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Abstract: Fine-scale biomass maps offer forest managers the prospect of more detailed 
and locally accurate information for measuring, reporting and verification activities in 
contexts, such as sustainable forest management, carbon stock assessments and ecological 
studies of forest growth and change. In this study, we apply a locally validated method for 
estimating aboveground woody biomass (AGWB) from Advanced Land Observing 
Satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR) data to 
produce an AGWB map for the lowland pine savannas of Belize at a spatial resolution of 
100 m. Over 90% of these woodlands are predicted to have an AGWB below 60 tha−1, with 
the average woody biomass of these savannas estimated at 23.5 tha−1. By overlaying these 
spatial estimates upon previous thematic mapping of national land cover, we derive 
representative average biomass values of ~32 tha−1 and ~18 tha−1 for the previously 
qualitative classes of “denser” and “less dense” tree savannas. The predicted average 
biomass, from the mapping for savannas woodlands occurring within two of Belize’s larger 
protected areas, agree closely with previous biomass estimates for these areas based on 
ground surveys and forest inventories (error ≤20%). However, biomass estimates derived 
for these protected areas from two biomass maps produced at coarser resolutions (500 m 
and 1000 m) from global datasets overestimated biomass (errors ≥275% in each dataset). 
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The finer scale biomass mapping of both protected and unprotected areas provides 
evidence to suggest that protection has a positive effect upon woody biomass, with the 
mean AGWB higher in areas protected and managed for biodiversity (protected and 
passively managed (PRPM), 29.5 tha−1) compared to unprotected areas (UPR, 23.29 tha−1). 
These findings suggest that where sufficient ground data exists to build a reliable local 
relationship to radar backscatter, the more detailed biomass mapping that can be produced 
from ALOS and similar satellite data at resolutions of ~100 m provides more accurate and 
spatially detailed information that is more appropriate for supporting the management of 
forested areas of ~10,000 ha than biomass maps that can be produced from lower 
resolution, but freely available global data sets. 

Keywords: savanna woodlands; Earth observation; ALOS PALSAR; biomass map; 
conservation planning; Belize 

 

1. Introduction  

1.1. Why Map Tropical Savannas at More Local Scales? 

Savannas are an important component of global vegetation, covering approximately 18% of the 
Earth’s land surface [1]. The woody component of savannas can be variable [2]; however, many 
woody savannas can be characterized as forests according to the FAO definition [3]. The woody 
component is of major significance for storing biomass [4,5], supporting biodiversity [6] and 
sustaining the local hydrological cycle [7]. A growing recognition of the value of natural carbon stores 
and the intention to reduce emissions caused by deforestation and forest degradation [8]  
are encouraging developing countries to protect and manage these tropical forest ecosystems  
more sustainably. 

Wooded areas within savannas are increasingly pressured by human intervention, leading to 
unsustainable management practices. In the Neotropics, key threats are the continuing expansion of 
agriculture and pasture [9,10], as well as overly frequent logging and burning [11,12], which have 
resulted in the reduced extent and health of this ecosystem [13,14]. 

With these pressures degrading both the biodiversity and economic value of savanna woodlands, 
techniques are urgently needed to measure, map and monitor the woody component reliably and to 
produce this information at appropriate scales to support conservation and management actions. Maps 
of aboveground woody biomass (AGWB), if sufficiently detailed, can assist conservation managers, 
practitioners and policy makers to formulate specific practices (e.g., thinning, fire control, seedling 
regeneration, biodiversity surveys, etc.) that are appropriate for woodland patches within broader 
savanna areas [15,16]. 

Many countries presently lack the capacity to produce their own local maps of forest biomass and, 
so, must rely on existing biomass maps founded upon broader regional and global datasets. Although 
providing a consistent approach to estimation of biomass differences over areas of hundreds of square 
kilometres, we contend that the resolution of these global data sets (typically 500 m or 1000 m) is often 
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too coarse for quantifying and monitoring the distribution of woody biomass within areas of 10,000 ha 
or less, which are common sizes for protected areas or forest reserves, particularly in smaller countries. 

In this paper, we use the example of pine woodlands in Belize, for which a locally modelled 
relationship between ground measured biomass and satellite sensed radar backscatter from PALSAR 
has been established and validated, to explore finer scale biomass mapping to support potential forestry 
applications. Specifically, we address the following objectives: 

• Mapping the AGWB of over 50% of the lowland savanna woodlands of Belize at 100-m 
resolution, using a locally modelled relationship between the satellite radar backscatter and 
observations of biomass from an extensive national inventory of forest plots. 

• Analysing the resulting AGWB map to quantify for the first time the variation in AGWB across the 
different woodland savannas within the country and exploring how this might provide forest 
managers with enhanced information about the nature and locality of different woodland 
components, compared to previous qualitative thematic mapping using the UNESCO land cover 
classification system. 

• Examining, within a pilot study area of approximately 933 km2, whether the biomass map 
produced at 100 m might enable differences in biomass to be observed between forest areas that 
are being protected or sustainably managed, compared to unprotected forest areas. 

• For two specific protected areas of Belize, assessing if this finer scale mapping produces biomass 
estimates that accord more closely with ground measurements of biomass than estimates based on 
biomass values extracted from pantropical biomass data sets at 500-m and 1000-m resolution 
produced by [17,18]. 

1.2. Mapping of Savanna Woodlands with Active Satellite Earth Observation 

New advances in the mapping of biomass by active sensors have greatly facilitated efforts to 
characterize savanna ecosystems at multiple scales. Using the archive of the Advanced Land 
Observing satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR) satellite 
data collected from 2007–2009, the Japanese Aerospace Exploration Agency (JAXA) produced the 
first 50-m global forest/non-forest map [19] to support activities for the United Nations-Reducing 
Emissions from Deforestation and Degradation (UN-REDD+), while the Jet Propulsion Laboratory 
(JPL) in collaboration with JAXA created a regional mosaic of ALOS PALSAR imagery for wide 
ground swaths (~350 km) to assist ecosystem assessments in the Americas. Recent research has shown 
that ALOS PALSAR data are suitable for classifying vegetation types and assessing carbon stocks at 
regional scales [20]. In [17,18], satellite LiDAR measurements collected by Ice, Cloud, and land 
Elevation/Geoscience Laser Altimeter System (ICESAT GLAS),and a diversity of optical spaceborne 
sensors were used in combination with field measurements to create pantropical carbon stock maps 
with the explicit intent of assisting tropical countries with monitoring and reporting of their carbon 
stocks for UN-REDD+ projects at national and sub-national scales (i.e., 10,000 ha). In Africa, [21] 
created an ALOS PALSAR mosaic at 100-m spatial resolution to be used, among other applications, to 
map deforestation and agricultural encroachment upon the forest-savanna boundary. In their study 
within savanna landscapes, [22] identified strong relationships between AGWB and radar backscatter 
sensed by ALOS PALSAR, concluding that the approach was necessary and sufficient for monitoring 
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and reporting of biomass baselines for REDD+ projects, and [23] similarly found ALOS PALSAR 
images to assist in quantifying deforestation at small scales in savanna woodlands in Mozambique. In 
Australia, [24] stressed the value of ALOS PALSAR data for quantifying the contribution of the 
woody component of tropical savannas to regional carbon stocks. 

There is thus a growing body of evidence derived by studies conducted in tropical savannas 
supporting the technique of deriving biomass maps from L-band data collected by ALOS PALSAR, 
with the majority of the work to date conducted in African and Australian savannas. The wide 
availability of L-band data (up until 2011) and new L-band data acquisitions from operational ALOS 
PALSAR-2 (launched in 2014), as well as future spaceborne and airborne missions, such as the 
Satélite Argentino de Observación Microondas (SAOCOM) and NASA’s airborne Unmanned Aerial 
Vehicle (UAV) SAR, makes it an attractive data source for wide and local area biomass monitoring. 
However, finer scale biomass mapping using L-band SAR data relies on establishing a strong and 
consistent relationship between the backscattered signal and biomass measurements collected in the 
field in each locality. The relationship between biomass and backscatter is known to vary for different 
woodlands and to be influenced by local topographic and climatic conditions, which, for example, 
affect the attenuation of the signal [25]. For these reasons, some attempts to create fine-scale biomass 
maps from ALOS PALSAR data have not been successful. For example, [26] were not able to map 
AGWB in savanna woodlands sufficiently accurately in Malawi, because of substantial topographic 
relief in the study area, combined with the heterogeneity of the woody component. 

1.3. The Use of More Detailed Mapping of Woody Biomass in Savannas 

Work is now progressing beyond dichotomous mapping of forest versus savanna, to create finer 
scale mapping of biomass differences within savanna landscapes. This is often driven by the need to 
create baseline carbon stock maps and to monitor changes in biomass as part of the reporting 
requirements of REDD+ projects. Although radar techniques are well established for mapping biomass 
in more uniform forest plantations, such as those in temperate and boreal regions, forest managers and 
researchers are raising questions about whether coarse resolution (i.e., 500-m and 1000-m pixel 
resolution) mapping from EO data is adequate for tasks, such as primary production planning or forest 
stock mapping, in more heterogeneous woody environments, such as tropical savannas. For example,  
Jantz et al. in [27] used the 500-m biomass maps produced by [17] to plan corridors to connect 
together broadleaf forest areas and have suggested that a similar method could be used to identify 
conservation corridors in lower biomass ecosystems. Whilst the AGWB maps produced by [17,18] 
may be used to meet regional-scale emissions reporting requirements or for preliminary estimation of 
national carbon stocks when no finer scale information is available, these maps need to be validated 
against local forest stock surveys or AGWB maps from higher resolution satellite imagery when these 
are available. 

Beyond the present focus on carbon stocks, there is wider interest in how finer scale spatial 
information about biomass in savanna woodlands can inform work in forest management and forest 
ecology. Biogeographers and forest ecologists studying shifts in savanna-forest boundaries can use 
finer scale information to detect changes in the relative balance between woody vegetation and grasses 
more rapidly, whilst finer scale data allows them to understand the relative importance of human 
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activities compared to climatic changes as factors influencing local shifts [4,28–33]. AGWB estimates 
derived from ALOS PALSAR may enable scientists to explore and monitor these dynamic phenomena 
and processes in more depth. There is also interest in using finer scale biomass mapping to monitor 
regeneration and growth in low density woodlands. For example, ALOS PALSAR data have been 
combined with Landsat data by [34,35] to characterize re-growth in open Brigalow woodlands in 
Australia to assist management strategies, such as thinning and weed control, illustrating practical 
management actions that can be supported by this finer scale information. 

2. Experimental Section 

2.1. Description of the Lowland Savanna Ecosystem 

This study is conducted within the lowland areas of Belize (Figure 1A), which comprise 
approximately 1754 km2 of savanna landscape [36] (Figure 1B). These areas are the most northern 
Neotropical savannas [37], which represent the second most extensive savanna vegetation formation 
within the America Neotropics [38]. In this analysis, we focus on mapping the aboveground woody 
biomass (AGWB) of woody savannas, which are recognized for their importance in carbon 
sequestration due to the presence of pine trees [39]. Pine (Pinus caribaea var. hondurensis) forms low 
density wood clusters (10%–~65% canopy cover) within the savanna landscape, while other woody 
vegetation, such as Palms (Acoelorrhaphe wrightii) and shrubs (Byrsonima crassifolia), are often 
evident and usually scattered through the grass landscape [40]. 

Figure 1. (A) Belize in the region of Central America; (B) footprints of the ALOS 
PALSAR and the national ecosystems map based on UNESCO classes; and (C,D) the 
lowland savanna areas in the ALOS PALSAR scenes; light grey areas indicate the extent of 
protected areas with lowland savannas; RBCMA stands for Rio Bravo Conservation and 
Management Area. 
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The national ecosystems map of Belize classifies the lowland savannas into three UNESCO classes 
(Figure 1C and Figure 1D). Here, we examine the: (1) short-grass savannas with dense trees or shrubs 
(UNESCO code: VA2a (1/2)) (Figure 2A,C); and (2) short-grass savannas with scattered trees and/or 
shrubs (UNESCO code: VA2a (1) (2)) (Figure 2B,D). Pine woodlands occur in both of these 
vegetation zones, and the local density of the tree cover in relation to other shrubs and grasses has until 
now been interpreted qualitatively as the basis for allocating most savanna land into one or the other of 
these classes [41]. The climate in Belize is subtropical to tropical with an average annual precipitation 
of around 1500 mm in the northern parts of the country and 3800 mm in the south. In  
Figure 3, the annual mean precipitation is shown per month using data collected in three weather 
stations of the Belize National Meteorological Service and a rainfall monitoring product, which is 
based on derived data from the Global Precipitation Climatology Centre (GPCC). 

Figure 2. Representative photographs of lowland savanna areas with dense trees or  
shrubs (VA2a (1/2)) (A,C); and sparse trees and/or shrubs (VA2a (1) (2)) (B,D). 

 

Figure 3. Illustrating the wet and dry seasonality in Belize; two major precipitation spikes 
are observed in June and October, while September also appears to be a rainy month. 
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2.2. ALOS PALSAR Data 

Two fine beam dual polarization (FBD) ALOS PALSAR datasets (Level 1.0) covering 
approximately 55% (933.46 km2) of the lowland savanna ecosystem in Belize were collected during 
the wet season in September, 2008 (Figure 1B, I,II). The radar data that were used in this study 
included only the horizontal-vertical polarization (HV), because of their sensitivity to biomass found 
for the same areas used in this study in [42,43]. The HV data were pre-processed at Aberystwyth 
University from raw data to single look complex (SLC) images using the Modular SAR processor in 
GAMMA software, while a calibration factor of −58.30 decibels (dB) was used. Subsequently, the 
SLC images were multi-looked and geo-coded to precision images (PRI) using the differential 
interferometry geocoding module (DIFF and GEO), which is also included in GAMMA. The resulting 
four look images (pixel spacing ≈ 13 m) were further processed to reduce speckle by aggregating 
neighbourhoods of adjacent pixels (2 × 2) and arithmetically averaging the radar intensity at the power 
domain [42,43]. The final radar product has a pixel-spacing of 26 m, and data represent the normalized 
radar cross-section (𝜎𝜎𝑑𝑑𝑑𝑑0 ), where dB is decibels. The total extent of the lowland savanna has been 
mapped by previous projects [36], and that map is used to constrain the biomass mapping from the 
ALOS data to within the savanna extents. 

The total study area is 933.46 km2 (Figure 1, C,D) and is comprised of approximately 345 km2 of 
lowland savannas with sparse trees or shrubs (VA2a (1/2) (51% of total VA2a (1/2)) and 588 km2 of 
lowland savannas with dense trees or shrubs (VA2a (1) (2) (58% of total VA2a (1) (2)). 

Although the ALOS PALSAR data were acquired during the wet season, the rainfall estimates of 
the Tropical Rainfall Measurement Mission (Product 3B42V7) for the radar data acquisition dates  
(+/− three days) within the study area shows that the mean rainfall is very low in both ALOS PALSAR 
images (~15 mm/day for Image I and ~9 mm/day for Image II). When comparing these mean 
precipitation estimates to the mean dry season gauged precipitation data acquired in the two weather 
stations falling within the ALOS PALSAR image extents (Figure 3), we have more confidence for 
using this ALOS PALSAR imagery, which was collected during the wet season for AGWB estimation. 

2.3. Biomass Mapping Using ALOS PALSAR and Semi-Empirical Modelling 

Biomass mapping was achieved by adapting a forward parametric model, which is based on a  
semi-empirical water cloud model (WCM) [42–44] to derive a mathematical relationship between the 
backscattered intensity of the radar signal (𝜎𝜎𝑝𝑝𝑝𝑝0 ), where pp corresponds to emitted and received 
polarization of the radar signal and the biomass (AGWB) calculated from ground surveys of 6,457 
trees collected over 32.6 hectares of savanna woodlands throughout Belize.  

In the WCM, the AGWB is represented as a relatively homogeneous aboveground volume, which 
consists of canopy components and air [42,44]; the canopy components are assumed to be relatively 
homogeneous spherical scatterers, which mimic a water cloud. Mathematically, the parametric forward 
model describing the WCM usually takes the form of Equation (1) to perform fitting, non-linear least 
squares regression and calculation of the empirical coefficients 𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣0  , 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠0  and γ, which are dependent 
on the structure of the woodlands. The regression equation is then re-arranged to estimate biomass as 
shown in Equation (2) [42]. 
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𝜎𝜎𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠0 = 𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣0  × �1 − 𝑒𝑒(−𝛾𝛾×𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑)� + 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠0  (1) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = log𝛾𝛾 �
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠0 − 𝜎𝜎𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠0 + 𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣0

𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣0
� (2) 

In Equation (2), 𝜎𝜎𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠0  represents the total backscattered intensity of the radar signal collected by 
ALOS PALSAR, 𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣0  is the fraction of the total backscattered intensity due to radar-vegetation 
interaction and 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠0  is due to bare soil interaction. 

Using this WCM (Equation (1)), an AGWB training dataset, which was collected on the ground in 
four different years, 2006, 2011, 2012 and 2013 (Table 1), and the ALOS PALSAR imagery (HV 
polarization), Michelakis et al. in [42] undertook non-linear regression analysis to show that the  
HV intensity of the radar backscatter can be predicted in relation to the AGWB with an R2 = 0.92 
(Figure 4A). 

Figure 4. (A) The non-linear regression model fitted (solid line) using the training dataset 
from Table 1 and ALOS PALSAR HV imagery; and (B) the histogram of both 
aboveground woody biomass (AGWB) datasets (training and external validation); note the 
zero AGWB points in scatterplot (A), which were collected on the ground using a global 
navigation satellite system (GNSS) device on areas with no woody vegetation to sample 
the backscatter in these areas. 

 

Table 1. Training and external validation AGWB datasets that were used in the non-linear 
regression fitting and the validation of the WCM; these datasets are described in [42]. 

  AGWB (tha−1) Density (Trees ha−1) BA (m2 ha−1) 

Datasets 
Plot size 

(ha) 
Range Mean 

St. 
Dev. 

Range Mean SD Range Mean 
St. 

Dev. 

Training 
32 × 1 
6 × 0.1 

0–101.6 47.3 37.1 0–680 155 171.7 0–15.3 6.15 5.0 

Validation 38 × 0.1 1–72 39.5 19.4 20–350 145 75.1 0–11.0 5.7 2.6 

Although the satellite data were collected in 2008, the slow growth rate of Caribbean pine, even in 
better sites in Belize as recorded by [45] (0.4 cm ≤ dbh ≤ 1 cm), allows us to use these field 
measurements in the development of the WCM. The semi-empirical model fitted in this study is shown 
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in Equation (3). Using an external validation dataset (Table 1), AGWB estimates were assessed 
demonstrating that AGWB can be predicted on the ground with a root mean squared error  
(RMSE) ~ 13.5 tha−1, while 80% of the AGWB estimates were found to have an error of less than  
20 tha−1 [42]. 

𝜎𝜎𝐻𝐻𝐻𝐻0 = 10.40 × �1 − 𝑒𝑒(−0.96×𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑)� − 24.06 (3) 

To assess the uncertainty of the AGWB map created using the ALOS PALSAR data and the  
semi-empirical WCM, an evaluation of the estimation accuracy was conducted using the validation 
dataset (Table 1) for the lower biomass range (i.e., ≤75 tha−1) and the training dataset (Table 1) for the 
higher biomass range (i.e., ≥75 tha−1). The training dataset was used for estimating uncertainty in the 
higher biomass range due to the lack of high biomass observations in the validation dataset. The 
relative root mean squared error (RRMSE) was separately calculated for seven biomass classes with  
15 tha−1 intervals (i.e., 0–15, 15–30, 30–45, 45–60, 60–75, 75–90 and 90–105 tha−1) using  
Equation (4). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (%) = �100 ×
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴���������� (4) 

where RMSE and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴��������� are the root mean squared error and the mean observed AGWB within each 
biomass class. 

A concern with the mathematical formulation in Equation (2) is that negative or infinite values of 
biomass can be predicted [46–48]. To constrain estimates to realistic values, any cells with infinite 
values were assigned the highest value of biomass actually measured in the field (101.65 tha−1), whilst 
any cells with negative estimates of biomass were assigned a value of zero. No previous field studies 
conducted in savanna woodlands in Belize by [45,49–52] have measured AGWB in these savanna 
woodlands above 101.65 tha−1, so we feel confident using this value as our realistic upper limit for this 
case study. 

Although a recent study from [53] has shown that parametric forward models show higher errors 
than other approaches, there are five reasons that a semi-empirical WCM is employed in this study:  
(1) The semi-empirical model is grounded in the physical basis of how the backscattered intensity of 
the radar is expected to interact with vegetation targets in contrast to more statistically driven 
approaches, such as backward models; (2) the use of non-parametric models, such as machine learning 
algorithms, could not be implemented in this research, because of the lack of the significant data 
amounts that are needed (for example, [54] used more than 50 data samples for biomass mapping using 
decision trees classifiers); (3) the WCM accounts for the low canopy cover nature of the savanna 
woodlands (10%–65%) by using a weighting area fill factor (�1 − 𝑒𝑒(−𝛾𝛾×𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑)�) in the vegetation 
backscatter [53]; (4) the WCM varies as it interacts with vegetation of different biomass and 
supplements and extends upon previous quantitative analysis of radar backscatter as a surrogate 
measure of biomass [42,44]; and (5) the biomass estimation results can be comparable to  
future research using methods that are based on other forward models in contrast to solely  
statistical approaches. 
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2.4. Deriving Ground-Based Estimates of AGWB for Two Protected Areas 

We used the inverted WCM (Equation (2)) described in the previous section and the ALOS 
PALSAR data covering two of the country’s largest savanna woodlands (Rio Bravo Conservation and 
Management Area (RBCMA) and Deep River protected area) to estimate the mean AGWB for the 
whole protected area extent and compared these with AGWB estimates calculated from previously 
published data [50,52]. These two protected areas are both over 10,000 ha and are typical locations and 
extents for sub-national scale UN-REDD+ projects [17]. 

In RBCMA, Brown et al. in [52] estimated mean carbon stock of 13.1 tCha−1 for approximately 
10,000 ha of savanna by developing new allometric equations, which predicted biomass carbon using 
tree attributes as independent variables that could be easily measured from aerial images. To develop 
the allometric equations, Brown et al. used an extensive ground dataset, which was collected by the 
destructive sampling of 51 pine trees, and then 77 image sample plots were used in three-dimensional 
very high spatial resolution aerial imagery to assist with the remote measurement of the tree attributes, 
which were used to estimate carbon stocks. To convert the carbon stock estimation by Brown et al. to 
biomass, we multiplied by a factor of two [55] (carbon is 50% of biomass), calculating a mean AGWB 
of 26.2 tha−1 for RBCMA. In Deep River (DR), to estimate AGWB for approximately 3500 ha of 
savanna woodlands (31.60 tha−1), we used 62 circular sample plots (0.1 ha), which were not used 
during the WCM training, and only 18 out of the 62 were used in the external validation of the WCM, 
in the denser woodland areas originally collected by [50] to support plans for sustainable timber 
extraction (Table 2). 

Table 2. Summary of the plots that were collected in the denser woodland areas of  
Deep River (DR). 

  AGWB (t ha−1) Density (Trees ha−1) BA (m2 ha−1) 
Data Plot size (ha) Range Mean SD Range Mean SD Range Mean SD 
DR 62 × 0.1 2.25–76.19 31.60 17.78 20–350 121 70.40 0.5–11.25 6.15 2.54 

To derive the mean AGWB value for both RBCMA and DR, for each tree, the AGWB was 
estimated using the allometric equations (Equations (5) and (6)) developed by [52] in RBCMA, where 
dbh is the diameter at breast height (1.3 m) and biomass is dry aboveground woody biomass in 
kilograms. More than 30% (2190 trees) of the field data measurements that are used in this study were 
collected within RBCMA, and more than 95% of the tree dbh measurements are within the range 
sampled by [52] (1–52.4 cm). The AGWB ha−1 was estimated for each 0.1 ha sample plot by summing 
the AGWB of individual trees and multiplying the sum by a factor of 10 to extrapolate to the hectare. 

Having obtained these “ground truth” estimates of mean AGWB ha−1 for both protected areas, we 
then multiplied these up by the area of the RBCMA and the denser woodland areas of DR and 
compared these totals to those obtained by using a GIS to aggregate cells from the 100-m biomass map 
within the boundaries of the RBCMA and DR, respectively. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝐴𝐴𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐾𝐾𝑣𝑣 = 0.0407 × 𝑑𝑑𝑑𝑑ℎ2.4323 (5) 
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𝑂𝑂𝐵𝐵𝑂𝑂 𝐴𝐴𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐾𝐾𝑣𝑣 = �0.5 +
25,000 ×  𝑑𝑑𝑑𝑑ℎ2.5

𝑑𝑑𝑑𝑑ℎ2.5 + 246,872
� × 2 (6) 

2.5. Classification of Savannas by Protection and Management Type 

Approximately 25% of the lowland savannas in Belize are under some form of protection [36] and 
have been characterized as Category Ia, II, IV or VI, according to the International Union for 
Conservation of Nature (IUCN) classification system [56]. Using information acquired from land 
managers and published management plans [50,57–60], we examined the influence of land 
management in various protected savanna woodlands by comparing the biomass quantities predicted 
by our model. In unprotected savanna woodlands, the possibility of a management plan cannot be 
excluded. However, it was not possible to acquire management information for these savannas 
woodlands; thus, the unprotected areas are considered as not managed in this study. To allow the 
influence of both passive and active management to be explored, as well as the binary  
“protected-unprotected” dichotomy, we subdivided the study area into three protection and management 
groups using the information acquired by managers and the published management plans. 

Approximately 40 km2 of savanna woodlands found within the RBCMA and in the Bladen nature 
reserve were characterized as highly protected and passively managed areas (henceforth, PRPM). 
These areas have been managed mostly to promote biodiversity [57–60], while they have been 
classified as “strict nature reserve, Ia” and “habitat/species management area, IV” by the IUCN. 
Similarly, some 118 km2 of savanna woodlands found in the Manatee and DR forest reserves were 
grouped as protected and actively managed (PRAM) areas, where timber is extracted sustainably [50], 
and both have been classified as “protected area with sustainable use of natural resources, VI” by the 
IUCN. Further areas, totalling approximately 595 km2 of savanna woodlands, with no protection 
designations, were identified as unprotected (UPR) areas. The remaining 185 km2 of protected areas 
for which we could not obtain reliable information about their management were not included in this 
analysis. Using GIS, we then overlaid the new biomass map upon the three forest management groups 
and calculated the biomass in mean AGWB ha−1 for each of the three areas. 

2.6. Comparing the New Mapping with National Level Carbon Stock Maps from Pantropical Data Sets 

To conduct a comparison with our local biomass map (Michelakis biomass estimates henceforth 
MBE100), two national-level carbon stock maps were acquired for Belize. These were the pantropical 
national-level carbon stock dataset (Baccini biomass estimates, henceforth BBE500) produced by [17] 
and the benchmark national carbon data (Saatchi biomass estimates, henceforth SBE1000) produced  
by [18]. Both datasets are stored in a single tagged image format file (*.tiff) representing the 
aboveground carbon density of aboveground live woody vegetation. These gridded values were 
predicted using data collected by a range of EO sensors, such as the ICESAT GLAS, MODIS and the 
Shuttle Radar Topography Mission (SRTM) in non-parametric spatial modelling processes.  
Baccini et al. used in [17] the RandomForests algorithm to produce the BBE500 product, and  
Saatchi et al. in [18] used the Maximum Entropy (MaxEnt) modelling algorithm for the SBE1000 
product [18]. The BBE500 data were downloaded from the Woods Hole Research Centre (WHRC) 
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website [61] with a pixel size of 463.31 m × 463.31 m, and the SBE1000 data were downloaded by [62] 
with a pixel size of 910.89 m × 910.89 m. 

To enable a cell-by-cell comparison between MBE100, BBE500 and SBE1000 at the 500-m and  
1000-m scale using ANOVA and to produce percentage difference maps, we reduced the resolution of 
the MBE100 data to 500 m and 1000 m, and the BBE500 data from [61] to 1000 m (Table 3). We 
compared MBE100 to both BBE500 and BBE1000, to enable, in the first instance, a more direct 
comparison to the pantropical national carbon stock, using the spatial resolution defined by  
Baccini et al., and at the former instance, to compare all three carbon maps at the coarser resolution 
(i.e., 1000 m defined by Saatchi et al.). The data meaning for each reduced resolution pixel is the 
arithmetic mean of all the increased resolution pixel values, which were contained within the extent of 
each new reduced resolution pixel. To assess the differences between our local biomass estimates and 
these national carbon stock estimates, within the boundaries of our study area, we aggregated and 
averaged the grid values of our MBE100 data set using a window size of 5 × 5 and 10 × 10 to create 
reduced resolution rasters (MBE500, and MBE1000, respectively). 

Table 3. Local and pantropical datasets used for comparison and summary of the data and 
methods used to derive the biomass maps; MBE, Michelakis biomass estimates; BBE, 
Baccini biomass estimates; SBE, Saatchi biomass estimates. 

Biomass 
map 

EO data used Algorithm 
Pixel 

size (m) 
Reduced 

resolution (m) 
Compared to 

MBE100 ALOS PALSAR 
Semi-empirical 

water cloud model 
100 

500 BBE500 

BBE1000 

SBE1000 1000 

BBE500 

ICESAT GLAS MODIS 
Bidirectional Reflectance 

Distribution Function BDRF 
SRTM 

RandomForests 500 1000 
MBE500 

SBE1000 

SBE1000 

ICESAT GLAS MODIS 
LAI/NDVI/Vegetation 
Continuous Fields VCT 

SRTM QUICKSAT 

MaxEnt 1000 - 
MBE1000 

BBE1000 

To perform AGWB comparisons between our reduced resolution AGWB estimates and BBE500 and 
SBE1000 estimates, we calculated the percentage differences (Equation (7)) per pixel and per protected 
areas (i.e., DR and RBCMA). To assess the difference between mean biomass estimations for the 
whole protected areas, percentage errors were calculated (Equation (8)). 

In Equation (7), AGWB1 and AGWB2 refer to (1) the AGWB values in each individual pixel of the 
compared datasets (e.g., MBE500 vs. BBE500) or (2) the mean AGWB values derived using all biomass 
pixels of the compared datasets within the extent of a protected area. In Equation (8), AGWBreference 
corresponds to the locally derived mean AGWB value for the woody savannas using field data in DR 
(Table 2) or to the derived mean AGWB calculated by [52] in BCMA. In Equation (8), AGWBestimated 
refers to the AGWB estimates based on the MBE, BBE and SBE maps. 
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𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑒𝑒 𝐷𝐷𝑃𝑃𝐷𝐷𝐷𝐷𝑒𝑒𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑒𝑒 =  
|𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2|

0.5 × (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2) × 100 (7) 

𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑒𝑒 𝑅𝑅𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃 =  �
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑣𝑣𝑟𝑟𝑣𝑣𝑟𝑟𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑠𝑠𝑡𝑡𝑠𝑠𝑒𝑒𝑡𝑡𝑡𝑡𝑣𝑣𝑑𝑑

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑣𝑣𝑟𝑟𝑣𝑣𝑟𝑟𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣
� × 100 (8) 

3. Results and Discussion 

3.1. Evaluating the AGWB of the Lowland Savannas per Protection and Management 

Using the semi-empirical model developed by [42], we create a 100-m biomass map (MBE100) for 
the whole study area (Figure 5A,B). For the half of the total savanna area of the RBCMA that is 
covered by the ALOS PALSAR scene, we estimate mean AGWB based on 3,632 pixels from MBE100 
to be 29.55 ± 0.84 tha−1, where the 95% confidence interval is reported with (±), and for the denser 
woodland areas sensed in the DR forest reserve (Figure 1D), 38.03 ± 0.92 tha−1 based on 3105 pixels. 
On average, slightly higher biomass values (mean AGWB = 24.18 ± 0.24 tha−1) were mapped within 
the boundaries of all of the protected areas in the study area compared to values mapped in other areas, 
which are considered unprotected (23.29 ± 0.19 tha−1). Although this small difference in biomass is 
statistically significant (Mann–Whitney U-test, p < 0.050), the dispersion of biomass values in  
Figure 6C appears similar for both groups. Perhaps surprisingly, this suggests that protection in general 
does not lead to substantially higher values of mean AGWB ha−1 in these woodlands. 

Figure 5. AGWB estimates (MBE100) derived by ALOS PALSAR Scenes I, and II  
for (A) north Belize (Scene I) and (B) south Belize (Scene II), overlaid on protected areas 
boundaries (light grey polygons with dashed lines as boundaries) that contain savannas. 
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To explore this finding further, in Figure 6D, only the biomass values mapped within two types of 
protected areas are presented: those which are passively managed (PRPM) and those which are 
actively managed (PRAM); these are compared again to values mapped in unprotected areas (UPR). 
Differences in biomass are now more evident, and although the differences are again small, they are 
more significant (Kruskal–Wallis one-way ANOVA, p < 0.001). The protected areas that are passively 
managed (PRPM) with fire control and conservation management are estimated to have a mean 
AGWB of approximately 29.5 ± 0.85 tha−1 and a higher variability of biomass values in comparison to 
protected areas that are actively managed for extractive logging (PRAM); for these latter areas, AGWB 
is estimated at approximately 24.3 ± 0.41 tha−1, and the variability in the biomass values is lower. One 
possible explanation for this difference is that larger trees are commonly retained in biodiversity 
reserves, but are usually harvested before reaching such a size in forest reserves [50]. 

Figure 6. ALOS PALSAR-derived AGWB ha−1 estimates for (A) the study area  
(933 km2), (B) the two UNESCO savanna land cover classes, (C) protected versus 
unprotected areas and (D) the protected areas with active management (PRAM), passive 
management (PRPM) and unprotected areas (UPR); in each case, N represents the number 
of pixels (104 m ×104 m) from the biomass map falling within each of the groupings. 

 

3.2. Using the Map to Characterize AGWB in the Lowland Savannas of Belize 

Visual interpretation of the AGWB map (Figure 5A,B) indicates that the study areas are dominated 
by low mean AGWB ha−1 (0–30 tha−1). Analysis of the data shows that over 90% of the pixels show 
AGWB below 60 tha−1, with less than 10% of the remaining values predicted in the upper range from 
60 tha−1 to 101.65 tha−1 (Figure 6A). The results obtained show that when AGWB is summed within 
the areas of the two UNESCO savanna classes mapped, each class produces almost the same total 
AGWB (VA2a (1) (2): 1.00 Mt; and VA2a (1/2): 0.99 Mt); however, the less dense UNESCO class 
VA2a (1) (2) covers some two-thirds of the study area. In Figure 6B, the denser VA2a (1/2) class is 
shown to contain significantly higher mean values of AGWB ha−1 (~32 ± 0.27 tha−1 in comparison to 
~19 ± 0.16 tha−1), a difference that is statistically significant (Mann–Whitney U statistic, p < 0.001). 



Forests 2014, 5 2391 
 

 

The observed higher mean biomass found in VA2a (1/2) can be explained by the denser woody 
component being more extensively found in this class; in general, increasing number of trees ha−1 has 
been found to produce increased mean AGWB ha−1 in these savanna woodlands [42] and in other 
tropical savannas that are resource limited [26]. AGWB values estimated within the VA2a (1/2) 
vegetation class also showed a greater standard deviation (24.65 tha−1 in comparison to 18.57 tha−1). 
Taken together, these findings suggest that the less extensive VA2a (1/2) areas may be important to 
focus upon for carbon sequestration, and if they also have greater structural diversity, they may also be 
suitable for biodiversity conservation initiatives. 

The RRMSE and the average estimated uncertainty of the AGWB mapping for each of the seven 
AGWB classes mentioned in Section 2.3 are shown in Table 4. The RRMSE for the lower AGWB 
classes (0–15 tha−1 and 15–30 tha−1) is considerably higher (113% and 78% respectively) in contrast to 
the RRMSE calculated (19%–52%) for the higher AGWB classes (30–105 tha−1). Although the lower 
AGWB classes show considerable average uncertainty estimates (6.75 tha−1 and 17.21 tha−1), 80% of 
the uncertainty estimates for the MBE100 pixels (Figure 7) are lower or close to 20 tha−1 (Table 4). 

Figure 7. Uncertainty estimates for MBE100 derived by ALOS PALSAR for (A) north 
Belize (Scene I) and (B) south Belize (Scene II), overlaid on protected area boundaries 
(light grey polygons with dashed lines as boundaries) that contain savannas. 

 
  



Forests 2014, 5 2392 
 

 

Table 4. Estimated uncertainty values and their basic description per AGWB class; letters 
T and V indicate the dataset that was used in the RMSE and average AGWB calculations 
(i.e., T, training, or V, validation); note that 13 observations of AGWB (i.e., ≥ 75 tha−1) are 
used from the training dataset to calculate uncertainty for the higher AGWB classes. 

 
 

     
Estimated Uncertainty 

(tha−1) 

AGWB 
Class 
(tha−1) 

Number of 
AGWB 

Observations 

Average 
AGWB 

Observed 
(tha−1) 

RMSE 
(tha−1) 

RRMSE 
(%) 

Number 
of 

MBE100 
Pixels 

Average 
(tha−1)  

Max 
(tha−1) 

80th 
Percentile 

(tha−1) 

0–15 4 (V) 10.84 14.2 131 35,425 6.75 19.64 14.21 
15–30 8 (V) 20.60 16.02 78 22,758 17.21 23.40 20.67 
30–45 11 (V) 38.88 7.43 19 13,774 6.96 8.55 7.79 
45–60 9 (V) 51.98 15.13 29 6247 14.93 17.40 16.48 
60–75 6 (V) 66.30 14.62 22 3014 14.66 16.50 15.64 
75–90 10 (T) 85.10 43.8 51.47 1489 42.00 45.90 43.86 

90–105 3 (T) 96.51 25.58 26.51 1567 26.81 27.45 27.45 

3.3. Comparison of the Local Map Estimates with Pantropical Carbon Stock Maps 

The reduced resolution rasters MBE500, and MBE1000 derived in Section 2.6 contain pixels with the 
arithmetic mean of the input pixels (MBE100). Based on 4616 pixels (pixel size: 500 m), it is evident 
from Figure 8A that BBE500 predicts significantly higher mean AGWB ha−1 for the whole study area 
than MBE500 (~88 ± 1.21 tha−1 vs. ~24 ± 0.632 tha−1; percentage difference = +115.50%). 

Figure 8. Differences between biomass maps for (A) 500-m and (B) 1000-m resolution. 

 

Based on 1096 pixels of 1000-m pixel size (Figure 8B), the SBE1000 AGWB estimation  
(~95 ± 2.86 tha−1) is higher than both the BBE1000 and MBE1000 (~88 ± 2.50 tha−1 and ~24 ± 1.28 tha−1, 
respectively) (percentage diff. = +8.2% and +121%, respectively). A Kruskal–Wallis ANOVA test  
(p ≤ 0.001) and percentage difference maps (Figure 9A–F) using pixel-by-pixel comparisons confirm 
that the 500-m and 1000-m biomass maps yield significantly different and higher biomass estimates 
compared to those from aggregating our 100-m estimates (p ≤ 0.001). The relatively similar 
magnitudes of the estimates for the two pantropical carbon maps produced by [17,18] is expected 
(Figure 9 C,F), since they have used very similar EO data and allometric equations to derive biomass 
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estimations, with the main difference being only the machine learning algorithm used (RandomForests, 
versus MaxEnt, respectively). 

Figure 9. Percentage differences as calculated from Equation (7) per 1000-m pixel for the 
comparisons between (A,D) MBE1000 vs. BBE1000, (B,E) MBE1000 vs. SBE1000 and  
(C,F) BBE1000 vs. SBE1000 for northern and southern Belizean savannas within the ALOS 
PALSAR scenes; in histogram (G), we show the distribution of the percentage differences 
pixel-wise for each biomass map comparison group, and in scatterplot (H), we show the 
relationship between the percentage difference for each pixel and the biomass estimated for 
the same pixel using the MBE1000 maps. 

 

 

Whilst the above comparison was done for the entire study area to maximize the data volume 
included, we also compared the estimates from the different biomass maps for the RBCMA and DR 
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areas, since these are more typical of the areas of interest to land managers in Belize. We found that 
the carbon stock maps created for RBCMA and DR using data from [17,18] at 1-km spatial resolution 
again produced significant overestimation of the mean AGWB ha−1 compared to local reference values 
from the field surveys described earlier. Percentage errors were 277% and 319% for BBE1000 and 
SBE1000, respectively, in the RBCMA and 302% and 298% for BBE1000 and SBE1000, respectively, in 
DR. In contrast, upscaling our finer scale AGWB estimations in both the RBCMA and DR did not 
produce large overestimation compared to the same local reference values (+8.1% and +4.5%, 
respectively, for MBE500 and 10.7% and 0.04% for the MBE1000). Similar findings are observed  
in [63], where Hill et al. find considerable differences in mean AGWB by comparing between the 
biomass maps produced by [23] and [17] for a small study area in Mozambique (~1160 km2), which is 
dominated by Miombo woodlands (mean AGWB ~35.6–38.4 tha−1 found in [23] vs. 102.4 tha−1 found  
in [17]). These findings confirm the need for caution when using biomass estimations produced from 
satellite EO [63] at coarse resolution for quantifying AGWB locally. 

Generally, these estimates of AGWB by our local method (~26 tha−1) and by the pantropical data 
sets (~90 tha−1) need to be considered in the context of the ranges of aboveground biomass that are 
estimated for woody savannas in other parts of the world. According to a review of observations  
by [1], the highest values of biomass observed in savannas have been in Northern Australia  
(~67.2 tha−1) [64], while in South and Central America, the highest biomass values recorded have been 
observed in Brazilian cerrado vegetation (~31.8 tha−1) [65]. This leads to the suggestion that the 
pantropical carbon maps may be overestimating AGWB in savanna areas, and this suggestion will 
need to be explored more rigorously as more field-based estimates of biomass are collated from other 
savanna woodlands. 

4. Conclusions 

This study has shown that ALOS PALSAR radar data can be used with semi-empirical modelling to 
produce estimates of AGWB ha−1 for the woody component of tropical savannas at a spatial resolution 
of 100 m. When these pixel estimates are aggregated within the extents of two protected areas of 
approximately 10,000 ha, the satellite-derived biomass maps agree to within 12% and 20%, 
respectively, of the estimates obtained from local forest survey data and from biomass estimated from 
airborne very high spatial resolution imagery, suggesting that this method has sufficient accuracy to be 
used for reporting biomass estimates for sub-national extents. 

Over 90% of the woodlands mapped in Belize are estimated to have an AGWB less than 60 tha−1, and 
the average woody biomass of these savannas is estimated at ~23.5 tha−1. Overlaying the results upon 
previous thematic mapping of national land cover allows us to assign a representative mean biomass 
value of ~32 tha−1 to UNESCO savanna class VA2a (1/2) (“denser tree savanna”), which clearly 
separates it from the “less dense” VA2a (1) (2) land cover variant (~18 tha−1). This is the first 
quantitative assessment of the difference in the woody component between these two land cover classes, 
and this information significantly enhances the value of the existing land cover map for forest managers. 

A two-way comparison of the mean AGWB values mapped for all protected versus all unprotected 
areas in the study area showed a small gain in biomass within protected areas; further subdivision of 
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the protected areas revealed higher AGWB values (~30 tha−1) for passively managed biodiversity 
reserves than for the extractive forest reserves (~25 tha−1). 

The comparison of our AGWB estimate to the pantropical carbon stock maps produced by  
Baccini et al. in [17] and Saatchi et al. in [18] shows that the three biomass estimates are not 
consistent, with both pantropical data sets significantly overestimating AGWB when compared to 
estimations based on more localized backscatter-biomass relationships constrained by forest survey 
data. The evidence from this study suggests that the pantropical carbon stock maps overestimate the 
biomass of savanna woodlands in Belize at the national level and are also less suited for exploring 
differences in AGWB at the sub-national scale, for example for monitoring biomass differences within 
and between the country’s protected areas. 
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