Agrofor. Syst. 1998, 

44, 253–265. 

56. Bransby, D.I.; Sladden, S.E.; Aiken, G.E. Silktree as a Forage Plant: A Preliminary Evaluation. In 

Proceedings of the Forage Grassland Conference, Georgetown, TX, USA, 5 April 1992; 

American Forage Grass Council; Volume 1, pp. 28–31. 

57. Matta-Machado, R.P.; Jordan, C.F. Nutrient dynamics during the first three years of an alley 

cropping agroecosystem in southern USA. Agrofor. Syst. 1995, 30, 351–362. 

58. Rhoades, C.C.; Nissen, T.M.; Kettler, J.S. Soil nitrogen dynamics in alley cropping and no-till 

systems on ultisols of the Georgia Piedmont, USA. Agrofor. Syst. 1997, 39, 31–44. 

59. Jordan, C.F. Organic farming and agroforestry: Alley cropping for mulch production for organic 

farms in southern United States. Agrofor. Syst. 2004, 61, 79–90. 

60. Loewenstein, N.J.; Loewenstein, E.F. Alien plants in the understory of riparian forests across a 

land use gradient in the Southeast. Urban Ecosyst. 2005, 8, 79–91. 

61. Birdsey, R.A.; Schreuder, H.T. An Overview of Forest Inventory and Analysis Estimation 

Procedures in the Eastern United States–with an Emphasis on the Components of Change;  

USDA Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, 

USA, 1992. 

62. Environmental Systems Research Institute (ESRI). ArcGIS; Environmental Systems Research 

Institute: Redlands, CA, USA, 2009. 

63. Earth Resources Data Analysis System (ERDAS IMAGINE 9.2.); Intergraph Corporation: 

Norcross, GA, USA, 2008. 

64. Healey, S.P.; Cohen, W.B.; Yang, Z.Q.; Krankina, O.N. Comparison of tasseled cap-based 

Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 

301−310. 

65. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. 

Remote Sens. Environ. 1979, 8, 127–150. 

66. United States Bureau of the Census (USBOC). Tiger Files; USBOC, Geography Division: 

Washington, DC, USA, 2000. 

67. Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover 

Classification System for Use with Remote Sensor Data. In United States Geological Survey 

Professional Paper 964; United States Government Printing Office: Washington, DC, USA, 1976. 



Forests 2012, 3 817 

 

 

68. Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM vs. CCA spatial modeling of plant species distribution. 

Plant Ecol. 1999, 143, 107–122.  

69. Piedallu, C.; Gegout, J. Efficient assessment of topographic solar radiation to improve plant 

distribution models. Agric. For. Meteorol. 2008, 148, 1696–1706. 

70. Simley, J.D.; Carswell, W.J., Jr. The National Map—Hydrography; U.S. Geological Survey Fact 

Sheet 2009-3054; U.S. Geological Survey: Reston, VA, USA, 2009. 

71. Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; Wiley Interscience: New York, NY, 

USA, 2000. 

72. Phillips, S.; Anderson, R.; Schapire R. Maximum entropy modelling of species geographic 

distributions. Ecol. Model. 2006, 190, 231–259. 

73. SAS, Version 9.2; SAS Institute: Cary, FL, USA, 2009. 

74. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 

19, 716–723. 

75. Manel, S.; Williams, H.C.; Ormerod, S.J. Evaluating presence-absence models in ecology: The 

need to account for prevalence. J. Appl. Ecol. 2002, 38, 921–931. 

76. Lobo, J.M.; Jiménez-Valverde, A.; Real. R. AUC: A misleading measure of the performance of 

predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. 

77. Oommen, T.; Baise, L.G.; Vogel, R.M. Sampling bias and class imbalance in  

maximum-likelihood logistic regression. Math. Geosci. 2010, 43, 99–120. 

78. Wisz, M.S.; Hijmanss, R.J.; Peterson, A.T.; Graham, C.H.; Guisan, A. Effects of sample size on 

the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. 

79. Peterson, A.T. Predicting the geography of species’ invasions via ecological niche modelling.  

Q. Rev. Biol. 2003, 78, 419–433. 

80. Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing 

for biodiversity science and conservation. Trends Ecol. Evol. 2003, 18, 306–314. 

81. Sester, M. Optimization approaches for generalization and data abstraction. Int. J. Geogr. Inf. Sci. 

2005, 19, 871–897. 

82. Barbosa, A.M.; Real, R.; Vargas, J.M. Transferability of environmental favourability models in 

geographic space: The case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain. 

Ecol. Model. 2009, 220, 747–754. 

83. Ducheyne, E.I.; De Wulf, R.R.; De Baets, B. A spatial approach to forest-management 

optimization: Linking GIS and multiple objective genetic algorithms. Int. J. Geogr. Inf. Sci. 2006, 

20, 917–928. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


