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Abstract: Allometric models of internodes are an important component of  
Functional-Structural Plant Models (FSPMs), which represent the shape of internodes  
in tree architecture and help our understanding of resource allocation in organisms. Constant 
allometry is always assumed in these models. In this paper, multilevel nonlinear  
mixed-effect models were used to characterize the variability of internode allometry, 
describing the relationship between the last internode length and biomass of Pinus 
tabulaeformis Carr. trees within the GreenLab framework. We demonstrated that there is 
significant variability in allometric relationships at the tree and different-order branch levels, 
and the variability decreases among levels from trees to first-order branches and, 
subsequently, to second-order branches. The variability was partially explained by the 
random effects of site characteristics, stand age, density, and topological position of the 
internode. Tree- and branch-level-specific allometric models are recommended because they 
produce unbiased and accurate internode length estimates. The model and method developed 
in this study are useful for understanding and describing the structure and functioning of trees. 
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1. Introduction 

Plant allometry has been used extensively to describe the relationship between individual size and 
other attributes, such as form and process [1,2]. It allows plant organ size to be estimated, commonly 
from the plant’s biomass, and links plant architecture and physiological activities. It is particularly useful 
in functional-structural plant models (FSPMs), which explicitly describe the development of the 3D 
architecture or structure of plants over time as governed by physiological processes and environmental 
factors [3,4]. In these FSPMs, such as GreenLab [5,6], stem morphology (length and diameter) is an 
important component because it requires an accurate description of the geometric and topological 
structure of the plant and canopy. It is well known that plants often display large differences in 
morphological characters. As a tree grows in response to the local climate, site conditions, and 
management practices, its components change in size and shape in a coordinated manner. Within a single 
species, genotypes often vary intrinsically in their phenotypic trait values [7]. The ability to change a 
phenotype in response to the environment is an important feature of plants, especially for trees living in 
heterogeneous environmental conditions over both a long generation time and a large geographical area. 
The 3D architecture of a forest canopy is a highly heterogeneous and dynamic system at all scales. The 
length, diameter and number of internodes within branches at different levels affect visual appearance 
but also reflect the resource allocation of a tree, which is driven by the environment and physiological 
processes. The geometry of tree branches can have a considerable effect on their efficiency in terms of 
carbon export per unit carbon investment in structure [8]. 

It has been observed from experiments that there are great variations in internode growth within and 
between trees, even for branches of similar positions and vigor [9–11]. For example, distinct quantitative 
trait loci between the trunk and branches for internode lengthening were detected in apple hybrids [12]; 
internode length varies regularly with node order [13]. Numerous empirical works have provided evidence 
of the variability of structural traits within species, between species, and over time [14–16]. Pretzsch and 
Dieler [17] provided empirical evidence that trees exhibit plastic rather than fixed structural scaling; 
plastic scaling is relevant for space occupation and competition at the individual tree level. Chen  
et al. [18] found strong elongation of petioles upon submergence as well as both inter- and  
intra-population variation. Intraspecific functional variability in terms of the extent, structure, and 
sources of variation was also investigated [19]. There is increasing evidence challenging the assumption 
that intraspecific variability is much lower than interspecific variability [20,21]. Moreover, the variability 
of plant allometric equations (scale laws) for relationships such as metabolic rate-biomass [22],  
tree height-diameter [23–26], tree productivity-biomass [27], biomass-diameter [28,29],  
branch radius-branch length [24,30], and foliage and woody mass in crowns [31] has been  
extensively examined. 

Quantifying the variation in allometric growth is of interest for FSPMs because understanding the 
variation in allometric internode growth within and between trees should allow us to better understand 
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the underlying tree structure and function. Little is known about the variability in internode allometry; 
however, such information is essential, both for improving the accuracy of FSPMs and for understanding 
the mechanisms of tree functioning. It is expected that the allometric relationship of an individual tree 
deviates from that of a modeled population. Furthermore, the same genetic material occurs within trees; 
thus, the specification of internodes within trees (i.e. nested random effects) is necessary to model the 
hierarchical data structure. Internode measurements (length, diameter, and biomass) that are derived 
from the same tree and branch are not independent. These issues have rarely been described for  
FSPMs [32–36], with the exception of a single study [37]. There is increasing interest in including the 
variation among individuals in the modeling of population growth with hierarchical models, in which 
some parameters are estimated at the level of the population, whereas other parameters are assumed to 
vary among individuals according to a specific distribution where the mean and the variance of the 
distribution can be estimated [38–41]. Recent developments in statistical theory and computational 
power allow for the specification of multilevel nonlinear mixed-effect models that can generate notable 
improvements in parameter estimation [42,43]. Analyses of the allometric growth patterns of internodes 
with mixed-effects models have been limited up until now and could potentially provide valuable 
biological insights into plant plasticity for FSPMs [37]. 

Chinese pine (Pinus tabulaeformis Carr.), an important native tree species in China, grows across  
14 provinces and plays a significant role in forestry and social development. A Chinese pine tree only 
produces one internode for both the stem and a branch during one year and is characterized by branches 
in whorls on each internode. Third-order branches are common and very few fourth-order branches are 
observed. To better understand inter-tree competition on a source-sink balance, a functional-structural 
model of Chinese pine was calibrated using the GreenLab framework with the assumption that the 
internode allometry for the same level branches is identical [43]. 

The main goal of this study was to examine the variability of internode allometry within and between 
trees and branches for the Chinese pine. The base allometric model from GreenLab describes the primary 
growth of the internode. A multi-level nonlinear mixed-effects model approach was adopted based on 
observed allometric data. We aimed to verify that significant variation exists in internode allometry 
within and between trees and branches; this needs to be modeled and quantified. 

2. Materials and Methods 

2.1. Site Description and Data 

Data were collected at the Longtoushan forest farm, Weichang county (116°51′–117°45′ E,  
41°47′–42°06′ N), Hebei Province, China in April 2011. The mean elevation in the area is 985 m. The 
mean annual rainfall is 465 mm. Temperatures range from −12.9 °C to 38.9 °C with an average of 2.4 °C. 
The soil is primarily brown soil. 

In this paper, a sampling protocol similar to the one described in the study of Guo et al. [44] was 
designed to investigate tree architecture and biomass to develop functional-structural models of the 
Chinese pine. Sixteen Chinese pine trees of different ages and from different sites (S1 to S4) with varying 
densities (decreased from 1 to 4) were randomly sampled and investigated (Table 1). For each tree, the 
diameter at breast height (1.3 m) was first measured. After the tree was felled, the total height, the total 



Forests 2014, 5  
 

 

2828 

number of internodes, and their corresponding locations along the stem were measured and recorded. 
For each internode on the trunk, one representative first-order branch was selected and the length, 
diameter, fresh biomass, and the corresponding location of each internode on the selected first-order 
branch were measured. For each internode on the selected first-order branch, one representative  
second-order branch was selected and the same information was measured as for the first-order branch. 
The measurements for the third-order branch were the same as for the first and second-order branches. 
In the GreenLab model, the growth of internodes is described by two processes. The first one is primary 
growth. The internode grows in length and diameter for a short period and length and diameter are linked 
by an allometric function during the primary growth. The second one is secondary growth. Internode 
length is then static but the diameter continues to grow, as long as the branch is alive. For these reasons, 
the relationships between length and diameter can be linked only for current-year shoots, usually 
represented by the last internodes of branches [5]. In that sense, we remake allometry only on the last 
internode of branches, where the secondary growth is negligible. For Chinese pines, the last internode 
of a branch is commonly used to develop the allometric model, which describes the primary growth of 
internodes [45,46]. A total of 211 internodes on first-order branches, 969 internodes on second-order 
branches and 431 internodes on third-order branches were collected. Summary statistics for the last 
internodes of branches are shown in Table 2. We neglected the fourth order or higher branches because 
the number of these branches was very limited. 

Table 1. Description of 16 sampled Chinese pine trees. 

Tree 
No. 

Tree Age 
(Year) 

Age 
Group 

Diameter at Breast 
Height (cm) 

Tree Height (m) 
Site 

Location 
Density 
Group 

1 5 A1 1.8 * 0.93 1 1 
2 5 A1 1.7 * 0.82 1 1 
3 8 A2 2.5 2.06 1 1 
4 8 A2 2.2 2.19 1 1 
5 47 A3 20.2 13.80 2 4 
6 47 A3 17.3 13.02 2 4 
7 47 A3 14.4 12.95 2 4 
8 47 A3 20.4 16.25 2 3 
9 47 A3 15.7 13.80 2 3 
10 47 A3 20.4 15.85 2 3 
11 21 A4 13.8 7.47 3 2 
12 21 A4 12.4 7.29 3 2 
13 21 A4 13.4 7.10 3 2 
14 11 A5 5.3 4.02 4 1 
15 11 A5 3.1 2.85 4 1 
16 11 A5 3.4 3.24 4 1 

Note: * indicates ground diameter. 
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Table 2. Summary statistics of the last sampled internodes on Chinese pine branches. 

Branch 
Order 

Internode Size Maximum Minimum Mean 
Standard 
Deviation 

Coefficient of 
Variation (CV) 

Sample 
Size 

1 
length (cm) 37.60 0.32 13.33 9.60 0.72 

211 
fresh biomass (g) 24.98 0.03 3.96 4.88 1.23 

2 
length (cm) 18.70 0.10 3.14 2.14 0.68 

969 
fresh biomass (g) 3.44 0.01 0.45 0.76 1.69 

3 
length (cm) 3.01 0.20 1.14 0.60 0.53 

431 
fresh biomass (g) 0.60 0.01 0.12 0.10 0.83 

2.2. Base Allometry Model 

The base allometry model is from GreenLab; in this study, the internode is represented as a  
cylinder [47], and a power function is adopted to describe the allometry of internodes with  
the specification of Equation (1) [45] in the GreenLab model. This has been validated by previous  
studies [33,34,44], and is also well indicated by most of the scatter plots between internode length and 
biomass for Chinese pine in this study (Figure 1). The model only accounts for primary growth of  
the internode. 
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where L(K) and Q(K) are the length and biomass of internode K, respectively; β1 and β2 are the shape 
parameter and geometric parameter of the internode in the GreenLab model, respectively; and ε  is an  
error term. 

Figure 1. Scatter plots of internode length and biomass for Chinese pine (A: the first-order 
branches; B: the second-order branches; C: the third-order branches). 
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Figure 1. Cont. 
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2.3. Multi-Level Nonlinear Mixed Model 

Mixed-effects models can incorporate the hierarchical structure of data into the analysis, and the 
variation in the parameter estimates is known at each level of the hierarchical sampling structure,  
thus providing unbiased estimates of model parameters [48]. Using random effects to capture  
branch-to-branch and tree-to-tree variability allows for modeling the length of the individual tree 
(subject-specific) as well as the length of the average tree (population-specific). The mixed-effects model 
for estimating the lengths of internodes on different order branches is specified in Equations (2)–(4): 
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where Lij(K), Lijm(K), and Lijml(K) are the lengths of internode K for the first-order branch j, the  
second-order branch m is located on the first-order branch j, and the third-order branch l is located on 
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the second-order branch m on branch j for tree i, respectively. Qij(K), Qijm(K), and Qijml(K) are the 
biomasses of internode K for different order branches denoted with the same conventions as for length, 
β1 and β2 are fixed parameters, b1,i and b2,i are random parameters specific to tree i describing  
between-tree random effects, b1,ij and b2,ij are random parameters specific to the jth first-order branch of 
tree i describing between-first-order-branch random effects, b1,ijm and b2,imj are random parameters 
specific to second-order branch m on branch j of tree i describing between-second-order-branch random 
effects, and εi,j, εi,jm, and εi,jml are model errors. The random parameter vector (b1,k, b2,k) and model error 
εi,k, in which k is the object the random parameters are specific to, are assumed to be normally distributed 
with means of zero and variance-covariance matrices D and R, respectively. R is assumed to be δi,k2I,  

where δi,k2I, is the error variance and I is an identity matrix. D is assumed to be an unstructured  
variance-covariance matrix:  
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where 2
1,σ k  and 2

2,σ k  are the variance of random parameters b1,k and b2,k on the k level, which describe 

the inter-tree and -branch variability of the parameters; 12,σ k  and 21,σ k  are the covariance between 

random parameters b1,k and b2,k in the Equations (2)–(4); and 12,σ k  = 21,σ k . 

In this study, both shape and geometric parameters (or only one of them in the base model (Equation 
(1)) were assumed to be mixed, including fixed and random component parameters. They present 
random effects at the tree, first-order branch, and second-order branch levels. So, in total, we have three, 
nine, and 27 models to be tested with the combinations of random parameters for internodes on the  
first-, second-, and third-order branches, respectively (Tables 3–5). 

Table 3. Values of AIC and BIC of mixed-effect models and the base model for  
first-order branches. 

Model No. Mixed-Effect Parameters AIC BIC 
1 β1, β2 891.6 911.2 
2 β1 910.3 923.3 
3 β2 1100.2 1113.2 

Base model  1220.2 1223.0 

Table 4. Values of AIC and BIC of mixed-effect models and the base model for the  
second-order branches. 

Model No. Mixed-Effect Parameters AIC BIC Tree Level First-Order Branch Level 
1 β1, β2 β1, β2 2098.2 2141.7 
2 β1, β2 β1 2140.7 2174.6 
3 β1, β2 β2 2165.4 2199.3 
4 β1 β1, β2 2117.0 2150.9 
5 β1 β1 2255.5 2279.7 
6 β1 β2 2192.4 2216.6 
7 β2 β1, β2 misconvergence 
8 β2 β1 2355.0 2379.3 
9 β2 β2 3154.1 3178.3 

Base model  3376.0 3390.5 
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Table 5. Values of AIC and BIC of mixed-effect models and the base model for the  
third-order branches. 

Model No. 
Mixed-Effect Parameters 

AIC BIC 
Tree Level First-Order Branch Level Second-Order Branch 

Level 
1 β1, β2 β1, β2 β1, β2 misconvergence 
2 β1, β2 β1, β2 β1 misconvergence 
3 β1, β2 β1, β2 β2 572.4 613.5 
4 β1, β2 β1 β1, β2 misconvergence 
5 β1, β2 β1 β1 585.6 618.5 
6 β1, β2 β1 β2 616.4 649.4 
7 β1, β2 β2 β1, β2 misconvergence 
8 β1, β2 β2 β1 558.0 590.9 
9 β1, β2 β2 β2 622.9 655.8 
10 β1 β1, β2 β1, β2 misconvergence 
11 β1 β1, β2 β1 555.7 588.6 
12 β1 β1, β2 β2 572.1 605.1 
13 β1 β1 β1, β2 misconvergence 
14 β1 β1 β1 604.8 629.5 
15 β1 β1 β2 637.3 662.0 
16 β1 β2 β1, β2 misconvergence 
17 β1 β2 β1 564.6 589.3 
18 β1 β2 β2 633.6 658.3 
19 β2 β1, β2 β1, β2 misconvergence 
20 β2 β1, β2 β1 554.0 587.0 
21 β2 β1, β2 β2 570.2 603.1 
22 β2 β1 β1, β2 misconvergence 
23 β2 β1 β1 586.5 611.2 
24 β2 β1 β2 621.6 646.3 
25 β2 β2 β1, β2 misconvergence 
26 β2 β2 β1 569.0 593.7 
27 β2 β2 β2 696.5 721.2 

Base model    763.8 776.2 

2.4. Statistical Analysis 

Model performances for different combinations of random parameters were evaluated using Akaike’s 
information criterion (AIC) and Schwarz’s Bayesian information criterion (BIC). The smaller the values 
of AIC and BIC, the better the model fits [49,50]. The significance of random effects was evaluated 
using the likelihood-ratio test. Comparison of the prediction capacities of the base model and mixed 
models was based on the graphical and numerical analysis of the residuals and the following  
goodness-of-fit statistics: average relative error (ARE) and root mean square error (RMSE). These were 
calculated by Equations (5) and (6):  
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where yi is the observed value, ˆiy  is the predicted value, n the sample size, and k the number of  

model parameters. 
Among the 16 trees measured, the data for 13 Chinese pine trees were randomly selected for model 

calibration and the other three trees for model validation. All statistical computations were implemented 
in R by means of the nlme package [51]. 

3. Results 

3.1. Variability in Internode Size and Biomass within and among Trees 

The variability of internode length and biomass was measured by the coefficient of variation (CV). 
The average CVs of the length and biomass of internodes within trees were 0.664 and 0.709, 0.782 and 
1.031, and 1.195 and 1.184 for the first-, second-, and third-order branches, respectively. The biomass 
of the internodes presented higher variation than the length, and that variation increased with branch 
order. This indicates that there are obvious size variations within trees. Similar trends were also observed 
among trees. The average CVs for the length and biomass of internodes among trees were  
0.396 and 0.412, 0.754 and 0.593, and 0.588 and 1.717 for the first-, second-, and third-order  
branches, respectively. 

Scatter plots of internode length and biomass for the different branch orders illustrate the variation of 
the curves (Figure 1). Figure 2 provides the approximate 95% confidence intervals for parameters β1 and 
β2 in Equation (1) for the tree at the first-order branch and second-order branch levels. Substantial 
variation was noted in the allometric relationships between internode length and biomass within and 
among trees. We further used box-plots to check the distribution of parameters (Figure 3), which also 
indicated the difference in the median and mean values among branches. Parameter β1 is right-skewed, 
but β2 is left-skewed or right-skewed. Therefore, parameters β1 and β2 can reasonably be considered  
random effects. 

Figure 2. Confidence intervals of parameters β1 and β2 for individual Chinese pine trees or 
for branches (A: trees; B: the first-order branches; C: the second-order branches). 
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Figure 2. Cont. 

 

Figure 3. Box-plots of parameters β1 and β2 for the first-order branches, the second-order 
branches, and the third-order branches (dashed line indicates the mean value). 
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Figure 3. Cont. 

 

3.2. Model Fitting and Validation 

All models with fixed and random parameters were evaluated based on the fit statistics AIC and BIC 
listed in Tables 3–5. The values of AIC and BIC for all mixed-effects models were smaller than those of 
the base models. We selected the three models with the smallest AIC and BIC for first-, second-, and 
third-order branches for further calibration. 

For the first-order branches, the mixed-effect model 1 with two random effect parameters, b1,i and 
b2,i, was selected (Table 3). Model 1 in Table 4 was selected as the calibrated model for the internodes 
on the second-order branches, where the random effects of fixed parameters β1 and β2 were considered 
at both the tree and first-order branch levels. For the internodes on the third-order branches, model 20 
(Table 5) was selected for further calibration, where the random effect of fixed parameter β2 at the tree 
level, the random effects of fixed parameters β1 and β2 at the first-order branch level, and the random 
effects of fixed parameter β1 at the third-order branch level were considered. 

The parameters of the fixed part and the variance and covariance of the random part of each  
mixed-effect model are listed in Table 6. All random effects were statistically significant with the 
exception of the tree-level effect on β1 and the second-order branch-level effect on β2 for models of  
third-order branches, demonstrating significant variability in fixed parameters between and within trees, 
and within and between branches, and indicating the necessity of including random effects in the 
allometric model. Random effects accounted for a high proportion of the variance, but the importance 
of the hierarchal levels differed (Table 6). Parameters β1 and β2 varied much more between trees than 
between branches, which indicates that the random effects resulting from different trees are stronger 
than those resulting from different branches. For branches of the same order, the random effects 
characterized by their variance in allometric models decreased with increasing branch order (Table 6). 
To examine possible reasons behind the pattern of variability, we used box-plots of random effects for 
parameters β1 and β2 for the second- and third-order branches among different sites, ages and densities 
to illustrate the parameter distribution (Figures 4 and 5). Those for the first-order branches were not 
plotted because of the scarcity of data. They indicated that the distributions of random parameters clearly 
differ among sites, ages, and densities. 
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Table 6. Estimates of parameters for mixed models. 

Fixed 
Part 

Parameter First-Order Branches Second-Order Branches Third-Order Branches 
β1 94.792 (20.954) 59.992(13.234) 4.043( 0.286) 
β2 0.122(0.042) 0.361(0.068) 0.513(0.036) 

Random 
Part 

 Tree Level Tree Level 
First-Order 

Branch Level 
Tree Level 

First-Order  
Branch Level 

Second-Order 
Branch Level 

2
,1 kσ  5.478×103 2.153×103 93.700 - 2.651 0.248 

2
,2 kσ  1.646 × 10−2 4.836 × 10−2 3.323 × 10−2 

1.676 × 
10−2 

3.562 × 10−3 - 

2
,12 kσ  −0.525 −0.592 0.709 - 0.879 - 

2δ  3.514  0.378   0.116 
Note: Standard errors are shown in parentheses. 

Figure 4. Box-plots of random effects for parameters β1 and β2 for the second-order branches 
by site (S1–S4), age (A1–A5), and density (D1–D4) (dashed line denotes the mean value). 
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Figure 5. Box-plots of random effects for parameters β1 and β2 for the third-order branches 
by site (S1–S4), age (A1–A5), and density (D1–D4) (dashed line denotes the mean value). 

 

The likelihood ratio test indicated that the model performances were improved by including random 
effects for all orders of branches. Compared with the base models for the first-, second- and third-order 
branches, the average relative error (ARE) and root mean squared error (RMSE) decreased by 69.14% 
and 60.82%, 46.43% and 25.35%, and 40.74% and 55.32%, respectively (Table 7). Residual distribution 
plots were constructed for the mixed-effect and base models (Figure 6). The inclusion of random effects 
in the models, which accounts for a large portion of the variability, effectively decreased the residuals 
and removed the heterogeneous residual variance. A one-sample Kolmogorov—Smirnov test indicated 
that the residuals of the mixed models are normally distributed (p = 0.383, 0.081, and 0.064 for  
Equations (2)–(4), respectively). 

Table 7. Comparison between the base model and mixed model calibrations. 

Branch Order Models ARE ARE Reduction 
(%) RMSE RMSE Reduction (%) 

1 
Base model 0.071 

−25.35 
5.745 

−69.14 
Mixed model 0.053 1.773 

2 
Base model 0.027 

−40.74 
1.460 

−60.82 
Mixed model 0.016 0.572 

3 
Base model 0.047 

−55.32 
0.560 

−46.43 Mixed model 0.021 0.300 
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Figure 6. The distributions of residuals for the base models and mixed-effect models  
(A: First-order branches; B: Second-order branches; C: Third-order branches). 

 

 

The internode length predicted by the mixed models was compared to the observed values on the 
basis of bias and precision using the reserved validation data (three trees). The ARE and RMSE were 
calculated for each branch order for model validation (Table 8). The results indicated that both the ARE 
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Table 8. Comparison between base model and mixed model validation. 

Branch Order Models ARE ARE Reduction 
(%) RMSE RMSE Reduction (%) 

1 Base model 0.087 −13.97 4.616 −13.63 
Mixed model 0.075 3.594  

2 Base model 0.036 −41.67 1.226 −85.16 
Mixed model 0.021 0.182  

3 Base model 0.069 −37.68 0.503 −56.06 
Mixed model 0.043 0.221  

4. Discussion 

Allometric relationships in organisms are considered a universal phenomenon; however, the fact that 
universal scaling exponents cannot be defined for trees has previously been noted [23,52]. Here we have, 
for the first time, been able to attribute internode allometry to trees and branches of different orders, and 
showed the variation of internode allometry at different levels using hierarchical nonlinear mixed-effect 
models. These mixed models provided more accurate parameter estimations. We found significant 
variability in internode allometry within and between trees and branches, which was quantified as the 
variances of the random effects of shape and geometric parameters in the model. Of the random 
variation, the variation in the allometric relationships occurring between trees was much greater than 
that between branches, and variation between lower-order branches was much greater than between 
higher-order branches. We also tested Equation (1) after log-transformation of both sides, i.e. Ln(L) and Ln 
(Q) were treated as dependent and independent variables, respectively. The log-transformed equation, 
however, did not change our conclusion on the variation of allometry among different scales. 
Additionally, the values of scaling coefficient increased from the first- to third-level branches but the 
values of scaling exponent showed the opposite, which implies a complicated biomass allocation pattern. 
This may be attributed to the nonlinear relationship between biomass and length, characterized as a 
convex downward curve on the log-log coordinates. It is tempting to consider our findings with regard 
to the debate surrounding the mechanistic basis of metabolic scaling explained through the West, Brown, 
and Enquist (WBE) theory [53] or the Dynamic Energy Budget (DEB) theory [54–60]. Our results on 
the allometry between internode length and biomass were inconsistent with universal models such as 
elastic similarity, stress similarity, geometric similarity, and WBE, according to the results of Price [15]. 
This may further confirm the conclusion that universal scaling exponents cannot be defined for  
trees [23,52]. 

Many biotic and abiotic factors, as suggested by previous studies, may potentially affect  
allometric relationships, including genetics, ontogeny, size, age, structure, site, climate, and their 
interactions [2,25,26,31,54,61–63]. As shown in Figures 4 and 5, parameters of the allometric equations 
for different sites, age groups, and stand densities were heterogeneous at different scales, which implied 
that site, age, and stand density are attributed to the variation of internode allometry within and among 
Chinese pine trees. Trees in different development stages have different growth patterns caused by 
chronological changes in light conditions, as illustrated by dynamic height-diameter allometry [64]. Site 
characteristics reflect local climate, soil, and topology, which affect internode (last internode of branches 
in this study) growth. Trees within a high-density stand always have strong competition from neighbors, 
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which means they may receive limited light intensity, water, and nutrition during primary growth. Such 
competition-related phenotypic plasticity has been observed [41,65]. Besides the effects of stand age, 
site, and density, the topological position and the orientation of branches within trees are possible sources 
of variability, which can lead to a heterogeneous light environment; however, their effects are low 
compared with the allometric relationships among trees. 

A constant allometry rule between the length and biomass of internodes in the GreenLab model  
(where branches belonging to the same order are identical) has been validated for crops and tree species 
in the literature [32,44]; however, random processes for growth, death, and branch pattern have also 
been applied to characterize stochastic structure and functioning in different versions of the GreenLab 
functional-structural model [66,67], especially stochastic modeling of annual tree shoot dynamics in the 
recent GL5 version [68]. In this study, single-level, nested two-level and nested three-level nonlinear 
mixed-effect models were developed for the internode allometry of first-, second-, and third-order 
branches of Chinese Pine, respectively. The random effects of the mixed models were significant at the 
tree, first-order, and second-order branch levels. The mixed models address coherence and variation by 
setting the structure of variance and covariance in the random part, thus improving the prediction 
accuracy of the model. The results indicated that all errors in the mixed models decrease compared to 
those of the base models for all branch orders. Ma et al. [69] evaluated the stability of GreenLab 
parameters in response to maize individuals from a common population, individuals from populations 
subjected to different environments (seasons), and different development stages of the same individuals 
by comparing their CVs. They concluded that parameter values were largely independent of 
developmental stage, but mean allometric mass ratios (the mean of the ratios of leaf blade to  
above-ground, leaf sheath to above-ground, internode/above-ground, and cob/above-ground), only 
showed 12.5% and 2.1% variation among seasons, inter- and intra-season, respectively. Unlike crops, 
trees have a complicated architecture and a more heterogeneous environment. There are some 
implications for the application of FSPM from our above findings. Tree- or branch-specific allometric 
models should be developed instead of averaged models to obtain unbiased and accurate internode length 
predictions. Such models will be useful in determining internode shape and generating stochastic 
structure as simulated using stochastic models [35,68,70], which will affect light interception, 
photosynthesis, and tree architecture in functional-structural modeling. Information about the allometric 
relationships of trees can be used in models to constrain the form and structure of trees to ensure that 
they conform to natural systems. The variation among trees and branches leads us to suggest that 
replication of the mid-internode sampling is required for accurate estimates of the internode mean. The 
study did not prove that estimation of internode allometry could improve the model quality of GreenLab 
since we neglected the functional part, but the tree- and branch-specific shape parameters and geometric 
parameters of internodes can be applied and tested in the GreenLab model in the future. Although we 
quantified the variation in internode allometry within the GreenLab framework, the methodology and 
conclusion have universal implications for functional-structural tree models. 

5. Conclusions 

An allometric model of internodes is of great importance for determining the shape of internodes in 
functional-structural tree modeling. We examined the variability of internode allometry by describing 
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the relationship between internode length and biomass in Pinus tabulaeformis Carr. trees using a 
multilevel nonlinear mixed-effect model. We found that there was significant variability in allometry  
at the tree and different-order branch levels, and the variability decreased from trees, first-order  
branches to second-order branches. Therefore, tree- and branch-specific allometric models are 
recommended to produce unbiased and accurate internode length estimations with biological 
significance. The new model can be useful for improved descriptions and understanding of the structure 
and functioning of trees. 
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