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Abstract: To analyze the main variables affecting crown biomass, we measured crown 
biomass and a number of variables describing tree size, such as stem diameter at breast height 
(D), tree height (H), crown width (Cw) and crown length (Cl), from 754 sample trees of  
four pine species in China, specifically, Pinus massoniana, P. yunnanensis, P. tabulaeformis 
and P. elliottii. In addition, we developed individual tree crown biomass equations and 
compatible branch and needle biomass equations based on one-, two- and multi-variable 
models using nonlinear mixed-effects modeling and error-in-variable simultaneous 
equations. The results showed that: (i) crown biomass was strongly correlated to D and H, 
and the new combined variables (D4/H) and (D2/H) were suitable for modeling two- and 
multi-variable crown biomass equations, respectively; (ii) the four species were ranked as 
P. yunnanensis, P. massoniana, P. elliottii and P. tabulaeformis from small to large  
based on estimates from crown biomass equations, and the crown biomass estimate of  
P. tabulaeformis was about 60% greater than that of P. yunnanensis; (iii) the ratio of 
branch to crown biomass increased with increasing D, and the four species were ranked as 
P. elliottii, P. tabulaeformis, P. massoniana and P. yunnanensis from small to large by the 
proportion of the branch to crown biomass; (iv) the mean prediction errors (MPE’s) of the  
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crown biomass equations for the four species were less than 10%, which could meet 
precision needs for biomass estimation. 

Keywords: biomass modeling; combined variable; crown biomass; error-in-variable 
simultaneous equations; mixed-effects model 

 

1. Introduction 

In the context of global climate change, the capacity of forest ecosystems to sequester carbon has 
attracted increasing attention [1,2]. The carbon sequestration capacity of a forest is  
strongly related to forest carbon stock, which is equal to forest biomass multiplied by carbon content 
factor (CCF) [3]. Because different species have essentially the same CCF, forest biomass estimation 
has become the most important issue in the estimation of the capacity of forest ecosystems to  
sequester carbon. 

Forest biomass includes both above- and below-ground biomass, while aboveground biomass can 
be further divided into stem and crown (branch and foliage, respectively) biomass. Previous studies 
have reported significant variations in forest biomass estimation between different ecological zones, 
tree species, ages, density and management types [4,5]. Particularly, crown biomass estimates, which 
include branch and foliage biomass, vary widely between species. Many studies related to crown 
biomass have been reported worldwide [5–17]. For example, Yu et al. (2010) established individual 
tree crown, branch and foliage biomass equations for Larix gmelinii forests using stem diameter, tree 
height, crown width, and crown length [18]. Keyser et al. (2010) developed a crown biomass allometric 
model and a crown biomass distribution model for Pinus ponderosa in the Black Hills, South Dakota, 
USA, and found that crown biomass was mainly related to stem diameter and live crown ratio [19]. 
Affleck et al. (2013) explored crown biomass for the seven main coniferous tree species in the 
American Pacific Northwest, and concluded that stem diameter, tree height and crown length were the 
key variables affecting the crown biomass [20]. 

To establish individual tree biomass models and carbon accounting parameters for all major tree 
species in China, the State Forestry Administration began implementation of the National Biomass 
Modeling Program in Continuous Forest Inventory (NBMP-CFI) in 2009. In the last five years, 
researchers have collected biomass data for more than ten tree species or species groups, including 
four important pine species: Pinus massoniana, P. yunnanensis, P. tabulaeformis and P. elliottii.  
The stocking volume of these four species accounts for 14.5% of the total forest volume of China. 
Pinus massoniana, P. yunnanensis and P. tabulaeformis are the most frequent pine species in southern, 
southwestern and northern China, respectively, and P. elliottii is the most common exotic pine species 
in China [21]. In this paper, crown biomass data from 754 sample trees of these four species were used 
to (i) analyze the main variables affecting crown biomass estimation and determine the appropriate 
combination of variables for use in estimating crown biomass; (ii) establish the one-, two- and  
multi-variable fixed-effects models for crown biomass estimation based on a combination of variables; 
(iii) determine the differences of crown biomass between the four selected species through  
the establishment of crown biomass models using the nonlinear mixed-effects method [22–25]; and 
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(iv) establish compatible branch and foliage biomass models for the selected four pine species, based 
on the developed crown biomass models mentioned above, using the error-in-variable simultaneous 
equations approach [26–29]. 

2. Material and Methods 

2.1. Modeling Data 

This study used data from the NBMP-CFI program funded by the State Forestry Administration of 
China. The data included stem diameter at breast height (D), tree height (H), crown width (Cw), crown 
length (Cl), and crown, branch and needle (or foliage) biomass from 754 sample trees of four pine 
species: P. massoniana, P. yunnanensis, P. tabulaeformis and P. elliottii, collected from the main 
distribution areas of the four species (Figure 1). For P. massoniana, the area includes 11 provinces in 
southern China, i.e., Anhui, Fujian, Guangdong, Guangxi, Guizhou, Hubei, Hunan, Jiangsu, Jiangxi, 
Sichuan, and Zhejiang. For P. yunnanensis, the area includes Sichuan, Tibet and Yunnan in southwest 
China. For P. tabulaeformis, the area includes areas of northern and northwestern China, including 
Beijing, Gansu, Hebei, Henan, Inner Mongolia, Liaoning, Ningxia, Qinghai, Shaanxi, Shandong, 
Shanxi, and Tianjin. For P. elliottii, the area includes the southern provinces of Fujian, Guangdong, 
Guangxi, Hunan, and Jiangxi. Sample trees for each species were selected to be evenly distributed into 
ten diameter classes with about 15 sample trees per diameter class, although this number becomes 30 
for P. massoniana. The ten diameter classes are 2, 4, 6, 8, 12, 16, 20, 26, 32 cm and >38 cm for  
P. massoniana and P. yunnanensis, and 2, 4, 6, 8, 12, 16, 20, 24, 28 cm and >32 cm for  
P. tabulaeformis and P. elliottii. 

 

Figure 1. Location of sample trees in China. 
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Diameter at breast height (D) and crown width (Cw) of each sample tree were measured in the field. 
After the tree was felled, total trunk length (tree height, H) and live crown length (Cl) were also 
measured. The fresh weights of stems (the trunk from ground level to the top), branches, and needles 
were measured, respectively, and subsamples were selected and weighed in the field. In the laboratory, 
all subsamples were oven-dried at 85 °C until constant weights were reached. The ratio of dry weight 
to fresh weight of subsamples, branch and needle biomass were then computed. Table 1 shows the 
general situation of modeling samples. 

Table 1. Individual tree crown biomass modeling sample data summary. 

Species Sample Numbers Variables Mean Min. Max. S.D. CV% 

P. massoniana 301 

Diameter (cm) 16.6 1.2 47.2 12.0 72.4 
Height (m) 12.1 1.6 30.3 7.2 59.3 

Crown width (m) 4.4 0.6 12.0 2.5 56.2 
Crown length (m) 6.2 0.7 17.5 3.5 56.4 

Crown biomass (kg) 35.1 0.1 305.0 48.8 139.5 

P. yunnanensis 150 

Diameter (cm) 16.7 1.8 47.1 12.4 74.0 
Height (m) 10.7 1.8 33.3 6.9 64.2 

Crown width (m) 4.3 0.8 12.6 2.6 61.3 
Crown length (m) 6.1 0.8 26.1 4.1 66.7 

Crown biomass (kg) 38.6 0.1 212.3 51.8 134.2 

P. tabulaeformis 149 

Diameter (cm) 15.3 1.2 32.9 9.9 64.8 
Height (m) 9.4 1.6 20.1 4.8 51.5 

Crown width (m) 3.8 0.8 10.4 2.2 58.5 
Crown length (m) 6.0 0.9 13.3 3.3 55.7 

Crown biomass (kg) 47.7 0.2 278.5 59.0 123.7 

P. elliottii 154 

Diameter (cm) 15.5 1.2 33.9 10.1 64.9 
Height (m) 9.7 1.6 20.0 4.8 50.2 

Crown width (m) 3.8 0.9 9.0 2.2 58.7 
Crown length (m) 5.3 1.0 12.0 2.7 51.1 

Crown biomass (kg) 35.6 0.2 146.8 41.1 115.4 
Note: Min—minimum; Max—maximum; S.D.—standard deviation; CV—coefficient of variation. 

2.2. Nonlinear Fixed-Effects Model 

We employed the following commonly used nonlinear equation [19,20,30,31] as the base model for 
crown biomass:  

1 2 ββ β
0 1 2β εj

jy x x x= +  (1) 

where y is crown, branch or foliage biomass, xj are variables describing the dimensions of a tree, βj are 
parameters, and ε is the error term. Based on previous studies of crown biomass [6,8,32], tree variables 
related to crown biomass include D, H, Cw and Cl. Therefore, the general formula for the nonlinear 
crown biomass (Mc) model can be expressed as:  

31 2 4ββ β β
0β εMc D H Cw Cl= +  (2) 
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To facilitate the application of Equation (2), more simplified biomass models were usually adopted. 
For example, the following models are often used:  

1 2
0Mc D Hβ β= β + ε  (3) 

1
0Mc Dβ= β + ε  (4) 

Equations (2)–(4) are usually named multi-, two- and one-variable crown biomass models, 
respectively. In the first two equations, combined variables can be employed to reduce the number of 
model parameters, and the most widely used combined variable is (D2H) [12,13,18]. In this paper,  
the final form of the combined variable will be determined through analysis of the tree form 
characteristics and size of parameters βj. Assuming X1 and X2 are the combination of D and H in 
Equations (2) and (3), respectively, and X3 is the combination of Cw and Cl in Equation (2), two- and 
multi-variable crown biomass models can be expressed as:  

1
0 1Mc X β= β + ε  (5) 

1 2
0 2 3Mc X Xβ β= β + ε  (6) 

where the symbols have the same meanings as in previous equations. To compare with the following 
mixed-effects model, Equations (1)–(6) are called fixed-effects model in this paper. 

Because the biomass data exhibits obvious heteroscedasticity, it should be processed by logarithmic 
transformation or weighted regression methods to eliminate the impact of heteroscedasticity on 
parameter estimation [30,33]. In this paper, the weighted least square method was selected to conduct 
the elimination. The first step uses the ordinary least square method to fit the models, and then 
analyzes the relationship between the error variance and core independent variable D to determine  
the variance functions as the weights of the models, and finally fits the models by the weighted least 
square method [33]. 

2.3. Nonlinear Mixed-Effects Model 

To analyze the difference of parameters among crown biomass models of different tree species,  
a nonlinear mixed-effects model [24,34,35] was used to establish species-specific models and  
a generalized model. We defined a variable z reflecting the difference of tree species as random-effects 
variable, and defined D and H, which reflected the dimensions of a tree, as fixed-effects variables.  
The general form of a one-variable nonlinear crown biomass mixed-effects model with both  
fixed-effects variables and a random-effects variable is expressed as:  

1 1( )
0 0( ) a u zMc a u z D += + + ε  (7) 

where Mc is crown biomass, ai are fixed parameters, ui are random parameters, z is a random-effects 
variable, and other symbols are the same as in Equation (2). The random parameters ui are independent 
to each other and the mathematical expectation value is 0 (that is, E(ui) = 0), and cov (ui, uj) = 0 for (i ≠ j). 
Whether or not random parameters ui are significantly different from 0 depends upon the results of 
significance test. If any of random parameter ui is not significantly different from 0, then it should be 
removed from the model. 
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Similarly, the two- and multi-variable crown biomass mixed-effects models based on  
Equations (5) and (6) can be expressed, respectively, as:  

1 1( )
0 0 1( ) a u zMc a u z X += + + ε  (8) 

1 1 2 2( ) ( )
0 0 2 3( ) a u z a u zMc a u z X X+ += + + ε  (9) 

The difference between mixed-effects models (Equations (7)–(9)) and conventional fixed-effects 
models (Equations (4)–(6)) is that in the mixed model, each parameter appearing in the conventional 
models is set as the sum of a fixed and random parameter, βi = ai + ui × z. 

2.4. Error-in-Variable Simultaneous Equations 

The proportions of branch and foliage biomass to crown biomass were studied in more detail  
based on the results of crown biomass modeling. Based on this analysis, the proportion of branch to 
crown biomass varied with D and other tree variables. If foliage biomass is considered to be one unit, 
and the relative ratio of branch to foliage biomass is a function ƒ(x) that varies with tree variables  
such as D and H, then we can establish the following error-in-variable simultaneous equations [26–28]:  

ˆ ˆ( ) / [1 ( )]
ˆ ˆ1/ [1 ( )]

Mb f x f x Mc

Mf f x Mc

 = + ⋅


= + ⋅
 (10) 

where M̂b  and M̂f  are the estimates of branch and foliage biomass, respectively; M̂c  is the estimate 
of crown biomass, obtained from the established nonlinear mixed-effects model; and ƒ(x) is the 
relative ratio function of branch biomass, of which the expressions based on one-, two- and multi-
variable are completely similar to Equations (4), (3) and (6), respectively. By using a non-linear mixed 
model, the relative ratio models can be expressed as:  

1 1( )
0 0( ) ( ) b v zf x b v z D += + + ε  (11) 

1 1 2 2( ) ( )
0 0( ) ( ) b v z b v zf x b v z D H+ += + + ε  (12) 

1 1 2 2( ) ( )
0 0 4 5( ) ( ) b v z b v zf x b v z X X+ += + + ε  (13) 

where X4 and X5 are variables based on the combination of D, H, Cw and Cl, bi are fixed parameters,  
vi are random parameters, and other symbols have the same meaning as in the equations mentioned 
above. After the one-, two- and multi-variable relative ratio functions of branch biomass had been 
fitted, we replaced them in simultaneous Equation (10) and substituted dummy variables for random 
variables. Then, the parameters of the compatible models could be solved through using nonlinear 
error-in-variable simultaneous equations [29]. 

2.5. Model Evaluation and Validation 

Many statistical indices have been used to evaluate biomass models [30]. Zeng et al. (2011) 
conducted a thematic analysis designed to evaluate biomass models when modeling single-tree 
biomass, and presented six statistical indicators [32]. They are coefficient of determination (R2), 
standard error of estimates (SEE), mean prediction error (MPE), total relative error (TRE),  
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average systematic error (ASE) and mean percentage standard error (MPSE). This paper applied  
four statistical indicators, i.e., R2, SEE, MPE and MPSE, to assess the models, using specific 
expressions of Zeng et al. (2011) [32]. 

To further test the applicability of the models, only 80% of the samples were randomly selected to 
establish the models while the remaining 20% (60 sample trees of Pinus massoniana, 30 sample trees 
of P. yunnanensis, P. tabulaeformis and P. elliottii) were used for model validation, with the exception 
that all sample trees were used to determine the main variables influencing crown biomass. The total 
relative error (TRE) was used to measure the applicability of models. If the absolute value of TRE is 
less than MPE, then the model is applicable. 

3. Results 

3.1. Regression Analysis of Variables Affecting Crown Biomass 

Based on the data from all 754 sample trees, regression analysis was applied to demonstrate  
the relationship between crown biomass (Mc) and tree variables including D, H, Cw, and Cl (Table 2). 
Results showed that as for a single variable, D had the highest relationship to crown biomass (R2 = 0.78, 
also known as correlation index), Cw the second, and H the lowest (R2 = 0.41). For two variables, the 
combination of D and H had the highest relationship to crown biomass, D and Cw the second,  
and Cw and Cl the lowest. Therefore, even though the contribution of Cw in explaining crown biomass 
was only less than that of D while considering only one variable, the combination of D and H had  
the highest contribution when two variables were taken into consideration. 

Table 2. Regression relationships between crown biomass and tree variables. 

Number of Variables Regression Models R2 

One 

Mc = aDb + ε 0.78 
Mc = aHb + ε 0.41 

Mc = aCwb + ε 0.64 
Mc = aClb + ε 0.49 

Two 

Mc = aDbHc + ε 0.81 
Mc = aDbCwc + ε 0.79 
Mc = aDbClc + ε 0.78 

Mc = aCwbClc + ε 0.67 

Three 
Mc = aDbHcCwc + ε 0.83 
Mc = aDbHcCld + ε 0.83 

Four Mc = aDbHcCwdCle + ε 0.84 

The appropriate combined variables were also studied for two- and multi-variable regression 
models. If D was considered as one of the explanatory variables, the combination of D and H was  
the best for two-variable models, and the suitable combined form was (D4/H), which was inconsistent 
with the commonly-used combination (D2H). If D was not taken into consideration, the combination  
of Cw and Cl was better, and the proper combined form was (Cw2Cl); this is very similar to the 
commonly-used combination of D and H. 
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If four variables were considered to be explanatory variables in a crown biomass model, then 
combined forms of D and H or Cw and Cl could be determined from the values of power parameters in 
Equation (2). Based on the results of regression estimation, four variables in Equation (2) could be 
reduced to two combinations of (D2/H) and (CwCl). This indicates that different combinations of 
variables exist in biomass models with different structural forms. 

3.2. Crown Biomass Fixed-Effects Models 

The randomly selected 80% of samples were used to fit the one-, two- and multi-variable fixed-effects 
models for the population-averaged crown biomass in the models (Equations (4)–(6) in Table 3), 
where X1 = D4/H in Equation (5), X2 = D2/H, X3 = CwCl in Equation (6). 

Table 3. The fitting results of fixed-effects models of crown biomass. 

Models 
Parameter Estimates Main Statistics 
β0 β1 β2 R2 SEE/kg MPE/% MPSE/% TRE% 

(4) 0.0633 2.1384 / 0.77 24.33 5.01 44.88 −0.83 
(5) 0.0824 0.6511 / 0.81 22.44 4.62 39.80 −0.16 
(6) 0.1300 1.1504 0.4778 0.83 20.86 4.32 34.99 −1.05 

Note: The weight variables of one-, two- and multi-variable of fixed-effects models of crown biomass  
are respectively 1/D1.56, 1/D1.53 and 1/D1.45 (the same in Table 4). R2—coefficient of determination;  
SEE—standard error of estimates; MPE—mean prediction error; MPSE—mean percentage standard error; 
TRE—total relative error. 

The goodness-of-fit of crown biomass models improved gradually with an increasing number of 
explanatory variables in models (Table 3). Four statistical indicators showed complete consistency: 
from one-variable model to two- and multi-variable models, the R2 increased while the SEE, MPE,  
and MPSE decreased gradually. The absolute value of TRE that was calculated based on the 20% test 
samples was less than the corresponding MPE, indicating a good behavior of the models. 

3.3. Crown Biomass Mixed-Effects Models 

Table 4 shows the one-, two- and multi-variable crown biomass nonlinear mixed-effects models (7)–(9); 
only u0 among all the random parameters is valid (significantly different from 0 at p = 0.00). 

Table 4. The fitting results of nonlinear mixed-effects models of crown biomass. 

Models 
Fixed Parameters Random Parameters Main Statistics 
a0 a1 a2 u0(1) u0(2) u0(3) u0(4) R2 SEE/kg MPE/% MPSE/% TRE/% 

(7) 0.0535 2.2070 / −0.0092 −0.0098 0.0202 −0.0012 0.84 20.22 4.16 43.65 2.80 
(8) 0.0733 0.6648 / −0.0062 −0.0135 0.0243 −0.0046 0.86 18.90 3.89 38.43 3.12 
(9) 0.1255 1.1542 0.4856 −0.0083 −0.0237 0.0348 −0.0028 0.88 18.05 3.72 33.08 1.26 

Note: R2—coefficient of determination; SEE—standard error of estimates; MPE—mean prediction error; MPSE—mean 

percentage standard error; TRE—total relative error. The random parameters u0(i) are the response values of P. massoniana, 

P. yunnanensis, P. tabulaeformis and P. elliottii, respectively, for i = 1, 2, 3, 4. 
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Comparing Tables 3 and 4, the goodness-of-fit of nonlinear mixed-effects models was found to be 
better than that of the corresponding fixed-effects models. Similarly, with an increasing number of 
explanatory variables, the fitting results of nonlinear mixed models of crown biomass gradually 
improved. Based on the size of parameters in models (7)–(9), P. tabulaeformis had the largest crown 
biomass, followed by P. elliottii, while P. yunnanensis had the smallest crown biomass. The crown 
biomass estimates of the two-variable models for P. massoniana, P. elliottii and P. tabulaeformis  
were 12%, 15% and 63% larger, respectively, than that for P. yunnanensis (Figure 2). 

 

Figure 2. Comparison of two-variable crown biomass equations for the four pine  
species. (OBSobserved, EST—estimated; PM—P. massoniana, PY—P. yunnanensis, 
PT—P. tabulaeformis, PE—P. elliottii). 

From the fixed and random parameters in Table 4, we could obtain one-, two- and multi-variable 
crown biomass models for the four species, and calculate the primary statistical data of species-specific 
crown biomass models (Table 5). 

Table 5 shows that the mean prediction errors of crown biomass models for the four species were 
less than 10%. That is, the precision of crown biomass estimates were greater than 90%, indicating 
good fitting results were achieved. Crown biomass models for P. elliottii had the greatest prediction 
precision (the MPE was about 6%), and the best R2 (>0.9); followed by models for P. tabulaeformis 
and P. massoniana, with models for P. yunnanensis having the lowest. The R2 = 0.82–0.89 for the 
models of other three species, and the MPE’s were 6.62%–10.31%. In addition, the prediction 
precisions of estimates for P. massoniana and P. tabulaeformis increased gradually from the one-
variable model to the two- and multi-variable models, which were similar to those in the 
aforementioned fixed-effects model and mixed-effects model. However, the results for P. yunnanensis 
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and P. elliottii were slightly different. For P. yunnanensis, the two-variable model provided the best fit, 
and the one-variable model performed best for P. elliottii. These might be related to the tree 
architecture of the species and quality of modeling samples. All the absolute values of TRE were less 
than the corresponding MPE, indicating a good behavior from the models. 

Table 5. The statistics of nonlinear mixed-effects models for species-specific crown 
biomass estimation. 

Species Models R2 SEE/kg MPE/% MPSE/% TRE% 

P. massoniana 
One-variable 0.83 20.86 7.33 44.09 4.33 
Two-variable 0.86 19.42 6.82 35.45 5.64 
Multi-variable 0.86 18.85 6.62 32.08 3.33 

P. yunnanensis 
One-variable 0.82 21.25 10.31 38.93 −6.30 
Two-variable 0.86 18.75 9.10 34.66 −3.28 
Multi-variable 0.85 19.23 9.33 35.40 2.76 

P. tabulaeformis 
One-variable 0.83 25.10 9.40 52.85 5.64 
Two-variable 0.85 23.18 8.68 48.80 5.54 
Multi-variable 0.89 20.55 7.70 38.60 1.58 

P. elliottii 
One-variable 0.93 10.66 5.28 38.55 −4.60 
Two-variable 0.90 13.06 6.47 37.91 −4.09 
Multi-variable 0.91 12.21 6.05 27.47 −5.31 

Note: R2—coefficient of determination; SEE—standard error of estimates; MPE—mean prediction error; 
MPSE—mean percentage standard error; TRE—total relative error. 

3.4. Compatible Branch and Foliage Biomass Models 

The results of one-, two- and multi-variable relative ratio models (based on Equations (11)–(13)) 
shown that among all the random parameters, only v0 is valid (significantly different from 0 at  
p = 0.00). The combined variables in Equation (13) were defined as: X4 = (DCw), X5 = (H 2/Cl). 
Equations (11)–(13) were substituted into compatible branch and foliage biomass simultaneous 
Equation (10), and the fitting results could be obtained (Table 6). 

Table 6. The fitting results of simultaneous equations of branch and foliage biomass. 

Equations 
Global Parameters Specific Parameters Statistics 

bi v0(1) v0(2) v0(3) v0(4) Branch Models Foliage Models 

(11) 
0.4289 0.0362 0.0650 −0.0088 −0.0924 R2 = 0.83 R2 = 0.72 

0.5770 / / / / 
MPE = 4.69% MPE = 5.28% 
TRE = 2.91% TRE = 2.46% 

(12) 
0.4008 0.0309 0.0581 −0.0070 −0.0820 R2 = 0.85 R2 = 0.73 
0.5311 / / / / MPE = 4.40% MPE = 5.17% 
0.0805 / / / / TRE = 3.19% TRE = 2.90% 

(13) 
0.4474 0.0175 0.0597 0.0056 −0.0828 R2 = 0.86 R2 = 0.74 
0.2720 / / / / MPE = 4.29% MPE = 5.06% 
0.1388 / / / / TRE = 1.24% TRE = 1.30% 

Note: R2—coefficient of determination; MPE—mean prediction error; TRE—total relative error. 
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The MPEs of foliage biomass models were found to be slightly higher than those of branch biomass 
models, but all of them were around 5% for population-averaged predictions; the goodness-of-fit of 
branch and foliage biomass models improved gradually with an increase in the number of explanatory 
variables (Table 6). In addition, based on the values of the parameters in one-variable models, we 
found the proportion of branch biomass increased gradually with increasing D. The four pine species 
could be ranked by the size of branch biomass proportions as: P. yunnanensis > P. massoniana > P. 
tabulaeformis > P. elliottii. For example, using the trees that have a 40 cm D, the proportions of 
estimated branch or foliage biomass to crown biomass for P. yunnanensis, P. massoniana, P. tabulaeformis 
and P. elliottii were 81%, 80%, 78% and 74% (branch), and 19%, 20%, 22% and 26% (foliage), 
respectively (Figure 3). 

 

Figure 3. Comparison of proportions of branch and foliage biomass from compatible  
one-variable equations for the four pine species. (Pb—proportion of branch biomass,  
Pf—proportion of foliage biomass; PM—P. massoniana, PY—P. yunnanensis,  
PT—P. tabulaeformis, PE—P. elliottii). 

From the global and specific parameters in Table 6, we could obtain one-, two- and multi-variable 
models of branch and foliage biomass for the four species, and calculate the primary statistics of 
species-specific branch and foliage crown biomass models. The MPE’s of all models were less  
than 17%, that is, the precision of biomass estimates exceeded 83%, providing acceptable fitting results. 
The prediction precision of the biomass models for P. elliottii were the largest (greater than 92%),  
with the precision of foliage biomass estimates slightly exceeding that of branch biomass. The precisions 
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for P. massoniana and P. tabulaeformis were between 89%–92%. For P. yunnanensis, the precision of 
branch biomass estimates (about 90%) was greater than that of foliage biomass (greater than 83%). 

4. Discussion 

4.1. Variables Affecting Crown Biomass 

Among the four main variables affecting crown biomass (D, H, crown width, and crown length),  
D was the most important, which was consistent with the conclusions of related literature [4,5,9,20,36]. 
Crown width was the next most important variable affecting crown biomass, consistent with the 
conclusion of Hoffmann et al. (2002) [6]. However, if we took the combined effects together with D 
into consideration, then the influence of H was larger than that of crown width. Thus, in a two-variable 
crown biomass model, the combination of D and H would be used instead of the combination of D  
and crown width. For the estimation of crown biomass, the commonly used combination of D and H 
(D2H) did not perform well, because a negative correlation was observed between crown biomass and 
H for a tree with the same D. Based on regression analysis, the combination (D4/H) of D and H was 
appropriate. Some of the crown biomass models collected by Zianis et al. (2005) had used a similar 
combination of D and H (D3/H) [12]. Snorrason et al. (2006) and Rock (2007) established crown 
biomass models using a method similar to Equation (3), in which the power parameters of H  
were negative, indicating a negative correlation exists between the crown biomass and H [14,15].  
Affleck (2013) established multi-variable crown biomass models similar to Equation (1) for seven  
tree species and also concluded that H has a negative relationship with crown biomass [20]. In fact,  
it is very common that shorter trees with the same D typically have a larger crown while taller  
trees have a smaller crown. This did agree with the regression estimation results in this paper and 
previous findings [5,14,15,20]. 

If the crown biomass models such as Equation (1) contained a different number of explainable 
variables, then the expressions of the combined variables were not the same. When a crown biomass 
model contained only D and H, the suitable combination of variables was (D4/H). However, when the 
crown biomass model contained only crown width and length, the proper combination of variables  
was (Cw2Cl). In addition, when the crown biomass model contained D, H, crown width and crown 
length, the appropriate combinations of variables were (D2/H) and (CwCl). Through dimensional 
analysis of these three groups of combined variables, one could find that the sum of all power values  
in each situation was 3, indicating that crown biomass is related to a three-dimensional space.  
The real reason remains to be explored by ecologists or biologists. 

The relative ratio functions of branch biomass were also related to the four variables of a tree  
such as D and H, but the suitable combinations of variables were different from those in crown 
biomass models. For example, in the multi-variable relative ratio model, the appropriate combined 
variables are (DCw) and (H2/Cl). 

4.2. On Crown Biomass Models 

This paper established a species-free fixed-effects model and a mixed-effects model of tree  
crown biomass, and the goodness of fit was better for the latter than the former, consistent with  
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the conclusions of related literature [22–25]. The coefficients of determination (R2) of one-, two- and 
multi-variable fixed-effects models were 0.77, 0.81 and 0.83, respectively; those of the corresponding 
mixed-effects model were 0.84, 0.86 and 0.88, respectively, and were not as large as those reported  
by Tu et al. (2008) [36]. This may occur because they used modeling data collected from a single local 
area with a relatively small sample size (n = 12 and 15, respectively). The modeling data used in this 
study employed a large sample size that was representative of the large-scale region of species 
distribution. According to the crown biomass models for thirty-three tree species groups in Canada [11], 
the mean adjusted coefficients of determination for the one- and two-variable models were 0.78 and 
0.80, respectively. These were basically the same as those of the one- and two-variable models for the 
four pine species in our study. The MPEs of one-, two- and multi-variable mixed models decreased 
0.85%, 0.73% and 0.60%, respectively, than the corresponding fixed-effects models; the values of the 
MPEs were all less than 5%. 

In this study, compatible branch and foliage biomass simultaneous equations were constructed 
based on the crown biomass mixed models, in which the crown biomass was divided into the  
two components of branch and foliage biomass. The sum of these two was equal to the crown biomass. 
In general, the precision of branch biomass estimates was higher than that of foliage biomass 
estimates, consistent with the results of previous studies [11,26]. However, for the species-specific 
models, the results were not completely in accordance with the above conclusion. Among the models 
of four species, the precisions of branch and foliage biomass estimates were very close for  
P. tabulaeformis, providing similar results to those of Ma (1989) [37]. Nevertheless, the precision of 
branch biomass estimates for P. elliottii was lower than that of the foliage biomass estimates, 
consistent with those of Li et al. (2006) [13]. A study focusing on branch and foliage biomass 
estimation for thirty-three tree species groups in Canada [11] concluded that the precisions of branch 
and foliage biomass estimates for three tree species were very close, but the precisions of branch  
biomass estimates was lower than those of the foliage biomass estimates for six species among the 
total thirty-three species. Therefore, the estimation precisions for branch and foliage biomass were 
determined by crown characteristics of the tree species, and models for branch biomass estimation 
usually performed better than that for foliage biomass estimation. 

According to the review by Henry et al. (2014), significant variations have been observed in  
forest biomass estimation between different ecological zones, tree species, ages, management types 
and sites [5]. From the results, we found that P. tabulaeformis growing in the northern region had the 
largest crown biomass, followed by P. elliottii and P. massoniana growing in the southern region, 
while P. yunnanensis growing in the southwestern region had the smallest crown biomass. The 
difference of crown biomass estimates between P. elliottii and P. massoniana growing in the same 
region was not significant, but the differences among pine species growing in different regions were 
significant (Figure 2), which might be caused by the different climate conditions. In addition, the 
proportions of branch and foliage biomass to crown biomass increased or decreased with growing stem 
diameter, and also differed among different species. The differences among three native species, i.e.,  
P. tabulaeformis, P. yunnanensis and P. massoniana, were relatively small, but the difference between 
native and exotic species was significant (Figure 3). According to the study by Ketterings et al. (2001), 
tree species may differ greatly in tree architecture and wood gravity [38]. Chmura et al. (2007) also 
found that crown architecture affected biomass allocation patterns [39]. From our data, the wood 
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density or gravity of P. yunnanensis with the smallest crown biomass was really the lowest among  
four pine species, but that of P. tabulaeformis with the largest crown biomass was not the highest,  
only the second highest. Furthermore, from the authors’ experience, P. elliottii and P. massoniana 
growing in the same region do differ greatly in crown architecture. For a tree with the same stem 
diameter and tree height, P. elliottii probably has smaller branches and denser needles than P. 
massoniana. This might be the reason that the proportion of branch biomass for P. elliottii was 
obviously lower than the other three pine species. Furthermore, Jokela and Martin (2000) found that 
proportion of branch to aboveground biomass was smaller for P. elliottii than P. taeda, while the 
opposite was true for proportion of foliage biomass regardless of treatment [40]. Chmura et al. (2007) 
also concluded that P. elliottii produced significantly smaller crowns and also had a smaller proportion 
of branch to aboveground biomass than P. taeda at a given tree size [39]. 

5. Conclusions 

In this study, crown biomass data from 754 sample trees of four pine species growing in China were 
used to analyze the variables affecting the estimation of crown biomass. One-, two- and multi-variable 
crown biomass models were constructed using nonlinear mixed-effects modeling. Compatible branch and 
foliage biomass models were established using nonlinear error-in-variable simultaneous equations with 
a dummy variable. The overall technical approach presented in this paper provided reference for the 
related study of crown biomass, and the findings in this study are also significant in application. Based 
on the findings of this study, the following conclusions could be drawn: 

(1) Based on the contributions of individual variables to crown biomass, the stem diameter at 
breast height was the most important, followed by crown width, crown length and tree height. 
As for the combined effects of two variables on the crown biomass, the combination of stem 
diameter and tree height was the most important, followed by the combination of stem diameter 
and crown width. 

(2) For one-, two- or multi-variable crown biomass model, significant differences were observed 
between the model parameters of different tree species. Based on the values of random effect 
parameters of four species, the rank of estimates of one-variable crown biomass models from 
small to large was P. yunnanensis, P. massoniana, P. elliottii and P. tabulaeformis, where  
the estimate of crown biomass for P. tabulaeformis was 60% larger than that for P. yunnanensis. 

(3) The proportions of branch to crown biomass and of foliage biomass increased and decreased 
gradually, respectively, with increasing stem diameter. The proportion of branch biomass of  
a tree with the same stem diameter could be ranked as: P. yunnanensis > P. massoniana >  
P. tabulaeformis > P. elliottii. 

(4) All of the crown biomass models for the four pine species in this study have average prediction 
precisions greater than 90%, and average precisions for compatible branch and foliage biomass 
models greater than 83%; models for P. elliottii, especially, achieved precisions greater than 
92%. All these suggested that the models can meet the precision needs of biomass estimation. 
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