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Abstract: Forest disturbances caused by pest insects are threatening ecosystem stability, 

sustainable forest management and economic return in boreal forests. Climate change and 

increased extreme weather patterns can magnify the intensity of forest disturbances, 

particularly at higher latitudes. Due to rapid responses to elevating temperatures, forest 

insect pests can flexibly change their survival, dispersal and geographic distributions. The 

outbreak pattern of forest pests in Finland has evidently changed during the last decade. 

Projection of shifts in distributions of insect-caused forest damages has become a critical 

issue in the field of forest research. The Common pine sawfly (Diprion pini L.) 

(Hymenoptera, Diprionidae) is regarded as a significant threat to boreal pine forests. 

Defoliation by D. pini has resulted in severe growth loss and mortality of Scots pine  

(Pinus sylvestris L.) (Pinaceae) in eastern Finland. In this study, tree-wise defoliation was 

estimated for five different needle loss category classification schemes and for 10 different 

simulated airborne laser scanning (ALS) pulse densities. The nearest neighbor (NN) 

approach, a nonparametric estimation method, was used for estimating needle loss of  

701 Scots pines, using the means of individual tree features derived from ALS data. The 

Random Forest (RF) method was applied in NN-search. For the full dense data  

(~20 pulses/m
2
), the overall estimation accuracies for tree-wise defoliation level varied 
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between 71.0% and 86.5% (kappa-values of 0.56 and 0.57, respectively), depending on the 

classification scheme. The overall classification accuracies for two class estimation with 

different ALS pulse densities varied between 82.8% and 83.7% (kappa-values of 0.62 and 

0.67, respectively). We conclude that ALS-based estimation of needle losses may be of 

acceptable accuracy for individual trees. Our method did not appear sensitive to the applied 

pulse densities. 

Keywords: ALS; defoliation; Diprion pini; forest disturbances; effect of pulse density; 

LiDAR; random forest  

 

1. Introduction 

Boreal forest ecosystems normally are highly dynamic and resilient to a variety of changes which 

promotes stable development of forest stands across broad temporal and spatial scales. Normal 

variations in annual growth patterns and needle biomass need to be distinguished from disturbances 

leading to declining forest health. Disturbance interrupts successional development of forest 

ecosystems, affecting resources, the physical environment, population structure, and, in extreme cases, 

changing the direction of successional processes [1,2]. Forest disturbances can appear in different 

forms such as abiotic (storm, drought, frost, snow, fire) or biotic (pest insects, diseases, mammals) 

damages [3,4], causing threats to sustainable forest management and economic return in the  

Boreal Zone [5,6].  

Climate change and increased extreme weather patterns can magnify the intensity of forest 

disturbances, altering the geographical range and productivity of forests, especially at higher  

latitudes [7–9]. During global warming, increases in stress factors and patterns of insect outbreaks 

have been predicted [8–12]. Due to rapid responses to elevating temperatures, pest insects can flexibly 

change their survival, development, reproduction, dispersal and geographic distribution [13–16]. 

Increasing numbers of pest insects have already begun to expand their normal geographic ranges, 

either pole-ward latitudinally or upward altitudinally [17–19], or change their pest status within their 

ranges [20]. Increased outbreak frequencies and spatial scales of forest pests evidently have already 

undergone changes during the most recent decade in Finland, particularly with pine sawflies [20]. 

Development of modern, cost-efficient monitoring methods for forest sites affected by  

climate-driven disturbance agents is urgently needed [21]. Monitoring of needle defoliation has 

typically been based on field sampling [22], which consumes vast resources, only to yield results that 

may still be biased. Furthermore, estimates of future defoliation and yield losses are only qualitative. 

The Finnish Forest Research Institute carries out the National Forest Inventory (NFI) [23], in which 

information on forest health is collected as a side product and monitored on a coarse level. The annual 

requirements of precise information on forest disturbances are not met by the current practice of forest 

health monitoring. 

Remote sensing is an efficient tool for detecting changes in forested areas, such as disturbances [24]. 

Current development in active remote sensing technologies, especially airborne laser scanning (ALS) 

techniques have resulted in new methods for carrying out various forest inventory tasks. With the 
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capability of direct or derived measurement of forest structure, including canopy height, crown 

dimensions and above-ground biomass, ALS can be also applied for monitoring of forest hazards. 

Previous studies have shown that ALS data can be used to estimate several forest inventory attributes, 

such as the tree-, plot- and stand-level characteristics of tree height [25–27], biomass [27–30],  

volume [31,32], basal area [33,34], tree species [29,35,36] and forest operations [37,38]. ALS can be 

useful in projecting, detecting and monitoring forest hazards and tree defoliation due to its ability to 

directly measure vegetation structure [39–41]. Recent studies and developments in methods have 

achieved more accurate ALS-based biomass detection [39,42–48]. Single trees biomass and defoliation 

level are highly correlated (e.g., [49]). 

The objective of this present study was to test the accuracy in tree-wise classification of needle 

defoliation after consumption by pine sawflies over a period of several years in a row. Defoliation 

estimations were made using several needle loss category classification schemes, in order to 

investigate their effects on accuracy. Classifications were based upon statistical metrics extracted from 

ALS data at the level of a single tree crown. The hypothesis was that the distribution of laser returns 

from defoliated trees differs from that of healthy, undefoliated trees. Kantola et al. [39] earlier 

investigated how to separate healthy and severely defoliated trees using an approach similar to that 

used here combining ALS data with high resolution aerial imagery. Vastaranta et al. [48] developed an 

area-based approach for mapping healthy and defoliated Scots pine stands with ALS data. In both of 

these studies, simple two-class defoliation classification schemes were used. This study included 

multiple higher level defoliation classification schemes in order to extract more detailed  

information. An additional objective involved determining the effect of laser pulse density on the  

classification accuracy.  

2. Material and Methods  

2.1. Study Area 

The research site was in Ilomantsi, eastern Finland (62°53′N, 30°54′E) (Figure 1). The 34.5 km
2
 

wide study area covers mainly dry or dryish forest site types in soils consisting of a combination of silt, 

sand and gravel. The main forest types in the Palokangas study area are Calluna (CT type), Vaccinium 

(VT type) and Myrtillus (MT type) [50]. The relief is flat at a mean altitude of 170 m, gently rolling 

towards the northern edge of the area. The dominance of Scots pine (Pinus sylvestris L.) (Pinacea) was 

99.5% in this commercial forest. The majority of stands were young or middle-aged, having a mean 

age of 53 years and mean diameter-at-breast-height (dbh) of 14.7 cm.  

The initial outbreak of the common pine sawfly (Diprion pini L.) was first visible in 1999 in the 

area. Outbreak range, population density and damage intensity have fluctuated over the last 12 years, 

indicating a chronic nature. Due to a feeding pattern of D. pini, i.e., consumption of all the needle  

year-classes in August and September, the pest has caused vast damage and tree mortality in an area of 

approximately 10,000 ha. The forest owner has carried out large cuttings due to activity of this  

insect pest.  
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Figure 1. Location of the study area (left, ESRI
©
) and map with tree locations (red) and 

forest compartments. (Green colors indicates different site types, 2 = grove-like heath,  

3 = fresh heath, 4 = dryish heath, 5 = dry heath and 6 = barren heath) 

 

2.2. Airborne Laser Scanning Data Set 

The ALS data set was from October 2008 and acquired with a Leica ALS50-II SN058 laser scanner 

(Leica Geosystem AG, Heerbrugg, Switzerland). The flying altitude was 500 m at a speed of 80 knots, 

with a field of view of 30 degrees, pulse rate of 150 kHz, scanning rate of 52 Hz, and a ground level 

laser footprint size of 0.11 m. The density of the pulses returned within the field plots was 

approximately 20 pulses per m
2
. ALS data was classified to ground and non-ground returns using the 

standard TerraScan approach described by Axelsson [51]. A digital elevation model (DEM) was 

created using classified ground pulses. Laser heights above ground (normalized height or canopy 

height) were calculated by subtracting the ground elevation from corresponding laser measurements. 

2.3. Reference Data 

2.3.1. Field Measurements 

Field measurements were carried out in May and early June 2009 before elongation of the current 

season’s needles, representing the defoliation status of fall 2008. Adaptive cluster sampling (ACS) was 

applied as an inventory method [52]. In ACS, an initial set of sampling plots is selected using a simple 

probability sampling procedure. Additional sampling plots from the neighborhood are added, where 

the variable of interest (i.e., plot-wise defoliation) satisfied a given criterion [48]. This procedure is 

repeated until no additional plots could be found. According to Thompson [53], Roesch [54] and 

Talvitie et al. [52], ACS has an advantage over more conventional sampling methods used in forest 
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inventory for sampling rare and clustered phenomena. The sampling efforts are focused on areas with 

high numbers of variables of interest. The sampling plot centers were located with a Trimble Pro XH 

(Trimble Navigation Ltd., Sunnyvale, CA, USA), which can reach up to 30 cm precision with 

differential postprocessing. Each individual tree was located by measuring the distance and angle from 

the plot center to the tree. The visual assessment of defoliation intensity was performed simultaneously 

with tree wise measurements in the field sampling plots. The defoliation intensity of a single tree was 

visually assessed from different directions, according to Eichhorn [55], comparing the amount of 

needles of the tree to an imaginary reference tree with full healthy foliage growing in the same forest 

type. An accuracy of 10% was assigned to the visual assessment of needle loss. 

2.3.2. Tree Detection and Linking of ALS and Field Data 

Individual tree detection (ITD) was done from the smoothened 0.5 m grid canopy height model 

(CHM) using watershed segmentation. (For more detailed description of tree delineation, see [56,57].) 

The resulting ITD segments and the trees measured in the field were verified and data sets were 

combined. 701 segments were considered as single Scots pine crowns. The segments that included 

more than one field tree were removed from the data, due to the confounding of different needle loss 

levels among the various trees aligning into same segment. In most cases where segments had more 

than one tree, the tree crowns were notably overlapping with one or more trees originating from the 

suppressed canopy cover layer. Most of the Scots pines suffered from mild to moderate defoliation 

(10%–30%) (Table 1). Only 55 of the identified trees had a defoliation level of 40% or more. 

Table 1. Field tree measurement data, where dbh is the measured diameter-at-breast height 

(cm), h is the height of a tree (m) (a) and defoliation assessment (0%–100%) is the 

estimated needle loss in the field (b). 

(a) (b) 

  min max mean sd Defoliation (%) Number of trees 

dbh (cm) 53 405 222 13 0 43 

h (m) 8.6 26.2 18.8 3.1 10 222 

     
20 266 

     
30 115 

     
40 36 

     
50–100 19 

     
Total 701 

2.3.3. Classification Schemes for Defoliation 

The data was divided into five different classification schemes for testing classification accuracy at 

different coarseness levels. The number of defoliation classes in different combinations varied between 

two and four threshold values (Table 2). Those trees having a lower defoliation intensity value than the 

threshold value of the class fell into a lower class. Classification DEF1 (two classes with threshold 

value of 20% of defoliation) was used as a basis of all other calculations due to 20% of defoliation 

being considered as the threshold value for a significant needle loss. 
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Table 2. The five different classification schemes with threshold values and number of 

classes in every scheme. 

Classification Threshold defoliation levels Classes (n) 

DEF1 20% 2 

DEF2 30% 2 

DEF3 30%, 60% 3 

DEF4 20%, 50% 3 

DEF5 20%, 30%, 40% 4 

2.4. ALS Feature Extraction 

Laser returns falling within each individual tree segment were extracted and the canopy heights of 

these returns were used to derive the ALS features for each tree. The “first” and “only” returns were 

chosen for this analysis because they have the highest reflections, and are less affected by intra-crown 

transmission losses [30]. Furthermore, the physics behind the interaction between later ALS returns 

and the forest canopy is more complex. We could have assumed that later returns would have brought 

valuable information about defoliation, but in reality, there are too many uncertainties in those  

returns coming after the pulse starts to penetrate into the canopy. For example, later return pulses may 

have penetrated through a tree that is not within plot, through branches, overlapping crowns or 

understory vegetation. A total of 26 laser point metrics were calculated from canopy returns. Metrics 

included maximum (Hmax), mean (Hmean), and standard deviation (Hstd) of heights, 10 height 

percentiles and proportions of canopy returns at various relative heights (Table 3). Mean return 

intensity was also calculated.  

Table 3. Statistical metrics calculated from airborne laser scanning (ALS) data for 

individual trees. A total of 10 discrete metrics are included in both h10–h90 and p10–p90.  

Feature Description 

Hmax Maximum height of laser returns 

Hmean Arithmetic mean of laser heights 

Hstd Standard deviation of heights 

CV Hstd divided by Hmean 

h10–h90 Heights 0th–90th percentile 

p10–p90 Percentile of canopy height distribution 

pene Penetration calculated as a proportion of returns below 2 m to total returns 

Int Mean intensity 

2.5. Estimation of Defoliation 

The nearest neighbor (NN) approach was used to estimate the defoliation classes of trees. Tree-wise 

defoliation level determined in the field was used as the target observation (y value) and tree-specific 

metrics derived from ALS data were used as the predictors (x values). Random Forest (RF) [58] was 

applied in the NN search. The RF method is explained in detail by Crookston and Finley [59] and 

Falkowski et al. [60]. Hudak et al. [61] and Latifi et al. [62] showed that the RF method is robust and 

flexible in forest characteristics prediction compared with other NN methods, favoring the selection of 
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RF for NN searching in this study. In the RF method, several regression or classification trees are 

generated by drawing a replacement of two thirds of the data for training and one third for testing each 

tree. A regression tree is a sequence of rules that splits the feature space into partitions having values 

similar to the response variable. A method based on classification and regression trees (CART) is 

usually adopted to generate regression trees. At each node of a regression tree, data are split until the 

leaf nodes contain fewer samples than some preselected value, or the sum of the squares of the 

distances to the mean value of the respective group is less than the threshold. Measurement of nearness 

in RF is defined, based on observations of the probability of ending up in the same terminal node 

during classification. The output is the percent increase in misclassification rate as compared to the 

out-of-bag rate (with all variables intact). The number of NNs (parameter k) was chosen to be three. In 

forest variable predictions, stable results are obtained with k values between two and seven, though bias 

being smallest with k value of one. A total of 2000 regression trees were fitted in each RF run to gain 

more consistency. In addition calculations RF predictions were repeated 10 times and the overall 

classification accuracies and kappa-values were calculated as a mean from the results of the RF runs.  

RF is increasingly used in various ALS applications such as for classification of forest  

structure [63] and tree species [30], defoliation [39,48] and for estimation of tree variables [57]. The R 

yaImpute library [59] was employed in the RF estimations.  

2.6. Simulation of Pulse Densities 

The availability of dense ALS data (~20 pulses/m
2
) enabled the simulation of the effects of pulse 

density on the classification accuracy in mapping of estimated defoliation. The entire set of data was 

initially used to create individual tree segments and to select the ALS metrics for estimating 

defoliation. The goal was to assess the effect of the pulse density on classification accuracy rather than 

to find the best explanatory ALS metrics for different pulse densities or to study the ITD procedure 

with different pulse densities. The original ALS data was thinned with simple random sampling 

procedure at 10% intervals and calculations of the ALS metrics and estimations of defoliation were 

made of the thinned data. Pulse densities of 20, 18, 16, 14, 12, 10, 8, 6, 4, and 2 pulses/m
2
 were 

simulated and tested. The thinning, calculation of ALS metrics and classifications were repeated  

10 times to provide more stability in the results. Densities coarser than 2 pulses/m
2
 were not studied  

since they fell beneath the minimum requirement normally considered for this kind of ITD method 

(e.g., [64,65]). 

3. Results  

3.1. Classification of Defoliation 

In the first phase, RF was run for the DEF1 classification scheme with all possible classifiers 

included to obtain the RF scaled importance of ALS metrics. This was justified due to the overall small 

number of classifiers (26 metrics). Mean return intensity was the most powerful predictor in the first 

run. In this study, the intensity was not calibrated and hence ruled out. On the basis of field 

measurements, it could be assumed that dominant trees are commonly more defoliated by D. pini than 
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the dominated trees. In order to classify the defoliation phenomenon and not tree size, the ALS metrics 

Hmax and Hmean were also eliminated.  

RF is considered to be a robust classification method, but the number of explanatory variables was 

still held low to avoid over-fitting. Over-fitting can occur, especially if used data is very noisy. Based 

on these preliminary runs, the three most important classifiers were tenth height percentile (h10), 

standard deviation of heights (Hstd) and seventh percentile of canopy height distribution (p70)  

(Figure 2). The correlations between the three most important metrics were not strong and difference 

between distributions of healthy and defoliated trees were found (Table 4). Thus these three ALS 

metrics were used in all further classifications.  

Figure 2. Scaled importance of top 20 ALS metrics in Random Forest (RF) run for 

classification of defoliation (classification scheme DEF1). All ALS metrics on left and 

ALS metrics included on right. 

  

Table 4. Pearson’s correlation, mean values for healthy and defoliated trees and 

significance for explanatory ALS features.  

  Correlations   Mean values t-Test 

Feature h10 Hstd p70 Healthy Defoliated p-Value 

h10 1.00 −0.34 −0.32 0.1802 0.9657 <0.000 

Hstd −0.34 1.00 −0.24 6.0684 5.0588 <0.000 

p70 −0.32 −0.24 1.00 0.5306 0.5153 0.19 

The overall classification accuracies for defoliation were over 80% for classification schemes 

having two or three defoliation classes (Table 4). The overall classification accuracies were calculated 

as a mean of 10 RF runs. The best overall classification accuracies were gained with classification 

schemes DEF2 (86.5%, standard deviation of 6.1%) and DEF3 (85.4%, standard deviation of 4.6%) 

with Cohen’s kappa-values of 0.57 and 0.53, respectively (Table 5). The classification combination 
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DEF5 (four classes) gave the lowest overall accuracy (71.0%). The classification succeeded better in 

healthier classes than in more defoliated classes. For example, in classification DEF4, 70% of healthy 

trees and 89% of moderately defoliated trees were classified correctly while only approximately 10% 

of seriously defoliated trees were classified correctly. Most of the trees were classified to correct or 

adjacent class. Even in scheme DEF5 (four classes), 89% of the trees were classified at least to the 

neighboring class. 

Table 5. The overall classification accuracy (CA), minimum and maximum accuracies and 

kappa values for different needle loss category classification schemes (Derived from full 

point density). The trees having defoliation level less than threshold value were assigned to 

a class of lower defoliation level. 

Classification 
Threshold 

defoliation levels 
Classes (n) CA (%) 

Kappa-

Value 

CAmin 

(%) 

CAmax 

(%) 

CAstd 

(%) 

DEF1 20% 2 82.9 0.63 81.1 84.8 1.4 

DEF2 30% 2 86.5 0.57 85.3 87.2 6.1 

DEF3 30%, 60% 3 85.4 0.53 84.9 86.3 4.6 

DEF4 20%, 50% 3 81.5 0.61 79.5 81.9 7.1 

DEF5 20%, 30%, 40% 4 71.0 0.56 68.6 72.32 10.1 

3.2. Effect of Simulated ALS Pulse Density 

ALS metrics h10, Hstd and p70 were also used in analyzing the effect of pulse density in classification 

of Scots pine defoliation. Simulated approximate pulse densities varied between 2 and 20 pulses/m
2
 with 

10% intervals. ALS metrics were calculated and classifications done for 10 different pulse densities for 

classification scheme DEF1. RF classification did not appear to be particularly sensitive to pulse density. 

The mean overall classification accuracies varied between 82.8% and 83.7% with respective mean  

kappa-values of 0.62 and 0.64 (Standard deviations of 1.3% and 1.4%) (Table 6 and Figure 3). 

Table 6. The overall classification accuracies (CA), minimum and maximum accuracies, 

standard deviation, and kappa-values for different pulse densities. 

% of full  

pulse density 

Pulse density 

(appr.) 
CA (%) Kappa-Value CAmin (%) CAmax (%) CAstd (%) 

10% 20 82.9 0.63 80.5 84.7 1.4 

20% 18 83.5 0.64 80.6 84.9 1.1 

30% 16 83.1 0.63 81.1 85.0 0.9 

40% 14 83.7 0.64 82.8 84.7 1.4 

50% 12 83.2 0.63 80.7 85.2 1.5 

60% 10 83.2 0.63 81.5 85.7 1.4 

70% 8 83.1 0.63 81.5 84.8 0.6 

80% 6 83.3 0.64 81.5 84.7 1.3 

90% 4 82.8 0.62 81.6 84.6 1.3 

100% 2 82.9 0.63 81.1 84.8 1.5 
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Figure 3. Overall classification accuracy for defoliation with different ALS pulse densities. 

 

4. Discussion  

Forest inventory, mapping and monitoring methods have rapidly developed in recent decades.  

New methods are more often based on RS applications, especially using ALS. While the methods are 

changing and forest disturbances are becoming more abundant, there is an urgent need for new 

methods to map and monitor forest health. In the present study, statistical ALS metrics were tested in 

the classification of individual tree defoliation. The RF method with three selected ALS metrics  

was applied to estimate the accuracy of different combinations of defoliation categories and varying 

pulse densities. 

A total of 701 trees were allocated in five different needle loss category classification combinations 

having 2–4 defoliation classes. The hypothesis was that a larger portion of ALS hits would penetrate 

deeper into tree crowns and the statistical ALS metrics differ between healthy and defoliated trees. The 

RF method showed some promising results using 2–3 defoliation classes, while use of further classes 

resulted in predictions that were only moderately accurate. However, RF was able to classify most of 

the trees in every classification scheme at least to the adjacent defoliation class. By analyzing 

classification accuracy of ALS data that was randomly thinned into 10 different pulse densities  

(2–20 pulses/m
2
), we found that RF classification was not overly sensitive to varying pulse density and 

that the overall classification accuracies did not vary considerably between different pulse densities.  

In several studies, ALS data has been used in the estimation of forest characteristics other than 

defoliation at both stand- and tree-level (e.g., [30,57,66,67]). The utilization of ALS has been less 

studied in the field of forest disturbances. For example, Vehmas et al. [68] detected deadwood through 

canopy gaps, using ALS data [37]. Solberg et al. [42] compared leaf area index (LAI) with ALS data 

in defoliated Scots pine stands. Kantola et al. [39] tested ALS data combined with aerial imagery for 

defoliation estimation by RF with two defoliation classes, and obtained an overall classification 

accuracy of 88.1% (kappa value 0.76). For comparison, Kantola et al. [39] also tested defoliation 

detection accuracy using only the ALS metrics (classification accuracy 80.7%). Their results with 

spectral features were slightly better than in the present study, but they used only two distinct defoliation 

categories, i.e., healthy and heavily defoliated trees. In the present study, all the trees in addition to those 

having a threshold value were used in the analysis. In addition, the results were also fairly accurate with 
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more than two classes. Vastaranta et al. [48] studied plot-level needle loss prediction for the same study 

area. They obtained an overall classification accuracy of 84.3% for two classes.  

The defoliation level in the field was visually estimated, using the same procedure as the NFI of 

Finland [23]. However, visual interpretation could easily have caused deviation in the results if the 

surveyors were not professionals. Naked-eye calibration is essential when two or more researchers are 

estimating the critical variable. Observers should also be able to distinguish a between years and 

within year natural variation in foliage biomass. In addition, prevailing conditions could have also 

caused bias in the defoliation assessment, such as weather, brightness, heavy wind, high tree density, 

and difficult terrain. Visual needle loss assessment was done with 10% accuracy and there are 

uncertainties in assessment. Due to these uncertainties, using narrower class limits is not justified.  

Most of the trees were classified from ALS data into the correct or adjacent defoliation class. 

Misclassifications may have originated from the sensitivity of the reference visual defoliation 

estimation to errors. For example, a tree having an approximately a defoliation level of 20% could 

have been visually classified into classes of 10% or 30%. Development of better methods for needle 

loss estimation in the field may also improve the detection rate from ALS data. 

All data were collected from trees in the same study area. A typical feature of the study area was 

that the taller and older trees in the dominant canopy strata were more heavily defoliated than the 

shorter and younger trees. This pattern is typical of D. pini outbreak dynamics. Ovipositing females 

prefer the uppermost parts of the crowns, due to higher carbohydrate synthesis in these needles than 

found under more shaded conditions [20,69]. The high carbohydrate content, particularly of soluble 

sugars, promotes the survival of the following sawfly generation. D. pini attacks suppressed understory 

pines only after completely consuming needles of taller trees. To avoid classifying tree height instead 

of defoliation, pure height features, such as Hmean and Hmax were not used in classification. 

The result of the first RF run with all 26 ALS metrics indicated that the mean return intensity could 

be a powerful predictor of defoliation. In theory, intensity based upon wavelength of 1064 nm in  

near-infrared area, should differ between healthy and defoliated trees. In practice, the use of intensity 

is often problematic, because it has to be calibrated. In this study, the intensity was not calibrated. 

However, the power of raw intensity was also tested. When penetration (pene) was used together with 

intensity (int) inl classification, overall accuracies of 81.74% and 83.59% were obtained for two 

classes (DEF1 and DEF2). Based on this result, it could be assumed that a full waveform ALS could 

allow more accurate classification of defoliation.  

The distribution of defoliation levels among trees was uneven in the study area. The number of trees 

suffering from heavy defoliation was quite limited, due to low daily temperatures in summer 2008. The 

classification accuracies were higher in healthier tree classes, which may have resulted from the 

scarcity of heavily defoliated trees. A larger proportion of trees having severe needle loss could 

improve the classification accuracy. 

Recent studies have shown that the distributions of ALS features vary among different site  

types [70]. In the present study, the site types were not taken into account because they varied only 

slightly within the study area. The distribution of ALS metrics probably varies depending on the size 

and hierarchy level of the trees. For example, Korpela et al. [30] found that dominant Scots pines had 

approximately 5% higher mean return intensity than the intermediate trees. In the present study, the 
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smaller trees from the suppressed canopy cover level were excluded, but there is still considerable 

variability in the data. 

Results of this study suggest that it may be possible to detect trees with differing levels of needle 

loss, although the detection accuracy showed less success with increasing numbers of defoliation 

classes. The results of the present study can be useful for improving the use of ALS in detection and 

mapping of damage by defoliating insects, which is usually a rare and clustered phenomenon. This 

study may also support further development of methodologies for inventorying defoliating pests. For 

example, with remote sensing data, the stratification could be carried out by focusing on areas where 

pest damage could be detected from preliminary remote sensing data. Suitable class intervals could be 

set at reasonable threshold levels to obtain adequate estimates, depending upon the nature of the forest 

disturbance in question. 

To the best of our knowledge, the use of ALS-based ITD inventory for estimating tree defoliation 

has not been widely investigated. However, the results of this study are in some ways comparable with 

other studies using RS data in needle loss estimation. Ilvesniemi [71] used the same Palokangas study 

area that was utilized here when investigating the use of aerial photographs and Landsat Thematic 

Mapper (TM) data in classifying defoliation of Scots pine at the plot level. The classification 

accuracies for features extracted from aerial photographs varied between 38% (nine classes) and 

87.3% (two classes). The best explanatory variable for needle loss was maximum radiation of the  

near-infrared (NIR) channel in aerial images (r
2
 = 0.69). Classification results with Landsat image 

features were slightly poorer (accuracies between 25.4% and 88.7%). Aerial images have also been 

utilized in other studies to detect tree-wise defoliation such as by Haara and Nevalainen [72]. Their 

results showed that the tree-wise classification accuracy for reference data of Norway spruce  

(Picea abies (L.) Karsten) was 68.9% with four classes. 

Karjalainen et al. [73] used multitemporal European Remote-Sensing Satellite 2 (ERS-2)  

and Environmental Satellite (Envisat) satellite images and calculated the synthetic aperture radar 

(SAR) backscattering intensities (squared amplitude) of 400-m × 400-m grid cells. These SAR  

features were used to estimate defoliation (same two classes as used here). An overall classification 

accuracy of 67.8% was obtained, when 30% of the field reference was used in training and 70% for 

testing the model.  

Vastaranta et al. [48] also studied the effect of pulse density for mapping plot-wise defoliation and 

their results were similar to this study. No remarkable sensitivity for pulse density was found in 

prediction. According to Kaartinen et al. [66] the pulse density may not affect the individual tree 

detection. In this study, the tree identification was only done with full pulse density data  

(~20 pulses/m
2
). 

The present study is one of the first steps towards developing an ALS-based system for monitoring 

changes in forest health (defoliation) in Finland. Optimally, defoliation mapping should be adopted in 

current annual practices. For example, it should be part of NFIs or operational forest management 

planning based on ALS inventory. Field surveys could provide information for growing stock 

estimation, precise information on defoliating pest agents and also coarse data on needle defoliation. 

Then, ALS data can be applied on demand to create maps for stem volume and defoliation status 

where precise information is needed. 
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Further studies are planned to focus on more heterogeneous forest stands with variable terrain and 

tree species combinations that represent more extensively forests in Finland than our rather 

homogeneous test site. The distribution of ALS metrics among different fertility classes also needs 

investigation. From a practical point of view, it is most critical to detect areas of severe defoliation and 

test the method with all possible forest site combinations represented. However, it is difficult to predict 

where and when the mass outbreaks of defoliators will appear. The optimal ALS metric selection 

method to use in estimating and mapping needle loss also requires further study.  

5. Conclusions  

In this study the distributions of statistical ALS metrics of healthy and defoliated Scots pines were 

investigated and levels of defoliation for different defoliation category classification schemes were 

classified. In addition, 10 varying ALS pulse densities were simulated to investigate if the 

classification method was sensitive to varying ALS pulse densities. The distributions of ALS statistical 

metrics varied between healthy and defoliated trees and up to 86.5% (kappa value 0.57) overall 

classification accuracy for two defoliation classes of Scots pine was achieved using ALS metrics of 

10th height percentile, proportion of canopy returns below 80% of relative height and standard 

deviation of heights as explanatory variables. The classification accuracy decreased with the number of 

additional defoliation classes, although the method was not overly sensitive to ALS pulse density. 

However, further studies are needed on more heterogeneous sites to further develop methods for 

annual disturbance monitoring and mapping, and operational forest management planning. 
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