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Abstract: This study examines tree and stand response to a gradient of commercial thinning 

intensities and nitrogen fertilization (200 kg N ha−1) in nine jack pine (Pinus banksiana) 

stands of Eastern Canada over a period of 14 years. Thinning intensity ranged from 0% basal 

area removal in control plots to 64% in thinned plots. Tree diameter increment, absolute and 

relative volume increment and mean volume increased with thinning intensity and were 

higher in fertilized plots. Individual tree response depended on tree diameter, with smallest 

trees exhibiting highest relative volume increment to thinning intensity. Stand basal area 

increment was positively associated to initial stand basal area and negatively to stand age. In 

thinned and fertilized plots, stand volume increment was higher and natural mortality lower 

than in fertilized only and unfertilized control plots over the 5–14 year period after thinning. 

However, the positive effect of fertilization on tree volume increment decreased with 

thinning intensity. Despite positive individual tree growth responses to thinning and 

fertilization, residual stand volume increment decreased with increased thinning intensity in 

both fertilized and unfertilized plots. While total cumulative stand volume (harvested + 

residual) also decreased with thinning intensity in unfertilized plots, comparable total 
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volumes were observed in fertilized + thinned and unthinned control plots. Nitrogen 

fertilization in the years following commercial thinning enhanced the benefit of thinning on 

these relatively poor sites by increasing tree diameter growth, lowering mortality, and 

increasing total stand merchantable volume compared to unfertilized thinned stands. 

Keywords: jack pine; commercial thinning; fertilization; tree growth; stand volume 

 

1. Introduction 

Commercial thinning is an increasingly common silvicultural treatment applied to pre-mature or 

mature even-aged stands in the Canadian boreal forest. Timber volume is extracted in the short-term, 

often by selecting stems approaching imminent natural mortality. Long-term merchantable yield and 

profitability are generally expected to increase as the result of higher residual tree volume increment and 

improved future operating conditions [1–4]. Despite its general use in Eastern Canada and elsewhere, 

different thinning experiments often yield conflicting results regarding stand response [5] and the 

treatment has been questioned by some foresters [6]. For example, Mäkinen and Isomäki [7,8] reported 

a decrease in merchantable stand volume 25 years after thinning while Schneider [6], Allen [9] and 

Curtis and Marshall [10] reported enhanced stand productivity and stem size, and reduced tree mortality 

and insect susceptibility from 15 to 30 years after thinning. Inferring results is further hampered by 

differences in experimental design (e.g., target species, site fertility, thinning intensity, stand age) and 

statistical approaches [5]. 

Jack pine (Pinus banksiana Lamb.) is a fire-adapted and shade-intolerant species that forms even-aged 

stands following stand-replacing fires; it is also the second most important commercial tree species in 

Eastern Canada [11,12]. Jack pine stands are typically managed under an even-aged clear-cut system. 

Commercial thinning from below is sometimes applied to improve mean tree diameter and volume 

growth and enhance product value [13]. It may also serve to extend time to final cut and therefore 

increase rotation age where maintaining cover of older stands or large-sized trees is important. Thinning 

of mature jack pine stands increases individual tree diameter and stem volume growth [6,14–17] and has 

been reported in at least two studies to positively affect tree height growth [17,18]. These findings 

suggest that commercial thinning is an effective silvicultural treatment to improve individual stem 

growth in these stands [9]. However, growth increases of residual stems following thinning do not 

generally compensate for the loss of cumulative tree growth at the stand-level that would occur had trees 

not been thinned, and therefore, the treatment tends to result in a reduction in total merchantable stand 

volume yield [19]. 

Forest fertilization is applied to increase nutrient availability, improve tree growth, and maximize 

stand yields [20]. In the 1960s, a growing interest in Canada for forest fertilization led to the establishment 

of an interprovincial research program on forest fertilization in stands dominated by different species 

including jack pine [21]. Results of this program of fertilization trials and of previous studies [22–24] 

revealed a positive and significant effect of fertilization on jack pine diameter growth and total and 

merchantable jack pine stand volumes [25]. 
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Few studies have examined the combination of fertilization and thinning on the response of jack pine. 

Groot et al. [26] suggested that the combination of these treatments had a greater (synergistic) effect on 

individual tree growth and stand volume than either treatment alone. Other experiments have confirmed 

such results for Scots pine (Pinus sylvestris L.) [27–29], Douglas fir (Pseudotsuga menziesii Mirb.) [30–32], 

Monterey pine (Pinus radiate D. Don) [33], white spruce (Picea glauca (Moench) Voss) [34] and black 

spruce (Picea mariana (Mill.) B.S.P.) [35]. 

Commercial thinning reduces competition for light [36], nutrients, and water [37], increases growing 

space and redistributes site resources among fewer residual crop trees [15,32]. Tree response to thinning 

is principally conditioned by the increase in resource availability and the mode of competition between 

residual trees. However, the ability to respond to increased light availability also depends on the shade 

tolerance of species [38]. There is evidence that, in forest stands, competition for light is size asymmetric 

while competition for soil resources is size symmetric; that is, larger individuals capture a 

disproportionate share of light resources considering their absolute size while uptake of soil resources is 

proportional to individual’s size [39–41]. Thinning from below should therefore have little effect on 

growth of residual dominant jack pine stems unless soil resources are increased by thinning. Increases 

in soil resources following thinning and fertilization should induce a response proportional to tree size. 

The main objective of this study was to investigate, from a silvicultural standpoint, patterns of tree 

and stand volume increment over a 14 year period in response to commercial thinning and nitrogen 

fertilization of mature jack pine stands. The fully replicated experiment includes nine stands 

(experimental blocks) distributed over a large region and representing a range of stand age and thinning 

intensities, thus allowing for a broad assessment of stand and tree responses to treatments. We expected 

that tree volume would increase proportionally to basal area removed and that small suppressed trees 

would benefit most from thinning. Trees in all social classes should benefit from fertilization. While it 

was expected that thinning from below would reduce stand mortality over the study period, we anticipated 

that, by increasing tree growth, fertilization would increase competition and tree mortality in controls 

and low-intensity thinned stands [42]. Volume increment over the 14 year period of residual trees in 

thinned stands was not expected to compensate for the volume harvested. 

2. Experimental Section 

2.1. Study Area 

The study was conducted in the Abitibi-Témiscamingue region of Northwestern Québec, Canada 

(48°18′16′′ to 49°16′34′′ N, and 76°41′05′′ to 79°09′09′′ W, Figure 1). The region is included in the 

Superior geologic province of the Canadian Precambrian Shield. The topography is relatively flat and 

elevation ranges from 300 to 350 m. Most of the bedrock is covered by quaternary deposits such as till, 

glaciofluvial gravelly sands and glaciolacustrine clay, silt and sands [43]. The climate is cold and 

continental with average daily temperatures between 0.7 and 1.2 °C. Annual mean precipitation ranges 

from 690 to 929 mm of which 60% to 66% falls between May and October inclusively [44]. The region 

is part of the Canadian boreal forest [45]. Eight of the nine selected stands are located within the balsam 

fir (Abies balsamea L. Miller)—white-birch (Betula papyrifera Marshall) bioclimatic domain while one 

stand further north is located in the black spruce-feathermoss bioclimatic domain [46]. 
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Figure 1. Location of the study stands in Northwestern Quebec (Canada) and experimental 

design (inset) in one stand (experimental block). 

2.2. Experimental Design 

Between 1998 and 2003, nine jack pine stands (>80% jack pine) aged between 48 and 81 years  

and growing on fluvioglacial surface deposits were selected among stands targeted for operational 

commercial thinning (Table 1). All stands were even-aged, originated from forest fires, and had not  

been subjected to any silvicultural treatments prior to those applied in the experiment. Soils consisted of 

well-drained sands or loamy sands with a 10–20 cm organic matter layer of feathermoss origin. Site 

index at 50 years on these stands ranged from 16.2 to 17.2 m [47]. 

A complete randomized block design was used for the experiment in which each stand was considered 

an experimental block (replication). In each block, a control (no trails or thinning) and two levels of 

thinning from below (heavy and moderate thinning) were applied to 4 ha experimental units (EU). Small 

merchantable (≥9.1 cm diameter at breast height (1.3 m), DBH), poor quality, and low vigour trees were 

primarily removed. The intensity of thinning applied to experimental units was highly variable among 

blocks creating, across the experiment, a gradient of removal ranging from 2% of the initial basal area 

to 64% (Table 1). One, three or five years after thinning, depending on experimental block, urea 

(CO(NH2)2) fertilization (200 kg N ha−1) was manually applied in the fall in ten 10 m × 20 m sub-plots 

within EUs adjacent (10 m downslope) to permanent sampling plots (see below). 
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Table 1. Initial characteristics of nine jack pine stands subjected to a range of commercial 

thinning intensities. Average values and standard errors of two 200 m2 in permanent 

sampling plots in control experimental units and eight plots in thinned experimental units. 

Stand Age 1 

Stand Basal Area  
(m2 ha−1) 

Stand Density  
(Stems ha−1) 

Thinning Intensity  
(%) 

Control 
Plots 

Thinned 
Plots 

Control  
Plots 

Thinned  
Plots 

Min Mean Max 

Cast * 48 24 ± 1 25 ± 3 2025 ± 177 2275 ± 740 6 21 45 
Cler * 69 29 ± 8 23 ± 4 2125 ± 1096 2137 ± 226 37 49 64 
Doll * 53 27 ± 4 23 ± 3 3125 ± 1025 3050 ± 436 17 28 37 

DupE * 53 36 ± 1 29 ± 4 4125 ± 177 3487 ± 1122 26 41 52 
DupO 48 31 ± 1 31 ± 4 1725 ± 247 2106 ± 607 16 29 40 
Fig * 81 28 ± 1 28 ± 4 1575 ± 177 2106 ± 729 26 38 53 
Land 42 26 ± 3 21 ± 4 1900 ± 212 1868 ± 356 21 27 35 
Par 68 33 ± 8 24 ± 4 2750 ± 566 1668 ± 413 2 12 21 
Val NA 24 ± 3 29 ± 4 1550 ± 71 2081 ± 488 3 14 29 
1: Mean tree age of 8 to 10 dominant trees; NA: not available; *: Stands surveyed 14 years after thinning. 

2.3. Permanent Sampling Plot Measurements 

Immediately after thinning and in each experimental block, ten 200 m2 permanent rectangular 

sampling plots (PSPs) were positioned between two adjacent skidding trails at a rate of four PSPs in 

each thinned EU and two PSPs in control EU. Buffered zones of 5 m were maintained between the plots 

and the skidding trails. Within each PSP, all stems ≥ 9 cm were identified to species, tagged, and their 

DBH measured. Trees <9 cm DBH were identified, counted and tallied in three regeneration size classes 

(DBH: <3 cm, 3–4.9 cm, 5–9 cm). All stumps originating from harvesting were also measured for height 

and diameter. At time of fertilization, ten additional permanent sampling plots (200 m2) were established 

in fertilized areas, and residual trees were tagged and measured as described above. Permanent sampling 

plots (fertilized and unfertilized) from all experimental blocks were surveyed at time of fertilization and 

again 5 years after thinning. Fourteen years after thinning (2012), PSPs from the five stands that were 

established in 1998 were surveyed again (Table 1). 

2.4. Calculations 

All calculations were conducted at the PSP level. Residual basal area was calculated based on live 

tree DBH. The DBH of harvested trees were estimated based on the Alemdag and Honer [48] allometric 

equation (Equation (1)) using their stump height and diameter. 

(DBH = SD (a ln (SH) + b)) (1)

where:  

DBH = diameter at breast height (cm), 

SD = stump diameter (cm), 

SH = stump height (cm), 

a and b = species specific coefficients locally calibrated. 
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Basal area removed was estimated based on harvested tree diameter. Initial basal area was calculated 

as the sum of the residual and removed basal areas, and the intensity of thinning was expressed as the 

proportion of the initial basal area removed, obtained from the difference between initial basal area and 

residual basal area. The estimation of initial basal area and basal area removed did not include  

harvesting trails. 

Merchantable tree volume was estimated from tree height and DBH. First, the height of each tree was 

calculated using specific allometric equations (Equation (2)) locally calibrated [49]. 

(H = β0 + β1 D + β2 D2) (2)

where:  

H = height (m), 

D = diameter at breast height (cm), 

β0, β1 and β2 = specific species coefficients locally calibrated. 

Merchantable tree volume was then estimated using the general tariff table [49] for the province 

(Equation (3)): 

(V = β0 + β1 H + β2 HD + β3 HD2) (3)

where:  

V = volume (dm3), 

H = height (m), 

D = diameter at breast height (cm), 

β0, β1, β2 and β3 = species specific coefficients locally calibrated. 

Tree height and merchantable volume estimated with the previous equations were compared with 

measurements made on 30 trees collected on five of the nine investigated stands. Stem analyses for  

these 30 trees were undertaken and reported by Goudiaby et al. [47]. Pearson’s correlation (r) 

coefficients between predicted and observed values were 0.846 for tree height and 0.974 for tree volume. 

Equations used in this study were considered suitable for tree height and volume estimation from DBH 

measurements as no bias was created toward any of the thinning treatments (see supplementary material). 

Moreover, these equations may be considered conservative as 27 of the 30 predicted values were lower 

than observed values. 

Tree response to treatments was characterized by measuring tree and stand changes in attributes 

between 0 and 5 years and between 5 and 14 years after thinning. Response measurements included  

(1) diameter increment; (2) absolute and relative tree volume increment and (3) mean tree volume  

14 years after thinning (PSP total merchantable volume divided by tree density). 

Stand level mortality was characterized as (1) the proportion of trees within a PSP that died  

0–5 years and 5–14 years after thinning and (2) the volume lost to mortality 0–5 years and 5–14 years 

after thinning. Changes in stand basal area and merchantable stand volume were characterized at the PSP 

level as (1) absolute stand volume increment 0–5 years and 5–14 years after thinning and the relative 

stand volume increment 0–5 years after thinning (net 5 years stand volume increment divided by initial 

stand volume immediately after thinning) and 5–14 years after thinning (net 5–14 years stand volume 

increment divided by stand volume 5 years after thinning); (2) residual live stand volume; and  

(3) cumulative merchantable volume (residual live + harvested volume). 
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2.5. Statistical Analyses 

To test effects of thinning and fertilization on tree and stand response variables, a mixed linear 

regression model that allowed for random and nested effects was applied using the lme function of the 

nlme package [50] with R software version 3.0.2 [51]. In doing so, we benefited from each observation 

(tree level or PSP level) while taking into account the non-independence of nested random factors  

(trees nested within PSP, and PSPs nested within EU and EU nested within blocks). For each analysis, 

residuals were examined to ensure that statistical assumptions of normality and homoscedasticity  

were met. A log transformation was applied to response variables when assumptions were not met.  

A significance level of 0.05 was retained. 

For regression analyses, thinning intensity was included as a continuous variable using relative basal 

area removed, computed at the PSP level. The square of relative basal area removed was also included 

in the linear regression models to test for non-linear relationships between thinning intensity and 

response variables but was removed due to its systematic non-significant effect. Because of the wide 

range of initial stand conditions (Table 1), initial stand basal area was included as a covariate in all 

analyses. Other fixed factors included stand age, tree size (DBH ≤ 17.9 cm or DBH ≥ 18 cm) and time 

since thinning. The effect of fertilization was assessed only for changes in tree or stand properties that 

took place between 5 and 14 years after thinning in stands (n = 5) that were fertilized 3 or 5 years after 

thinning. The analyses did not include the timing of fertilization as a fixed factor. Selected interactions 

between fixed factors were also tested and interactions were removed from analyses when found to be 

not statistically significant. 

3. Results 

3.1. Tree Response 0 to 5 Years Following Thinning 

In the first five years following thinning, the absolute diameter increment of small trees  

(DBH = 9.9–17.9 cm, mean height = 13.2 ± 1.6 m) increased with relative basal area removed (Figure 2A, 

Table 2) while that of large trees (DBH ≥ 18 cm, mean height = 17.1 ± 0.8 m) remained constant. The 

absolute diameter increment of both tree sizes decreased with initial stand basal area (Table 2) while the 

diameter increment of small trees decreased with stand age (Table 2). During the five years following 

thinning, the relative tree volume increment of small trees increased across the gradient of basal area 

removed while that of large trees was not affected by the proportion of basal area removed (Table 2, 

Figure 3A). The relative tree volume increment of both tree size classes also decreased with initial stand 

basal area, (Table 2). 
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Table 2. Residual tree response to commercial thinning and fertilization of jack pine stands over periods of 5 years and 5 to 14 years following 

thinning. Fertilization was conducted within sub-plots in each experimental unit 3 to 5 years after thinning. Effects of initial stand basal area 

and age, basal area removed by thinning, tree size, fertilization and selected interactions assessed by means of mixed linear models. 

Response  
Variables 

Absolute Tree 
Diameter Increment *

Absolute Tree 
Diameter Increment * 

Relative Tree 
Volume Increment * 

Mean Tree 
Volume 

Absolute Tree 
Volume Increment * 

Relative Tree 
Volume Increment * 

Period After Thinning 5 Years 5 to 14 Years 5 Years 14 Years 5 to 14 Years 5 to 14 Years 
Fixed factors E p E p E p E p E p E p 

Intercept 2.72 <0.001 3.64 <0.001 2.56 <0.001 112.4 0.043 4.41 <0.001 3.68 <0.001 
BA initial −0.02 0.014 −0.01 0.181 −0.02 0.007 1.37 0.442 −0.02 0.108 −0.02 0.131 

BA removed 0.01 0.505 0.01 0.034 0.01 0.402 1.25 0.003 0.01 0.074 0.01 0.260 
Size (DBH ≤ 17.9 cm) 0.29 0.184 −0.43 0.089 0.13 0.083 -  −0.93 <0.001 0.08 0.559 

Age −0.01 0.832 0.01 0.270 -  -    -  
BA removed × Size 0.01 0.009 0.01 0.021 0.01 0.027 -  0.01 0.018 0.01 0.012 

Size × Age −0.01 <0.001 −0.01 0.542 -  -    -  
Fertilization (UnF) -  −0.38 <0.001 -  −11.8 0.074 −0.28 0.030 −0.29 0.024 

BA removed × Fertilization -  0.01 0.007 -  −0.33 0.350 0.01 0.016 0.01 0.013 
Fertilization × Size -  -  -  -  −0.18 0.032 −0.24 0.046 

*: the variable was log-transformed; BA = basal area; DBH = diameter at breast height; UnF = unfertilized; Estimates of fixed factors and interactions effects (E) are 

presented with p-values (p); p-values in bold type are significant (p ≤ 0.05); Reference levels of categorical variables are shown in brackets; -: not applicable. 
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Figure 2. Residual tree response to commercial thinning and fertilization of jack pine stands 

over periods of 5 and 5 to 14 years following thinning. Fertilization was conducted within 

sub-plots in each experimental units 3 to 5 years after thinning; (A) Tree diameter increment 

(mm) over the first 5 years after commercial thinning in unfertilized plots as a function of 

basal area removed and tree size; (B) Diameter increment (mm) of small diameter trees over 

the 5- to 14-years period following commercial thinning as a function of basal area removed 

and fertilization; (C) Diameter increment (mm) of large diameter trees over the 5- to 14-years 

period following commercial thinning as a function of basal area removed and fertilization. 
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Untransformed observed (dots) and predicted (lines) values. Predicted values for tree volume 

increment were back-transformed from a log transformation. For all figures, individual tree 

values were averaged over sampling plots for illustration purposes. 

3.2. Tree Response 5 to 14 Years Following Thinning in Unfertilized and Fertilized Plots 

During the 5–14 year period following thinning, the absolute diameter increment of residual trees 

increased with basal area removed (Table 2, Figure 2B,C). The increase was more pronounced for small 

trees as indicated by the significant interaction between tree size and basal area removed. For small and 

large trees, fertilization had the strongest positive effect on absolute diameter increment in the controls 

and the differences in diameter increment between fertilized and unfertilized plots decreased with 

increased basal area removed. Additionally, the difference between fertilized and unfertilized trees was 

stronger for large trees as indicated by significant interaction between tree size and fertilization (Table 2). 

The relationship between the 5–14 year absolute (Figure 3C,D) and relative (Figure 3E,F) tree volume 

increment and basal area removed was affected by tree size and fertilization while the interactions 

between fixed factors were all significant (Table 2). Results indicated that (1) volume of small trees 

increased more in response to basal area removed and fertilization than that of large trees and (2) the 

effect of fertilization on tree volume increment decreased with basal area removed with a steeper 

decrease for large trees. Hence, for proportions of basal area removed greater than 45%, the volume 

increment of large unfertilized trees tended to be larger than that of fertilized ones (Figure 3D,F). 

Fourteen years after thinning, mean tree volume (Table 2) increased by 1.25 dm3 for each additional 

percent of basal area removed; from 148 dm3 in controls to 236 dm3 at the upper end of the thinning 

gradient (Figure 3B). Mean tree volume in fertilized plots did not differ statistically from the mean tree 

volume in unfertilized plots (Table 2). 

 

Figure 3. Cont. 
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Figure 3. Response of residual trees in jack pine stands after commercial thinning and 

fertilization over periods of 5 to 14 following thinning. (A) Relative tree volume increment 

over the first 5 years after commercial thinning in unfertilized plots; (B) Mean tree volume 

in fertilized and unfertilized plots 14 years after commercial thinning; (C) Fertilized and 

unfertilized small diameter tree volume increment over the 5- to 14-year period following 

commercial thinning; (D) Fertilized and unfertilized large diameter tree volume increment 

over the 5- to 14-year period following commercial thinning; (E) Relative tree volume 

increment of fertilized and unfertilized small diameter trees over the 5- to 14-year period 

following commercial thinning; (F) Relative tree volume increment of fertilized and 

unfertilized large diameter trees over the 5- to 14-year period following commercial 

thinning. Untransformed observed (dots) and predicted (lines) values. Predicted values for 

tree volume increment were back-transformed from a log transformation and corrected 

according to Sprugel [52]. For all figures, individual tree values were averaged over 

sampling plots for illustration purposes. 
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3.3. Tree Mortality in Response to Thinning and Fertilization 

Tree mortality over the first five years following thinning, expressed as the proportion of residual 

trees, increased with basal area removed (Table 3) from 1.2% in control PSPs to 6.9% in the most 

intensively thinned PSPs. Mortality estimates based on volume were not affected by thinning intensity. 

Both measures of mortality increased with stand age (Table 3). 

The proportion of residual trees that died between 5 and 14 years following thinning ranged from 0% 

to 41.4% (Figure 4A). Mortality was independent of thinning intensity in unfertilized PSPs while a 

significant interaction between relative basal area removed and fertilization (Table 3) indicated that tree 

mortality decreased with basal area removed in fertilized plots (Figure 4A). Volume lost to mortality 

during the same period increased with initial stand basal area and stand age (Table 3) and decreased 

similarly with thinning intensity in unfertilized and fertilized PSPs (Figure 4B). However, mean volume 

lost to mortality remained significantly higher (10.8 m3 ha−1) in unfertilized than in fertilized PSPs  

(Table 3, Figure 4B). 

Table 3. Stand level tree mortality in commercially thinned jack pine stands with or without 

fertilization over periods of 5 and 5 to 14 years following thinning. Fertilization was 

conducted within experimental sub-plots 3 to 5 years after thinning. Effects of initial stand 

basal area and age, basal area removed by commercial thinning, fertilization and selected 

interactions on mortality assessed by means of mixed linear models. 

Response  

Variable 

Tree Mortality  

(% of Residual Stems) 

Tree Mortality  

(% of Residual Stems) 

Volume Lost 

to Mortality 

Volume Lost to 

Mortality 

Period After Thinning 5 Years 5 to 14 Years 5 Years 5 to 14 Years 

Fixed factors E p E p E p E p 

Intercept −10.8 0.008 −19.9 <0.001 −9.9 0.136 −35.9 <0.001 

BA initial  0.001 0.993 0.35 0.022 0.31 0.130 0.49 0.022 

BA removed 0.08 0.016 −0.16 0.027 −0.01 0.879 −0.24 0.001 

Age 0.21 0.004 0.33 0.015 2.3 0.029 0.56 0.010 

Fertilization (UnF) -  0.89 0.722 -  10.8 <0.001 

BA removed × 

Fertilization (UnF) 
-  0.17 0.037 -  0.02 0.838 

BA = basal area; UnF = unfertilized; Estimates of fixed factors and interactions effects (E) are presented with 

p-values (p); p-values in bold type correspond to factors with significant effect (p ≤ 0.05); Reference levels are 

shown in brackets for categorical variables; -: not applicable. 
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Figure 4. Jack pine stand response to commercial thinning and fertilization over periods of 

5 to 14 years following thinning. Fertilization was conducted within sub-plots in each 

experimental unit 3 to 5 years after thinning. (A) Tree mortality (% of residual stems) as a 

function of basal area removed and fertilization over a period of 5 to 14 years after 

commercial thinning; (B) Volume lost to mortality as a function of basal area removed and 

fertilization over a period of 5 to 14 years after commercial thinning. 

3.4. Stand Basal Area and Volume Increment Following Thinning with and without Fertilization 

Absolute basal area increment during the initial 5 year period after thinning was not affected by  

the relative basal area removed but increased significantly with the initial stand basal area (Table 4). 

During the following 5 to 14 year period, no effect of basal area removed on absolute basal area 

increment was observed but absolute basal area increment increased with initial stand basal area and 

fertilization and decreased with stand age (Table 4). 

During the first 5 years following thinning, the absolute stand volume increment decreased slightly 

with relative basal area removed (Figure 5A) and increased to some extent with initial stand basal  

area (Table 4). Absolute stand volume increment during the 5 to 14 year period after thinning was 

significantly and positively affected by initial basal area and fertilization but decreased with stand age 

(Table 4). The effect of relative basal area removed on absolute stand volume increment was positive 

but marginally significant (Table 4, Figure 5B). 

Relative stand volume increment during the initial 5 year (Figure 5C) and the following 5 to 14 year 

periods (Figure 5D) after thinning showed a significant positive relationship with relative basal area 

removed and decreased with stand age (Table 4). Relative stand volume increment 0 to 5 years after 

thinning increased from 13.8% in control PSPs to 29.1% in the most intensively thinned PSPs.  

The respective values for 5 to 14 years after thinning were 20.5% and 47.1% in unfertilized PSPs. During 

this period, fertilization increased relative stand volume increment by 11.5%, independent of basal area 

removed (Table 4). 
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Table 4. Jack pine stand basal area increment, absolute and relative volume increment in response to commercial thinning and fertilization over 

periods of 5 and 5 to 14 years. Fertilization was conducted within experimental sub-plots 3 to 5 years after thinning. Effects of initial stand basal 

area and age, basal area removed by commercial thinning, fertilization and selected interactions assessed by means of linear mixed models. 

Response  
Variables 

Absolute Basal 
Area Increment 

Absolute Basal 
Area Increment 

Absolute Volume 
Increment 

Absolute Volume 
Increment 

Relative Volume 
Increment 

Relative Volume 
Increment 

Period After Thinning 5 Years 5 to 14 Years 5 Years 5 to 14 Years 5 Years 5 to 14 Years 

Fixed factors E p E p E p E p E p E p 
Intercept 1.82 0.103 3.91 <0.001 17.79 0.101 62.1 <0.001 38.5 0.006 85.6 <0.001 
BA initial 0.05 0.001 0.12 <0.001 0.42 0.061 0.94 0.008 −0.30 0.234 −0.16 0.672 

BA removed −0.01 0.134 0.01 0.837 −0.04 0.505 0.20 0.060 0.22 0.001 0.41 0.001 
Age −0.02 0.378 −0.04 0.024 −0.17 0.319 −0.83 0.006 −0.29 0.199 −0.83 0.018 

Fertilization (UnF) -  −0.79 0.050   −8.33 0.096 -  −11.5 0.024 
BA removed × Fertilization -  −0.01 0.338   −0.05 0.729 -  −0.06 0.666 

BA = basal area; DBH = diameter at breast height; UnF = unfertilized; Estimates of fixed factors and interactions effects (E) are presented with p-values (p); p-values in 

bold type are significant (p ≤ 0.05); Reference levels of categorical variables are shown in brackets; -: not applicable. 
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Figure 5. Jack pine stand response to commercial thinning and fertilization over the 5- to 

14-year period following commercial thinning; (A) Stand volume increment over the first  

5 years after commercial thinning in unfertilized plots as a function of basal area removed; 

(B) Stand volume increment between 5 and 14 years after thinning as a function of basal 

area removed and fertilization; (C) Relative stand volume increment over the first 5 years 

after commercial thinning in unfertilized plots as a function of basal area removed; (D) Relative 

stand volume increment between 5 and 14 years after thinning as a function of basal area 

removed and fertilization. Untransformed observed (dots) and predicted (lines) values. 

Predicted values for tree volume increment were back-transformed from a log transformation. 

In unfertilized and fertilized PSPs, residual stand volume and cumulative merchantable volume 5 and 

14 years after thinning decreased with relative basal area removed but increased significantly with initial 

stand basal area (Table 4). Stand age had no significant effect on residual volume 5 and 14 years after 

treatments. The slope between thinning intensity and volume remained constant over time in both 

unfertilized and fertilized PSPs. Stand volume was 0.44 m3 ha−1 lower for each additional percent of 
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basal area removed in unfertilized PSPs (Figure 6A). Stand volume increased by an average of 36.8 m3 ha−1 

over the 5 to 14 year period after thinning regardless of thinning intensity (Table 5, Figure 6A,B). 

 

Figure 6. Residual and cumulative (harvested and residual) jack pine stand volume 5 and  

14 years after commercial thinning as a function of basal area removed in unfertilized (A,C) 

and fertilized (B,D) plots. Untransformed observed (dots) and predicted (lines) values. 

Cumulative stand volume (harvested and residual) 5 and 14 years after commercial thinning increased 

significantly with initial stand basal area in both fertilized and unfertilized PSPs (Table 5). However, 

cumulative stand volume decreased with increasing thinning intensity, and the significant interaction 

between basal area removed and fertilization showed that cumulative stand volume decreased faster with 

increasing thinning intensity in unfertilized than fertilized PSPs (Table 5). Fourteen years after thinning, 

the mean cumulative stand volume was 191 m3 ha−1 in unfertilized control PSPs and 156 m3 ha−1 in the 

most intensively thinned (and unfertilized) PSPs (Figure 6C) while mean cumulative stand volume was 

172 m3 ha−1 in fertilized control PSPs in and 169 m3 ha−1 in the most intensively thinned and fertilized 

PSPs (Figure 6D). 
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Table 5. Changes in merchantable stand volume induced by commercial thinning and 

fertilization in jack pine stands over a period of 14 years. Fertilization was conducted within 

experimental sub-plots 3 to 5 years after thinning. Effects of initial stand basal area and age, 

basal area removed by commercial thinning, fertilization, time since thinning and selected 

interactions assessed by means of linear mixed models. 

Response Variables Residual Live Volume Cumulative Volume 

Fixed factors E p E p 
Intercept 14.3 0.646 −75.8 0.073 
BA initial 3.33 <0.001 5.20 <0.001 

BA removed −1.02 <0.001 −0.05 0.830 
Age 0.68 0.187 1.28 0.115 

Time since thinning (14 years) 36.8 <0.001 36.8 <0.001 
BA removed × time (14 years) 0.01 0.990 0.01 0.986 

Fertilization (UnF) 19.3 <0.001 19.3 <0.001 
BA removed × Fertilization  −0.44 0.008 −0.44 0.008 

BA = basal area; DBH = diameter at breast height; UnF = unfertilized; Estimates of fixed factors and 

interactions effects (E) are presented with p-values (p); p-values in bold type are significant (p ≤ 0.05); 

Reference levels of categorical variables are shown in brackets; -: not applicable. 

4. Discussion 

4.1. Tree Growth 

Our study clearly indicates a positive effect of thinning on tree diameter and volume growth that 

increased with thinning intensity. These results are consistent with other experiments that have reported 

increases in stem growth after thinning in jack pine [6,14,17,53], Scots pine [7,8], Norway spruce (Picea 

abies (L.) Karst. [54]), Douglas fir [55] and black spruce [56] stands. Thinning significantly enhanced 

mean tree volume in both fertilized and unfertilized treatments. As reported by Mäkinen and Isomäki 

for Scots pine [7,8] and Norway spruce [57,58], moderately to heavily thinned stands produce larger 

trees than lightly thinned and unthinned stands. Our study adds to these previous findings by reporting 

trends over a much larger thinning range than what has generally been reported. 

Despite a higher absolute volume increment of large trees, relative volume increment was greater in 

smaller trees. These results are consistent with our hypothesis and again consistent with previous findings 

that reported that small and medium-size trees have the highest relative response to thinning [56,57,59,60]. 

However, smaller trees have also been shown to be sometimes less reactive than larger stems [7,58,61]. 

Numerous studies have reported increases in light transmittance with decreasing stand basal  

area [62–64] and following thinning [36], conditions which would tend to induce increased production 

of foliar biomass [18] and eventually tree growth. Following stem analyses conducted 6 years after 

thinning in five of the studied stands, Goudiaby et al. [47] reported an increase in stem volume of 

dominant jack pine stems resulting from increased mid crown foliage biomass and improved growth 

efficiency. The stronger response in relative growth rate of small and intermediate jack pine trees 

compared to larger trees could result from a greater increase in light exposure to their crown foliage 

following thinning. That is, the relative increase in light availability would be considerably greater for 

suppressed trees whereas, according to Goudiaby et al. [47], light availability after thinning increased 
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only for mid-crown foliage of dominant trees. Increased solar radiation following thinning [36] can also 

enhance soil temperatures and accelerate nitrogen mineralization [65,66]. This cascade of processes could 

contribute to improving tree growth, particularly in cold climates such as that of the boreal forest [67]. 

Because trees in mature stands generally grow slowly due to declining photosynthesis rates [68], 

growth response to thinning in older stands is expected to be less pronounced than in younger  

ones [69]. Our results confirm the effect of stand age on individual tree response to thinning for small 

trees only. The decreasing volume growth rate with stand age 5 and 14 years after thinning was caused 

by an increase in tree mortality. 

4.2. Mortality 

Mortality in natural pre-mature and mature jack pine stands tends to occur as density-dependant  

self-thinning resulting from intra-specific competition among neighbours [70]. As jack pine is shade 

intolerant, stems in the suppressed and intermediate crown classes tend to lose vigour earlier than 

dominants and co-dominants as a result of lower light resources [71]. Thinning from below, as in this 

study, pre-empts this natural mortality [72], but may also contribute to mortality due to other factors. 

These include direct physical damage to residual stems or crowns during thinning operations which can 

eventually increase the probability of fungal infection. As well, heavy thinning, like other  

high-intensity partial cutting treatments, can reduce stability of residual stems and render stands more 

susceptible to windthrow [73]. For example, Scott and Mitchell [74] suggested a lower threshold for 

residual stands of 20% of original stand density in Tsuga heterophylla (Raf.) Sarg. and Mason and  

Kerr [75] recommended that harvesting should not exceed 20% of the original stand basal area in Picea 

sitchensis (Bong.) Carr. In unfertilized stands, tree mortality over the 5 to 14 years period after thinning 

was similar (around 10%) across the gradient of thinning intensities and windthrow remained marginal. 

By removing imminent natural tree mortality, thinning from below reduces mortality as shown by the 

negative relationship between basal area removed and volume lost to mortality 14 years after thinning. 

The increase in tree mortality and volume lost to mortality with initial basal area and stand age observed 

between 5 and 14 years after thinning confirms previous reports of higher mortality rates in denser and 

older stands [19,70]. 

4.3. Fertilization Effect on Tree Growth 

As expected, nitrogen fertilization enhanced growth of tree diameter and volume, corroborating 

results of previous studies [25,26,29,32]. However, the low explanatory power for individual tree 

increment models is an indication that a host of other factors, besides those accounted for, affected tree 

growth during the study period. Also, fertilization effect on tree volume increment decreased with 

thinning intensity. Responses of both small and large trees suggest that there exists a threshold of basal 

area removal (around 45%) after which the effect of fertilization appeared to dissipate or cancel out. 

Contributions of harvesting slash to tree nutrition in thinned stands have been reported for Scots pine 

and Norway spruce [76] and for Monterey pine (Pinus radiata D. Don. [65]). It is possible that an 

increase in N availability due to increased slash loads and mineralisation reduced N limitation in heavily 

thinned stands. 
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4.4. Fertilization and Tree Mortality 

We expected that by increasing tree growth, fertilization would also increase self-thinning mortality 

due to higher intraspecific competition [42]. Contrary to our hypothesis, fertilization did not increase tree 

mortality in controls or low intensity thinned plots. Moreover, the strongest observed effect of fertilization 

was a reduction of tree mortality with thinning intensity. This pattern could result from reduced intraspecific 

competition for soil resources and generally better tree vigour. However, this result disagrees with 

studies by Yang [18] and Zhang et al. [42] which reported that nitrogen loadings increased tree mortality. 

4.5. Stand Volume Increment and Cumulative Volume 

Although stand volume increment has generally been reported to decrease with increased thinning 

intensity [8,19,77], absolute stand volume increment increased with the proportion of basal area removed 

up to values as high as 70%. These unexpected results may be explained by two factors: (1) higher volume 

loss to self-thinning mortality in controls and low intensity thinned plots and (2) greater recruitment of 

stems into commercial size classes (DBH ≥ 9.1 cm) in thinned treatments during the experiment. 

(Commercial-sized tree recruitment is not always considered in stand growth calculations but was in this 

study.) Given these factors, this study suggests that a relatively low number of residual trees could 

contribute to maintain equal or higher annual volume increment than in control stands. This said, another 

important and perhaps surprising point to recognize is that the upper limit of basal area removal in this 

study did not appear to reach the threshold at which stand volume increment begins to decrease as a 

result of sub-optimal stand occupancy and the low number of stems on which volume can accrue. 

According to Assmann [78], increases in stand production with increasing thinning intensity should reach 

a maximum value beyond which stand growth decreases due to suboptimal tree density (or site occupancy). 

Consistent with individual tree response to nitrogen fertilization and lower mortality, the relative 

stand volume increment was 11.5% higher in fertilized than unfertilized stands. This was also consistent 

with the response of jack pine to urea fertilization observed in an interprovincial forest fertilization 

program [21]. These results are consistent with an improvement of above- and belowground resource 

availability through thinning and fertilization. The subsequent reduction of intraspecific competition and 

mortality contributed to increase volume growth at the stand level. 

Despite evidence, over the 14 year period, of a general increase in residual stand volume with 

increased basal area removal, cumulative volume, (volume harvested + residual stand volume at year 14 

post-treatment), showed the opposite trend. That is, the greater stand volume increment in high intensity 

thinning treatments did not compensate for the relatively low residual basal areas (and sub-optimally 

occupied growing space) in these treatments. This is particularly evident in unfertilized stands and 

consistent with previous thinning experiments in which cumulative volumes were usually greater in 

controls than in thinned stands [19]. However, low thinning intensities combined with short thinning 

cycles could result in cumulative stand volumes higher than that of controls [42]. Finally, in fertilized 

stands, improved tree growth and, more importantly, reduced tree mortality compensated for the loss of 

harvested trees. Our results indicate that on these low fertility sites combining thinning and fertilization 

can produce cumulative stand volumes similar to unthinned control stands and with larger trees than if 

stands had only be thinned or fertilized. The operational benefits in terms of mean tree size and spacing 
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optimization are obviously greater and more large stems would also increase product yield and value. It 

should be noted, however, that because this study evaluated responses to thinning and fertilization in 

plots situated between (and not including) forwarding trails, thinning intensity values are lower than 

those that would incorporate trails and, more importantly, differences in cumulative volume increment 

between untreated controls (no trails) and thinned treatments would actually be greater at the stand level. 

5. Conclusions 

By reducing competition and redistributing below- and above-ground resources to a reduced number 

of stems, commercial thinning increased diameter and volume increment of residual trees, with smaller 

diameter trees exhibiting greater relative volume increment than larger trees. On low-fertile stands such 

as those in our study, fertilization improves stand response to thinning. It is expected that diameter and 

volume gains at the tree level and more regular residual spacing will lower future operational costs and 

yield higher product value per volume harvested. 

The experiment covers a large area in the Canadian Precambian Shield where jack pine is predominantly 

found on poor, coarse-textured sites. Despite the body of knowledge on commercial thinning, little hard 

data can be found regarding long-term response of jack pine to commercial thinning combined with 

fertilization. Given its predominance on poor soils and its straightforward response to N fertilization, it 

is surprising that thinned jack pine stands are not fertilized more often on an operational level. Our results 

indicate that the silvicultural benefits of commercial thinning of jack pine on coarse-textured sites can 

only partially materialize without fertilization. However, the effects of these combined treatments on 

wood quality and the economics of treatment inputs versus product value need further investigation. 

Supplementary Material 

Merchantable tree volume estimated using Equation (3) compared with tree volume measurements 

from stem analyses of 30 trees from five of the nine investigated stands. Stem analyses for these  

30 trees [47]. Figure S1 indicates that although the equation underestimates tree volume, the fit between 

predicted and observed values is not affected by thinning intensity. Equations used in this study were 

therefore considered suitable for volume estimation from DBH measurements. 

 

Figure S1. Merchantable tree volume estimated compared with tree volume measurements 

from stem analyses of 30 trees from five of the nine investigated Jack pine stands in the 
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Abitibi-Témiscamingue region of Northwestern Québec, Canada. Stem analyses for these 

30 trees [47]. 
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