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Abstract: The availability of images with very high spatial and spectral resolution from 

airborne sensors or those aboard satellites is opening new possibilities for the analysis of 

fine-scale vegetation, such as the identification and classification of individual tree species. 

To evaluate the potential of these images, a study was carried out to compare the spatial, 

spectral and temporal resolution between QuickBird and ADS40-SH52 imagery, in order to 

discriminate and identify, within the mixed Mediterranean forest, individuals of the Iberian 

wild pear (Pyrus bourgaeana). This is a typical species of the Mediterranean forest, but its 

biology and ecology are still poorly known. The images were subjected to different 

correction processes and data were homogenized. Vegetation classes and individual trees 

were identified on the images, which were classified from two types of supervised 

classification (Maximum Likelihood and Support Vector Machines) on a pixel-by-pixel 

basis. The classification values were satisfactory. The classifiers were compared, and 

Support Vector Machines was the algorithm that provided the best results in terms of 

overall accuracy. The QuickBird image showed higher overall accuracy (86.16%) when the 

Support Vector Machines algorithm was applied. In addition, individuals of Iberian wild 

pear were discriminated with probability of over 55%, when the Maximum Likelihood 

algorithm was applied. From the perspective of improving the sampling effort, these results 

OPEN ACCESS



Forests 2014, 5 1305 

 

 

are a starting point for facilitating research on the abundance, distribution and spatial 

structure of P. bourgaeana at different scales, in order to quantify the conservation status 

of this species. 

Keywords: vegetation mapping; QuickBird imagery; ADS40-SH52 imagery;  

multispectral image; mosaicing; Maximum Likelihood; Support Vector Machines;  

accuracy assessment; Iberian wild pear; Pyrus bourgaeana 

 

1. Introduction 

One of the main applications of remote sensing in recent decades has been in mapping of  

vegetation [1], at a high spatial and spectral scale [2], in order to quantify the status and the 

environmental requirements of certain species and to prioritize conservation efforts [3,4]. In this sense, 

there is a simultaneous need for high spatial and spectral resolution of the images generated by remote 

sensors (hyper and/or multispectral) on satellites or airplanes. This provides better classification 

results, increased reliability and enhanced visual quality [5]. The high spatial and spectral resolution of 

these systems therefore offers new opportunities not only to classify and discriminate vegetation units 

or forest types [6,7], but also to discriminate or to locate individuals of a species within a complex 

matrix of vegetation [8–10]. This is an important tool for managing and conserving biodiversity, since 

knowledge about the spatial structure and geographical distribution of species could reduce sampling 

efforts. In addition, these systems can help to expand the existing dataset at the regional and global 

scales [11]. 

The tools available for this kind of work have evolved over time. For years, mapping and classification 

of individual tree species have ranged from aerial photointerpretation [12,13], multispectral [14], and 

hyperspectral [15,16] image classification of commercial satellites, such as Landsat, Ikonos and 

QuickBird. However, new airborne digital sensors such as Ultracam [17] and ADS40/ADS80 [18] 

have spectral and radiometric characteristics that are superior to those of analog cameras [19], and 

their data provides very high spatial resolution. These digital sensors have opened up a new window 

for research in the application of remote-sensing techniques for locating individual trees with high 

accuracy [20,21]. 

One of the advantages of high spatial and spectral resolution images is that they enable individual 

trees to be identified, especially when the vegetation is not too dense [22,23]. This is the situation in 

coniferous and deciduous temperate forests, where the application of such images provides high 

accuracy in identifying individual tree species [24]. However, in the case of the Mediterranean forest, 

the classification results are more moderate, mainly due to the high density and the diversity of the 

species that coexist in the same space, or due to a lack of space between the trees. This causes overlaps 

between the crowns, which can generate erroneous spectral information [25,26]. 

Until a few decades ago, the Mediterranean forest was less thoroughly researched and less well 

known than coniferous and deciduous temperate forests, mainly because the Mediterranean forest has 

lacked commercial interest [27]. However, there has been a significant increase in scientific work in 

the area of the Mediterranean evergreen open woodland (dehesas) of southern of Europe in the last 
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decade. Studies of the application of remote-sensing techniques have had more or less specific  

objectives [28–30], and the aim has generally been to enhance knowledge about their origin, structure 

and function. The Mediterranean region is considered a hot spot of biodiversity [31,32], but there is 

still only limited knowledge about the abundance and the spatial distribution of some species that are 

typical of the Mediterranean forest. 

This is the case with the Iberian wild pear (Pyrus bourgaeana), a deciduous tree species that is 

typical of the Mediterranean forest and the dehesas of central and southern Spain. This tree can reach 

10 m in height, and it has an irregular crown with an average diameter of approximately 5 m. 

However, the most interesting thing about the species is that it plays an important trophic role in the 

context of ecological balance [33]. It produces very attractive palatable leaves as well as a good 

quantity of fleshy fruits throughout the summer. This is very attractive for phytophagous animals and 

herbivores, at a time when other resources are scarce. However, it is not an abundant species. It is rare, 

and is less well known than holm oak (Quercus ilex) and cork oak (Q. suber). Its ecology [34,35] and 

its geographical distribution [36] are unknown. In order to conserve this species, it is of critical 

importance to know and to map the spatial distribution of P. bourgaeana. 

For these reasons, and considering the size and characteristics of the crown of this species,  

Arenas-Castro et al. [37] evaluated various methods for atmospheric correction and fusion of multispectral 

images (color-infrared) on the QuickBird satellite imagery. They aimed to determine which method 

gave the best results for locating and distinguishing P. bourgaeana at a study plot in Sierra Morena 

(Andalusia, Spain). They made a supervised classification, based on a pixel-by-pixel analysis, using 

the Maximum Likelihood method. According to the indices used to assess the spatial and spectral 

quality of the images obtained, Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercube 

(FLAASH) [38] was the best atmospheric correction method, and IHS (or HSI) processing [39] was 

the best image fusion method. Thus, after performing the supervised classification of the QuickBird 

image, atmospherically corrected and merged to 0.60 cm of spatial resolution, and from the confusion 

matrix for 11 classes, kappa values (78.1%) and overall accuracy values (80.42%) were obtained. It 

was therefore possible to discriminate different categories in the study area. However, the user’s and 

producer’s accuracy values for the Pyrus class were low (39.89% and 37.25%, respectively), mainly 

because it gets confused with the mixed vegetation class and with trees of other species. Another 

explanation could be related to the date on which the QuickBird image was acquired (July 2008). 

During the summer, many deciduous species, such as P. bourgaeana, respond to the summer drought 

by entering into a process of leaf senescence. This influences their spectral response and makes them 

less easily distinguishable. 

The Maximum Likelihood algorithm has been one of the most widely used pixel-based approaches 

as a classifier for evergreen and deciduous tree species mapping [15], and is considered as a standard 

approach to thematic mapping from remotely sensed imagery. Its classification accuracy is compared 

with the other newly developed non-parametric classifiers [40]. Various learning-based algorithms 

have been developed in recent years to obtain more accurate and more reliable information from 

satellite images. One of them is the Support Vector Machine algorithm [41], a machine-learning 

classifier which has been used widely for remote-sensing data classification [42], and is considered 

among the best classifiers in remote sensing [43]. 
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Therefore, and because no information on remote sensing is available for P. bourgaeana, the main 

objective of this work was to evaluate and compare the potential of color-infrared images of QuickBird 

and aerial orthophotos obtained with the ADS40-SH52 linear scanning airborne sensor, at different 

spatial and temporal resolutions, through a performance evaluation of two classification methods, 

Maximum Likelihood (ML) and Support Vector Machine (SVM). More specifically, our objectives 

were: (1) test if the use of SVM classifiers improved image classification versus the ML algorithm;  

(2) assess the optimum spatial resolution among the examined classifiers; (3) analyze the accuracy of 

the classifications for mapping and discriminating P. bourgaeana trees within a mixed Mediterranean 

forest. The ability to use remote sensing techniques to distinguish and map wild pear trees over large 

areas of inaccessible patches of open woodland, pasture or scrub could facilitate the collection of field 

data and improve the conservation management of this woody plant. 

2. Materials and Methods 

2.1. Study Area 

The study area is located in the Sierra Morena (37°53′53.53″ N and 4°58′49.61″ W), in the province 

of Cordoba (Andalusia, Spain). The plot covers about 230 ha. It is crossed by various anthropogenic 

structures (roads, boundaries, etc.), as well as several seasonal streams and temporary pools. The 

current vegetation in the study area generally results from the management of oak (Quercus ilex) and 

cork oak (Q. suber), which covers a large area in the Sierra Morena. This type of management has 

been increasing due to human intervention, mainly for livestock use, hunting and agriculture. The main 

ecosystem is the typical dehesa of oaks (Q. ilex subsp. ballota), with trees scattered among high 

diversity grasslands. There are some patches of pristine sparse Mediterranean forest formations with a 

limited surface, consisting of evergreen shrubs belonging to several families (Cistaceae, Labiatae, 

Rosaceae, Ericaceae, Anacardiaceae, Aristoloquiaceae, among others). A section of the study area is 

an olive grove (Olea europaea) based on traditional production, now abandoned. Although there is 

some extensive sheep and goat livestock farming, the management is mainly focused on hunting (deer 

and wild boar). 

2.2. Satellite Data and Pre-Processing 

2.2.1. QuickBird Imagery 

After studying the phenology of the species involved in the study, both evergreen and deciduous, 

we chose two scenes of the QuickBird 2 satellite which were taken in different seasons and years—in 

July 2008 and in May 2009 (Figure 1). The spectral and spatial features were very well suited to  

our needs, as the crown size of the Iberian wild pear and many other species involved in the study,  

and also other types of coverage, required the use of images with finer spatial resolution. The products 

and the data that were gathered are shown in Table 1. 
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Figure 1. Images acquired by QuickBird 2. (a) Panchromatic image from May 2009 (0.6 m); 

(b) Multispectral images from July 2008 (2.4 m); and (c) Multispectral images from  

May 2009 (2.4 m). 

 

Table 1. QuickBird Imagery Data. 

 Date Capture Area Latitude Longitude Time (GMT) Julian Day

BUNDLE  

(PAN0.6 m + MS2.4 m) 
15 July 2008 25 km2 37°54′21.51″ 4°59′55.96″ 11:30:47 197 

2 May 2009 64 km2 37°54′4.25″ 4°58′10.40″ 13:17:21 122 
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The multispectral image has 16-bit radiometric resolution, 2.4 m of spatial resolution (a ground 

sample distance or GSD) and four spectral bands (Red (R), Green (G), Blue (B) and Near infrared 

(Nir)). The panchromatic channel image has 16-bit radiometric resolution and 0.6 m of spatial 

resolution, and includes a single spectral band. 

2.2.2. ADS40-SH52 (Airborne Digital Sensor, 2nd Generation) Imagery 

Orthoimagery with 25 cm of spatial resolution was obtained from the ADS40-SH52 airborne digital 

sensor, and from a photogrammetric flight made over the study plot (STEREOCARTO SL, 7 May 

2009, between 12:02 and 14:02 h UTC). The weather and visibility conditions in the study area had 

previously been checked to ensure that they were suitable for the task. The data was received in  

four-band orthoimagery (R, G, B and Nir) with 16-bit radiometric resolution (Tiff), keeping the 

original radiometry from capture. The data acquisition was structured by zones, and each zone 

contained several parts. In order to get a complete picture of the study area and obtain a mosaic, the 

original images were combined. For this task, we used the Mosaicking tool [44], which provides the 

tools necessary for fulfilling the common mosaic requirements, such as edges which are blending 

through a degraded image (Feathering), transparency of the edges of the image (Edge Feathering) and 

correspondence between histograms (Histogram Matching). Virtual Mosaic is able to create and 

display mosaics without large output files. Finally, an orthophotograph with spectral resolution of  

four bands (R, G, B and Nir), with the original radiometry (16 bits Tiff format) and with spatial 

resolution of 25 cm was obtained using five different images (Figure 2). 

A comparison was made between the images of the flight in order to check whether there was 

spatial or spectral information loss during the process of creating the mosaic. On the mosaic, and  

also on each of the passes of images used to create the mosaic (7663 × 8832 pixels)—provided 

separately and without any correction—a degradation process was made at different spatial resolutions 

(60, 120, 180, 200, 220 and 240 cm), and the same classification process was performed using the 

same regions of interest (ROIs). 

We therefore obtained five different types of images, in terms of reflectance values of all bands. 

There were two original multispectral images (798 × 920 pixels) acquired by the QuickBird sensor in 

2008 and in 2009, both with 240 cm of spatial resolution. In addition, there were two images merged 

by the IHS method (3191 × 3678 pixels) with 60 cm of spatial resolution, obtained from multispectral 

and panchromatic images from each year. Finally, there was the mosaic from the orthophotograph of 

2009 (7663 × 8832 pixels), obtained as was described above, with four bands of spectral resolution 

(RGBNir) and 25 cm of spatial resolution. 

In order to make the images comparable with each other, a degradation process (from high to low 

resolution) was carried out over each of them. Images were obtained at 60, 120, 180, 200, 220 and  

240 cm of spatial resolution through a process of cutting and resampling the “pixel aggregate” In this 

way, we were also able to observe whether the merging process had an impact on the results. 
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Figure 2. (a) Images corresponding to pass 1; (b) Pass 2; (c) Mosaic with uncorrected edge 

effect; (d) Mosaic corrected using the Edge Feathering method and histogram matching. 

 

2.2.3. Atmospheric Correction of the Images 

Atmospheric correction corrects the effects of scattering and absorption of electromagnetic 

radiation caused by gases and particles suspended in the atmosphere. It ensures that the variations  

in the patterns are independent of weather conditions. There are different models depending on  

the parameters and variables that are used. In our case, we used atmospheric modeling [45], which is  

the most complex correction technique and requires data from the atmosphere on the day when  

the image is captured. We therefore chose the Fast Line-of-Sight Atmospheric Analysis of Spectral 
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Hypercubes. This correction is based on MODTRAN 4 (Moderate Resolution Atmospheric 

Transmission), with codes and algorithms tested, unique for each image, which provides very accurate 

results. However, this correction should not be performed until the digital levels of the original image 

have been transformed to radiance values. Thus, a radiometric calibration was done in accordance with 

the requirements of each manufacturer and for each type of image, i.e., for QuickBird [46] and for 

ADS40-SH52 [47]. 

2.3. Reference Data Collection 

Based on the field data and on careful photointerpretation of the aerial imagery, homogeneous areas 

with similar spectral responses (classes) were identified, depending on various attributes (color, 

texture, hue, shape and position). Areas representing more spectral purity of each class serve as the 

basis for the development of patterns or regions of interest (ROIs) coinciding with the different types 

of land coverage located in the study area. The choice of these regions was random and independent, 

and the sample size (number of pixels) was proportional to the extent to which each class represented 

in the study area [48,49]. To enhance the comparability of the results between the classifications of 

different dates we tried to use the same training areas as much as possible. During this phase, we 

identified the units, formations and species involved in this study. We selected 11 training and testing 

regions of interest (classes) spread evenly over the area corresponding to different vegetation units (dry 

grass, wet grass, mixed woodland and riparian forest) and individual species that are part of the mixed 

Mediterranean forest (P. bourgaeana, O. europaea and Q. ilex). In addition, soil, saturated soil, ponds 

and shade classes were considered as additional ROIs (Table 2). For each generated image, the ROIs 

were converted to the corresponding spatial resolution by prior conversion to a vector file and 

subsequent export as ROI to the image in ENVI. Data from these regions of interest was used for 

classification of the images through the training and testing phases. 

2.4. Classification Techniques 

Two widely used classification techniques were selected. One of these is a parametric technique 

(Maximum Likelihood (ML)) and the other is non-parametric (Support Vector Machine (SVM)). ML 

is a very popular classifier used in pattern recognition and image classification [50], based on the 

assumptions of normally distributed data for each class and based on accurate selection of the training 

samples [51]. However, in real life, the nature of the distribution is hardly known, and it is preferable 

to use non-parametric classifiers that are free from assumptions [52]. For this purpose, we used the 

SVM non-parametric classifier using the Gaussian kernel called Radial Basis Function (RBF), 

following the recommendations of [53]. The SVM non-parametric classifier is a method based on the 

statistical information of remote sensing images. This binary classifier locates the optimal hyper plane 

between the two classes to separate them in a new high-dimensional feature space. To do this, it takes 

into account only the training samples that lie on the edge of the class distributions known as support 

vectors. Moreover, it does not require the assumption of normality, and it has often been found to 

provide higher classification accuracies than other widely used techniques [54]. The two classifiers 

(ML and SVM) were used to classify the images to investigate the effect of the classifier. 



Forests 2014, 5 1312 

 

 

Table 2. Number of pixels for each type of image, resolution and class. 

  Pyrus Olea Quercus 
Wet  

Grass 
Dry  

Grass 
Mixed  

Woodland 
Riparian 

Forest 
Soil 

Saturated 
Soil 

Ponds Shade 

QB  
2008  

Fused 

60 570/524 245/258 1891/1847 1598/1556 1786/1768 2849/2524 1428/1578 1467/1442 1421/1448 1002/945 1501/1482 

120 140/128 66/67 475/472 391/376 445/425 680/623 364/396 382/329 357/360 237/245 369/349 

180 57/54 29/29 199/203 171/166 192/204 315/291 165/166 153/159 166/168 111/105 174/153 

200 48/46 29/18 167/167 144/127 163/159 254/227 133/150 145/131 121/138 91/84 132/137 

220 43/35 24/22 146/133 113/113 129/125 210/196 105/113 105/105 105/108 75/67 110/117 

240 36/46 79/31 111/121 94/100 110/106 174/166 95/103 74/90 87/97 56/59 105/102 

QB  
2008  
Non-
Fused 

60 528/512 232/239 1891/1847 1598/1556 1786/1768 2849/2524 1428/1578 1467/1442 1421/1448 1002/945 1497/1482 

120 126/125 61/62 475/472 391/376 445/425 680/623 364/396 382/329 357/360 237/245 368/349 

180 57/57 29/32 199/203 171/166 192/204 315/291 165/166 153/159 166/168 111/105 174/153 

200 48/49 29/19 167/167 144/127 163/159 254/227 133/150 145/131 121/138 91/84 132/137 

220 43/35 24/22 146/133 113/113 129/125 210/196 105/113 105/105 105/108 75/67 111/117 

240 52/46 28/31 120/121 98/100 111/106 162/159 92/103 96/90 88/97 68/59 101/102 

QB  
2009  

Fused 

60 501/117 198/457 1600/1886 1272/1503 1657/1844 3530/2675 1488/1517 1468/1451 546/132 1052/1017 1631/1576 

120 106/106 108/118 418/504 372/388 465/454 617/684 399/361 363/378 39/43 278/258 385/392 

180 55/55 56/50 193/227 155/161 210/206 283/300 180/170 161/162 41990.00 126/119 165/170 

200 45/45 46/34 153/190 146/139 175/162 234/253 154/136 141/130 16/19 100/97 142/146 

220 41/41 42/37 127/155 108/110 137/139 194/205 124/114 114/117 41954.00 90/77 111/117 

240 33/33 40/34 107/126 93/103 116/116 159/174 108/96 95/90 41946.00 63/64 97/89 
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Table 2. Cont. 

  Pyrus Olea Quercus 
Wet  

Grass 
Dry  

Grass 
Mixed  

Woodland 
Riparian 

Forest 
Soil 

Saturated 
Soil 

Ponds Shade 

QB  
2009  
Non-
Fused 

60 333/133 190/181 1740/1740 1461/1503 1867/1867 2506/2675 1599/1517 1421/1451 59/18 980/981 1306/1306 

120 72/72 46/42 418/418 372/388 465/465 617/684 399/361 363/378 41804.00 256/246 328/328 

180 38/38 27/25 193/193 155/161 210/210 283/300 180/170 161/162 41916.00 118/114 136/136 

200 33/33 26/18 153/153 146/139 175/175 234/253 154/136 141/130 41885.00 94/94 120/120 

220 27/27 21/18 127/127 108/110 137/137 194/205 124/114 114/117 155/146 84/75 97/97 

240 33/38 40/34 107/126 93/103 116/116 159/174 108/96 95/90 11/3 63/64 97/89 

Flight  
2009  

(Mosaic) 

60 646/649 504/505 1993/1913 1599/1596 1670/1621 2425/2675 1565/1597 1465/1423 1208/1241 1045/961 1678/1668 

120 77/162 111/131 231/461 509/408 381/399 801/673 559/401 364/363 301/303 258/250 377/418 

180 64/68 60/59 214/217 169/182 171/183 277/301 181/169 163/159 140/143 116/110 185/200 

200 53/59 49/45 179/168 151/143 150/138 218/244 140/148 130/131 107/97 92/90 152/150 

220 43/50 37/30 156/141 120/127 122/114 179/206 117/112 103/95 89/95 80/73 121/125 

240 42/34 35/23 137/114 97/104 102/104 152/166 106/105 91/83 81/78 55/57 107/98 

Training and testing data are separated by a spacebar. 
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2.5. Accuracy Assessment and a Comparison of Overall Classification Accuracy 

In order to evaluate the incidence of degradation processes in the images, a qualitative visual 

inspection of the classified images was made. In addition, the classification accuracy was quantified 

from the confusion or error matrix through which we analyzed the overall accuracy (OA), the producer’s 

accuracy (PA) and the user’s accuracy (UA). Because the kappa coefficient does not have a probabilistic 

interpretation [55], whereas the other measures (OA, PA or UA) do have a probabilistic interpretation, 

and the kappa coefficient has been shown not to be an appropriate map accuracy measure for 

comparing the accuracy of thematic maps, particularly when the reference data used have always  

been the same [56,57], we decided not to apply this measure in our study. Therefore, we compared  

the best results in terms of OA, PA and UA for the Pyrus class, for the images acquired by  

the QuickBird satellite, and also for sensor ADS40-SH52. Furthermore, it is necessary to take into 

account statistically rigorous criteria in order to achieve an objective comparison of the classification 

accuracies. We used the McNemar test without continuity correction to assess the statistical significance 

of the difference in OA between each pair of classifiers (ML and SVM), because we had used identical 

reference data to generate the confusion matrix and thus obtain the proportion of correctly allocated 

cases [58]. The McNemar non-parametric test is based on a 2 × 2 matrix, and compares the frequencies 

of cases correctly allocated in one classification but misclassified in the other. To test the null 

hypothesis that the two classifiers should have the same error rate, a chi-square distribution is assumed 

(p < 0.05) and the two classifications are therefore considered to be significantly different at the 95% 

level of confidence [59]. Training two classifiers with identical data sets and further evaluation with  

a unique set of pixels, different to the training data, ensured that differences in accuracy ratings are  

due to the process of assigning the pixels, and are therefore due to the algorithm that is used [60]. 

The software used for pre-processing, image classification and classification accuracy assessment 

was ENVI 4.8 (ITT Visual Information Solution Corporation, Boulder, Colorado, USA). 

3. Results 

A total of 84 classifications were performed, six for each type of image and spatial resolution, 

including the mosaic creation process images. In general, the ratings were good, with OA between 

52% and 86% (Tables 3 and 4). 

3.1. Visual Analysis of the Images 

A visual analysis provided a preliminary assessment of the spatial quality of the images. Figure 3 

illustrates the QuickBird images from July 2008 and May 2009, fused (60 cm of spatial resolution)  

and non-fused (240 cm of spatial resolution), and the flight image from May 2009 with resolution of 

240 cm after a process of degradation (high to low spatial resolution). At first view, there are no significant 

differences, except in relation to the color of the images. However, we must be aware that the images 

were obtained in different seasons and in different years. 
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Figure 3. Comparison between images with different spatial resolution: (a) QuickBird 

2008 Fused (60 cm); (b) QuickBird 2008 Non-fused (240 cm); (c) QuickBird 2009 Fused 

(60 cm); (d) QuickBird 2009 Non-fused (240 cm); and (e) Flight 2009 (240 cm). 

 

  

 

3.2. Assessment of the Mosaic Creation Process 

If we analyze the results for images degraded separately, we note that there are differences 

according to the method of classification and the image used (Table 3). If we focus on the classifier 

method, for pass 1 OA applying the ML method varied from 70.10% at 200 cm to 63.19% at 60 cm; 

for the SVM method, OA was 67.87% at 200 cm, and 63.88% at 60 cm. For the mosaic image, the 

values ranged from 70.07% at 180 cm to 66.56% at 240 cm for the ML method, while for the SVM 

method the values were 69.68% at 180 cm and 67.73% at 60 cm. In the case of pass 2, the results were 

66.28% at 180 cm and 63.45% at 120 cm for ML, and for SVM they were 66.53% at 60 cm and 

63.62% at 240 cm. Overall, there are differences in the accuracy gain between the methods for each 

image. They are more pronounced in the case of pass 1 and mosaic. However, if we compare between 

images (Table 3), there is a general trend to gain accuracy at intermediate spatial resolution, being 
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higher in the case of the mosaic. The method which provided greater accuracy was ML in the case of 

pass 1 and mosaic, and SVM for pass 2. However, if we analyze the higher accuracy for all images, 

these results indicate that there is no loss of spectral information in the process of creating mosaics, 

following the methodology described above. 

Table 3. Analysis of the resolution between images and classifiers based on overall accuracy. 

 
Pass 1 Pass 2 Mosaic 

ML SVM ML SVM ML SVM 

60 63.19 63.88 64.94 66.53 67.42 67.73 
120 64.80 64.07 63.45 64.73 69.03 67.87 
180 67.42 66.67 66.28 65.67 70.07 69.68 
200 70.17 67.87 64.17 65.58 70.56 68.93 
220 68.68 66.98 65.04 64.51 66.69 68.06 
240 67.56 64.45 65.60 63.62 66.56 69.25 

In addition, for the flight image obtained as a mosaic from two separate passes, the maximum value 

for OA was 70.56% at 200 cm spatial resolution applying the ML method (Figure 4). 

Figure 4. Comparison between images based on the highest indices. 

 

3.3. Accuracy Assessment and a Comparison of Overall Classification Accuracy 

We used the same degradation methodology as in the previous section for the QuickBird images 

from July 2008 and May 2009, in order to observe which date gave better results in terms of spatial 

and spectral resolution. For this purpose, we compared the OV accuracy values for the fused and  

non-fused images at different spatial resolutions, applying both ML and SVM classification methods, 

to assess the effect of changing spatial resolution on the performance of the classifiers. 

3.3.1. QuickBird Image from 2008 

After the fusion and degradation processes of the image from July 2008, the images were classified. 

Figure 5 shows the OA values for fused (F) and non-fused (NF) images, left and right respectively,  

for each classification method. 
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Figure 5. Overall accuracy analysis for the QuickBird 2008 image applying ML and SVM 

classifires: (a) fused image (F); (b) non-fused image (NF). 

 

 

For the fused image, the OA values ranged between 80.42% at 60 cm of spatial resolution and 

83.77% at 220 cm of spatial resolution for the ML classifier, and 80.87% at 120 cm of spatial 

resolution, and 85.21% at 180 cm of spatial resolution for the SVM classifier. For the non-fused 

image, the values ranged between 79.39% at 120 cm of spatial resolution, and 85.71% at 220 cm of 

spatial resolution for the ML classifier, while for the SVM classifier, the values were 81.04% at  

120 cm of spatial resolution and 86.16% at 200 cm of spatial resolution. 

Therefore, the OA index of the classification for the QuickBird fused image from 2008 took  

its maximum value (85.21%) at 180 cm of spatial resolution, and for the QuickBird non-fused image 

from 2008, the maximum OA index (86.16%) was at 200 cm of spatial resolution, in both cases 

applying the SVM method. 

3.3.2. QuickBird Image from 2009 

For the QuickBird image from May 2009, we worked in the same way as for the 2008 image. 

However, the data derived from the classification is considerably different (Figure 6). For the fused 

image the OA values ranged between 60.16% at 60 cm of spatial resolution and 64.24% at 200 cm of 

spatial resolution for the ML classifier, and 52.04% at 240 cm of spatial resolution, and 73.65% at  

200 cm of spatial resolution for the SVM classifier. For the non-fused image, the values ranged  

between 57.12% at 240 cm of spatial resolution, and 65.94% at 200 cm of spatial resolution for  

the ML classifier, while for the SVM classifier the values were 64.63% at 240 cm of spatial resolution 

and 71.44% at 180 cm of spatial resolution. 
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Figure 6. Overall accuracy analysis for the QuickBird 2009 image applying ML and SVM 

classifiers: (a) fused image (F); (b) non-fused image (NF). 

 

 

Therefore, the OA index of the classification for the QuickBird fused image from 2009 took its 

maximum value (73.65%) at 200 cm of spatial resolution, and for the non-fused image, the maximum 

OA index (71.44%) was at 180 cm of spatial resolution, in both cases applying the SVM method. 

Table 4 presents a comparison of the highest values of OA, for the QuickBird and aerial flight  

images at different resolution. 

Table 4. Highest values of overall accuracy for the QuickBird and aerial flight images. 

Values with symbol a and b were classified with the ML and SVM methods, respectively. 

Spatial Resolution, cm 
QB 2008 QB 2009 

Flight 2009 
F NF F NF 

60 81.69 b 81.85 b 69.2 b 70.55 b 67.73 b 
120 80.95 a 81.04 b 71.89 b 70.83 b 69.03 a 
180 85.21 b 84.88 b 72.51 b 71.44 b 70.07 a 
200 83.1 b 86.16 b 73.65 b 70.81 b 70.56 a 
220 84.48 b 85.71 a 72.57 b 68.54 b 68.06 b 
240 81,19 b 82.56 a 63.25 a 64.63 b 69.25 b 

Therefore, after applying a supervised classification by the Support Vector Machine method, based 

on selected regions of interest (ROIs) (Pyrus, Olea, Quercus, wet grass, dry grass, mixed woodland, 

riparian forest, soil, saturated soil, ponds and shade), the highest values in the classification were 

obtained for the QuickBird July 2008 image, non-fused and at 200 cm of spatial resolution. 
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To assess the performance of the two methods of classification (ML and SVM) through the 

statistical significance of the differences in overall accuracy, we used the July 2008 Quickbird image 

because it provided the highest overall accuracy values for all studied spatial resolutions (Table 4). The 

results of the McNemar Chi-squared test after comparing pairs of overall accuracy values (Table 5) 

were statistically significant in the following cases: at 60 cm (NF), 120 cm (NF) and 180 cm (F) SVM 

outperforms ML (p < 0.001). However, ML performed better than SVM at 220 cm (NF) of resolution 

(p < 0.05). There are no significant differences between the classifiers at 200 cm (NF) and 240 cm 

(NF) of resolution. Therefore, for high-spatial resolution, the SVM classifier performs better than ML, 

with significant increases in overall accuracy. However, from 2 meters of spatial resolution, the highest 

overall accuracy values change for the ML classifier, but the statistical significance is lower or even 

disappears. 

Table 5. The McNemar Chi-squared test for comparing the overall accuracy (%) of  

the classifications by ML and SVM methods in the July 2008 Quickbird image with 

different spatial resolutions. Significant differences are indicated as ns (not significant);  

* (p < 0.05); *** (p < 0.001). 

Image Resolution ML SVM Chi-Square 

QB08 NF 60 79.86 81.85 28.1 *** 
QB08 NF 120 79.39 81.04 10.4 *** 
QB08 F 180 82.15 85.21 30.1 *** 

QB08 NF 200 84.94 86.16 1.2 ns 
QB08 NF 220 85.71 83.77 4.1 * 
QB08 NF 240 82.56 82.27 0.2 ns 

3.4. Comparison between Images According to the Pyrus Class 

As is already known, the producer’s accuracy (PA) is based on the number of pixels that are classified 

as Pyrus and actually are Pyrus, from the total real pixels of the Pyrus class. The user’s accuracy (UA) 

corresponds to the successes, and is based on the number of pixels classified as Pyrus that are in fact 

Pyrus, from the total number of pixels classified as Pyrus. In this sense, Table 6 shows the PA and UA 

values for the class Pyrus, for each type of image analyzed. 

Table 6. Comparison between images based in the producer and user (P/U) index values 

for the Pyrus class. Values with symbol a and b were classified with the ML and SVM 

methods, respectively. For the Flight 2009 image, left and right, respectively. 

Spatial 

Resolution 

QB 2008 QB 2009 
Flight 2009 

F a NF a F b NF b F a NF a F b NF b 

60 39.9/37.2 23.6/40.2 32.0/50.6 16.4/28 14.3/6.8 28.8/14.8 8.4/36 21/11.1 35.7/28.9 22.5/38.3

120 37.5/43.6 19.2/28.9 27.3/49.3 10.4/17.3 25.4/9.9 29.1/12.5 5.6/6.6 5/6.2 30.8/23.9 20.3/42.8

180 40.7/36.6 29.8/36.9 22.2/44.4 14/32 40/16.5 34.2/14.6 18.1/15 10.1/13.7 38.2/20.8 8.8/16.6

200 43.5/39.2 38.8/46.3 17.4/38.1 16.3/33.3 31.1/10.5 12.1/13.8 2.2/10.3 9.3/11 27.1/19.7 7.5/14.3

220 45.7/42.1 40/45.1 20/36.8 8.5/21.4 29.2/13.3 7.4/5.8 10/15.6 8.8/10.3 44/21.8 4/15.8 

240 43.5/55.5 47.8/44 15.2/33.3 30.4/40 51.5/20.7 15.8/7.9 3.3/12 4/9.7 47/21.9 8.8/14.8
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For the fused image from July 2008, the maximum classification value (OA = 85.21%) at 180 cm 

resolution, presents values of 40.74% for PA and 36.67% for UA, applying the SVM method. However, 

for a resolution of 240 cm and applying the ML classifier, the OA classification value is lower  

(80.60%), but it presents the highest values of 43.48% for the producer and 55.56% for the user. 

Moreover, the results are different for the non-fused image from July 2008. The highest OA value 

(86.16%) is given at 200 cm resolution, applying the SVM method, with 16.33% for PA and 33.33% 

for UA. However, as in the case of the fused image, the OA classification data is a few points  

lower (84.94%) at 200 cm of resolution, but the UA values are reinforced (producer: 38.78%;  

user: 46.34%) when we apply the ML method. 

For the image from May 2009, we analyzed the PA and UA values in the same way. The maximum 

classification values for the fused image (OA = 73.65%) when we apply the SVM method at 200 cm 

resolution, are 2.22% for PA and 10.33% for UA. For resolution of 60 cm, the classification values 

(OA = 69.2%) are higher at 8.4% for PA and 36% for UA, also when the SVM method is applied. 

However, the results are different for the non-fused image from 2009. When we apply the SVM 

classifier, the highest OA value (71.44%) is at 180 cm, with 10.12% PA and 13.79% UA. However, 

when we apply the ML method, the OA classification data is a few points lower (65.02%)  

at 60 cm resolution, but the accuracy values are reinforced (producer: 28.83%; user: 14.88%). 

Finally, for the flight 2009 images, the highest OA value (70.56) is at 200 cm of resolution when we 

apply the ML method, with 27.1% PA and 19.7% UA. However, the maximum classification values 

are at 120 cm of resolution (OA = 67.87) applying the SVM classifier, with 20.3% PA and 42.8% UA. 

We analyze below the results of the error matrices with the highest classification values for the 

QuickBird fused image from July 2008 at 240 cm of resolution and classified by the ML method 

(Table 7), for the QuickBird fused image from May 2009 at 60 cm and classified by the SVM method 

(Table 8), and from the Flight 2009 image at 120 cm and classified by the SVM method (Table 9). 

For the image from July 2008, the PA for the individual categories ranged between 25.81% for the 

Olea class and 95.28% for the dry grass class, while the UA was between 10.13% for the Olea class 

and 100% for the soil and saturated soil classes. The Pyrus class provided UA of 55.56% and PA of 

43.48%. The classification recognizes some of the pixels of the Pyrus class, like other vegetation 

formations, mainly Olea, even with shadows. The results change considerably when we analyze the 

image from May 2009. The PA ranged from 8.38% for the Pyrus class to 99.72% for the soil class, 

whereas the UA ranged between 22.89% for the saturated soil class and 99.76% for the wet grass class. 

The Pyrus class provided UA of 35.9% and PA of 8.38%. In this case, the classification mistook most 

of the pixels of the Pyrus class for the Quercus, mixed woodland and dry grass classes. In the case of 

the Flight 2009 image, PA ranged from 19.52% for the Quercus class to 99.72% for the Soil class, 

whereas UA ranged between 30.63% for the Olea class and 99.67% for the saturated soil class. The 

Pyrus class provided UA of 42.86% and PA of 20.37%. In this case, the classification mistook most of 

the pixels of the Pyrus class for the Olea class. 
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Table 7. Error matrix of the QuickBird fused image from July 2008 at 240 cm of resolution and classified by the ML method. 

Classified  

Category 

Actual Category 
Total

User’s  

Accuracy (%) Pyrus Olea Quercus Wet grass Dry Grass Mixed Woodland Riparian Forest Soil Saturated Soil Ponds Shade

Pyrus 20 6 1 2 2 2 0 0 0 0 3 36 55.56 

Olea 9 8 7 2 0 26 0 15 5 3 4 79 10.13 

Quercus 7 9 90 0 0 4 0 0 0 0 1 111 81.08 

Wet Grass 0 2 0 89 0 0 3 0 0 0 0 94 94.68 

Dry Grass 0 0 0 0 101 0 0 1 4 0 4 110 91.82 

Mixed Woodland 6 4 14 0 0 133 15 0 0 1 1 174 76.44 

Riparian Forest 0 1 2 7 0 0 85 0 0 0 0 95 89.47 

Soil 0 0 0 0 0 0 0 74 0 0 0 74 100 

Saturated Soil 0 0 0 0 0 0 0 0 87 0 0 87 100 

Ponds 0 0 2 0 0 1 0 0 0 50 3 56 89.29 

Shade 4 1 5 0 3 0 0 0 1 5 86 105 81.90 

Total 46 31 121 100 106 166 103 90 97 59 102 
 

Producer’s Accuracy (%) 43.48 25.81 74.38 89 95.28 80.12 82.52 82.22 89.69 84.75 84.31

Table 8. Error matrix of the QuickBird fused image from May 2009 at 60 cm and classified by the SVM method. 

Classified  
Category 

Actual Category 
Total

User’s  
Accuracy (%) Pyrus Olea Quercus Wet Grass Dry Grass Mixed Woodland Riparian Forest Soil Saturated Soil Ponds Shade

Pyrus 42 5 28 0 9 26 2 0 0 0 5 117 35.9 
Olea 28 83 86 0 1 0 0 0 0 0 0 198 41.92 

Quercus 103 68 949 0 51 346 32 0 0 2 49 1600 59.31 
Wet Grass 0 3 0 1269 0 0 0 0 0 0 0 1272 99.76 
Dry Grass 38 54 137 0 1369 39 18 0 0 0 2 1657 82.62 

Mixed Woodland 239 112 460 9 0 2110 504 0 0 2 94 3530 59.77 
Riparian Forest 27 129 152 225 0 0 955 0 0 0 0 1488 64.18 

Soil 0 0 3 0 11 0 0 1447 7 0 0 1468 98.57 
Saturated Soil 0 0 14 0 403 0 0 4 125 0 0 546 22.89 

Ponds 2 0 1 0 0 36 4 0 0 655 354 1052 62.26 
Shade 22 3 56 0 0 118 2 0 0 358 1072 1631 65.73 
Total 501 457 1886 1503 1844 2675 1517 1451 132 1017 1576

 
Producer’s Accuracy (%) 8.38 18.16 50.32 84.43 74.24 78.88 62.95 99.72 94.70 64.41 68.02

Error matrix of the QuickBird fused image from May 2009 at 60 cm and classified by the SVM method. 
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Table 9. Error matrix of the Flight 2009 image at 120 cm and classified by the SVM method. 

Classified 

Category 

Actual Category 
Total

User’s  

Accuracy (%) Pyrus Olea Quercus Wet Grass Dry Grass Mixed Woodland Riparian Forest Soil Saturated Soil Ponds Shade

Pyrus 33 43 0 0 0 0 0 0 0 0 1 77 42.86 

Olea 46 34 0 0 0 0 29 0 0 0 2 111 30.63 

Quercus 7 9 90 0 31 46 19 0 0 0 29 231 38.96 

Wet Grass 3 0 3 321 9 104 69 0 0 0 0 509 63.06 

Dry Grass 1 0 10 18 335 6 0 0 1 0 10 381 87.93 

Mixed Woodland 25 20 258 63 2 379 39 0 0 0 15 801 47.32 

Riparian Forest 42 25 91 6 22 128 243 0 0 0 2 559 43.47 

Soil 0 0 0 0 0 0 0 362 2 0 0 364 99.45 

Saturated Soil 0 0 0 0 0 0 0 1 300 0 0 301 99.67 

Ponds 0 0 0 0 0 0 0 0 0 248 10 258 96.12 

Shade 5 0 9 0 0 10 2 0 0 2 349 377 92.57 

Total 162 131 461 408 399 673 401 363 303 250 418 
 

Producer’s Accuracy (%) 20.37 25.95 19.52 78.68 83.96 56.32 60.60 99.72 99.01 99.20 83.49

Error matrix of the Flight 2009 image at 120 cm and classified by the SVM method. 
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4. Discussion 

The degradation process at different spatial resolutions which was carried out over the images 

allowed smoothed images to be obtained which are much more useful for distinguishing shapes, 

features and sizes, especially for the small-size of the crown of P. bourgaeana. In addition, the 

analysis of the aerial flight images showed that the construction of mosaics from “parts” of an image, 

following the methodology described in this paper, facilitates the treatment of these parts without 

losing spectral information [61,62]. Thus, for the flight image from 2009, obtained as a mosaic,  

the maximum overall accuracy value (70.56%) was for the image with spatial resolution of 200 cm, 

applying the Maximum Likelihood method and having statistically significant differences (McNemar 

test Chi-square = 18.1, p < 0.05) from the Support Vector Machine method. 

We applied the same methodology for the mosaic image as for the QuickBird images from July 

2008 and May 2009, in order to observe which date gave better results in terms of spatial, spectral and 

temporal resolution, based on the classification results. In this case, the comparison was made between 

fused images by the IHS method and non-fused images, for the same date and between different dates. 

Visual analysis of the QuickBird images with different levels of degradation, and after applying  

two supervised classification methods (Maximum Likelihood and Support Vector Machine), showed 

that there were no significant differences. However, slight differences did appear in the color of  

the images, because they had been obtained in different months. 

After applying two different classification methods over Quickbird fused images and non-fused 

images, with different spatial resolution and from different seasons, the highest overall accuracy values 

were obtained for the July 2008 image. For the fused image, the overall accuracy value was of 85.21% 

at 180 cm of spatial resolution, and for the non-fused image the overall accuracy was of 86.16% at  

200 cm of spatial resolution. However, the overall accuracy for the QuickBird fused image from 2009 

took its maximum value of 73.65% at 200 cm of spatial resolution, and for the non-fused image  

the maximum value was 71.44% at 180 cm of spatial resolution. For all cases, the classification 

method was the Support Vector Machine algorithm. 

These results are in consonance with what has been reported by other authors [63]—the superior 

performance of the SVM method compared with the ML method. However, when we compared the 

highest overall accuracy values corresponding with the July 2008 QuickBird image, the differences 

between the two algorithms were in some cases not significant. The McNemar Chi-squared test 

demonstrated that there were differences depending on the spatial resolution that was used.  

A comparison of the overall accuracy values revealed that the use of any classifier at intermediate 

spatial resolution (180–200 cm) was superior to the corresponding classifier with higher and lower 

resolutions, since the overall accuracy increases when the pixel size is larger. However, the statistical 

significance varied from higher spatial resolution to lower spatial resolution, and was more 

pronounced for higher spatial resolution. A possible explanation for the lower accuracies of the high 

spectral resolution images is that the smaller pixel size introduced higher spectral variance within  

a class, and this resulted in lower spectral separability among the classes. However, at low spatial 

resolution, the spectral signatures of the different classes became over-generalized, and the spectral 

separability within each pixel was reduced. This approach could also explain the slight difference 
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between the fused image and the non-fused image. Therefore the highest overall accuracy values were 

found at 1.8–2 m pixel size, regardless of the classification method that was used. 

Furthermore, the accuracy at class level may differ between algorithms, and may thus influence the 

choice of one classifier or the other, depending on purposes of the user. The analysis of the user’s 

accuracy data and the producer’s accuracy data for the Pyrus class showed that the differences are 

highly dependent on the date of acquisition, on degradation, and on the type of image (fused and  

non-fused). If there are differences in any of these characteristics of the image, the overall rates can be 

reinforced at the expense of the partial indices, and vice versa. Although the results in terms of overall 

classification were lower than for the non-fused image, and there were no significant differences in 

terms of overall accuracy when we compared the classification methods (McNemar Chi-squared  

test = 0.25, ns), the QuickBird image from July 2008, fused by the IHS method, degraded at 240 cm 

spatial resolution and classified by the Maximum Likelihood method, provided accuracy values higher 

than 55% when classifying wild pears in the study area (producer’s accuracy = 43.48% and user’s 

accuracy = 55.56%). The Maximum Likelihood algorithm identified the Pyrus class with greater 

accuracy than SVM, even with differences among classifiers of 28.26% for PA and 22.23% for UA. 

A hypothesis that can explain why the overall classification is better for the image of July is that  

P. bourgaeana can still maintain a considerably percentage of green leaves on its branches during the 

summer, as evidenced by its phenological cycle, in which the vegetative development extends from 

March to early August. There may be confusion with other vegetation because, at this time of the year, 

the spectral response of vegetation and mainly deciduous trees, such as wild pear, is strongly 

influenced by the process of leaves senescence and shedding, mainly related to the summer drought. It 

would therefore be advisable to capture the selected scene at a date between the end of spring  

and early summer. However, the lowest results extracted from the QuickBird image from May 2009 

revealed that the greatest confusion is among vegetation classes. This may be mainly due to the overlap 

between the crowns of the trees, pastures and scrub, because in springtime most plant species foliate 

and flower at the same time, and this may lead to an overlap between spectral signatures. This could be 

confirmed by an analysis of the spectral differences between the wild pear and the surrounding 

vegetation, based on their spectral signature and by analyzing hyperspectral information, in order to 

minimize the effect of spectral overlap [64,65]. 

The small crown size of this species and its low abundance and scattered distribution across the 

Mediterranean evergreen forest and open woodland (dehesa), make the individual trees difficult to 

locate, limiting the search and selection of pixels required to carry out such studies. We must take into 

account that factors such as the density or the morphology of the leaves of the crown, and the shadows 

that they project, could influence the classification results [66]. Even with a manual delineation of the 

crowns, the yield of the classification may be low [67]. Clearly, it is a difficult task to classify, from 

multispectral images (less than 50%), individual trees of limited size, immersed in a matrix of mixed 

vegetation, especially when their crowns overlap to some extent [68,69]. However, although this 

process, which was based on the interpretation of single pixels, has improved the visual and spectral 

quality of the multispectral images, we are considering the use of hyperspectral data in the future to 

improve the classification results. In addition, other techniques could be also tested in future work, 

such as object classification applied to the original images based on groups of pixels [70]. 
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5. Conclusions 

The degradation process at different spatial resolutions that was carried out over the images enabled 

us to discriminate shapes, features and sizes, especially for the small-sized crown of P. bourgaeana, 

without losing spectral information. 

Both the Maximum Likelihood and Support Vector Machines algorithms performed moderately 

well for discriminating individual P. bourgaeana trees from color-infrared images of QuickBird and  

aerial orthophotos obtained from the ADS40-SH52 airborne sensor, achieving overall accuracies  

higher than or equal to 86%. In general, Support Vector Machines gave better accuracies than  

the Maximum Likelihood algorithm for all fused and non-fused images. In fact, the highest overall 

accuracy value was provided by Support Vector Machines for the July 2008 Quickbird  

non-fused image at 200 cm of spatial resolution, reaching the highest values at intermediate-low spatial 

resolution. In addition, it was better than Maximum Likelihood for images with high spatial resolution, 

having significant differences in overall accuracy. However, the QuickBird image from July 2008, 

fused by the IHS method, degraded at 240 cm spatial resolution and classified by the Maximum 

Likelihood method, provided the highest accuracy values for the Pyrus class (producer’s accuracy = 

43.48% and user’s accuracy = 55.56%). 

The results provided in this study, although modest, provide a valuable starting point to understand 

the distribution and the spatial structure of P. bourgaeana, aimed at improving and prioritizing 

conservation efforts. Furthermore, the approach used in this work might be also applied to other taxa, 

and might also benefit from future improvements in both the quality of remote sensing imaginary and 

the methods of analysis. 
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