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Abstract: This study examines the statistical association of wildfire risk with climatic 

conditions and non-climate variables in 48 continental US states. Because the response 

variable “wildfire risk” is a fractional variable bounded between zero and one, we use a 

non-linear panel data model to recognize the bounded nature of the response variable.  

We estimate the non-linear panel data model (fractional probit) using the Generalized 

Estimating Equation (GEE) approach to ensure that the parameter estimation is efficient. 

The statistical model, coupled with the future climates projected by Global Climate Models 

(GCMs), is then employed to assess the impact of global climate change on wildfire risk. 

Our regression results show that wildfire risk is positively related to spring, summer, and 

winter temperatures and human population density whereas it is negatively associated with 

precipitation. The simulation results based on GCMs and the regression model indicate that 

climate change will intensify wildfire risk throughout the entire US, especially in the South 

Central region, posing an increasing wildfire threat and thus calling for more effective 

wildfire management strategies. 

Keywords: wildfire risk; climate change; fractional probit; generalized estimating equation; 

the United States 

 

  

OPEN ACCESS 

mailto:hjan713@gmail.com


Forests 2015, 6 3198 

 

 

1. Introduction 

Wildfires, which are defined as any uncontrolled fire occurring within nature landscape, such as 

forestlands, are one of the main concerns for the public and for forest managers. The occurrence of 

wildfires can be affected by various factors, including climatic conditions and other factors. Global 

climate is predicted to change over the next century due to increased greenhouse gas (GHG) 

concentration in the atmosphere [1]. The projected climate change is likely to alter wildfire activity. 

Warmer spring and summer temperatures will make the fire season longer. Forests will become more 

combustible under the increasing temperature trend as snowpack will be melting earlier than before. 

Additionally, warmer and drier conditions will make trees more susceptible to diseases and pest 

infestations, increasing tree mortality and fire hazards [2]. 

Studies have recognized that climate is a dominant driver of wildfire activity and that wildfire 

activity and uncertainty will intensify due to ongoing global climate change. Climate change can  

affect the number of wildfire occurrences and increase wildfire intensity and the length of the wildfire 

season [3]. For example, warmer temperature is expected to increase lightning ignition and wildfire 

severity [4]. Moritz et al. [5] assess global disruption in future wildfire activity using empirical 

analysis and Global Climate Model (GCM) projections. Dennison et al. [6] examine regional trends in 

wildfire occurrence, total burned area, and wildfire size for 1984–2011 in the Western US using 

burned area boundaries mapped from satellite remote sensing data. They found that the number of 

large wildfires has shown a significantly increasing trend in the major ecoregions of the Western US. 

Although several studies have explored climate change impacts on wildfire, we intend to advance 

existing work in both estimating the climate-wildfire relationship and projecting the impact of future 

climate change on wildfire risk. We employ generalized estimating equations (GEE), a nonlinear panel 

data model, to take into account the bounded nature of the dependent variable, wildfire risk. Moreover, 

we consider both spatial and serial correlations using the autoregressive AR(1) covariance structure 

form. Preisler et al. apply a spatial term in the model to account for spatial correlation and apply 

logistic regression to estimate the probability of large fire occurrences [7]. However, they only focus 

on specific local areas, such as California and its adjacent regions. The target areas of our study are  

48 US continental states. Thus, we can investigate climate effect on wildfire activity in a border area. 

Additionally, the GEE model provides more consistent estimates of the parameters and standard errors 

than a logistic regression [8]. Unlike logistic regressions, the GEE allows for dependence within 

clusters so it is more appropriate for longitudinal data. Another advantage of the GEE is that, even if 

the correlation matrix is incorrectly specified, the estimated parameters and standard errors from the 

GEE can still be consistent using a robust sandwich estimator [9]. If the correlation is correctly 

specified, the GEE estimator is more efficient than logistic regression. Therefore, we will provide more 

consistent and efficient parameter estimates under the GEE framework [8]. We also provide statistical 

tests related to the GEE, although few methods exist to assess the specification of fitted marginal 

regression models. 

This study has several objectives. First, we aim to identify the relationship between wildfire risk and 

climate factors such as temperature and precipitation. In addition to the climatic conditions, we also 

consider human and natural adaptations, as well as demographics, such as human population density. 

Using the panel data that reflect past variations in wildfire activity, climatic and other natural 
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conditions, and human interventions along the climate gradient, we make it possible to incorporate 

human and natural adaptations into estimating the relationship between wildfire risk and climatic 

conditions. Additionally, climate variables are often correlated. The panel data model can alleviate the 

multicollinearity problem among climate variables and better control for the missing or unobserved 

variables [10–12]. Because the response variable “wildfire risk” is bounded by zero and one, the 

standard linear panel data model is not well suited. In this case, a fractional response model is a better 

choice [9,13]. Westerling and Bryant [14] use the Generalized Linear Model (GLM) with the logit link 

function to assess climate change impact in California and neighboring states. Although the logit link 

function addresses the issue associated with the fractional response variable, the GLM cannot 

appropriately take into account within group correlations [15]. To overcome this problem, we 

introduce the fractional probit model, a non-linear panel data model, and the Generalized Estimating 

Equation (GEE) approach. The GEE is an expansion of the GLM by taking into account within group 

correlations [16]. The GEE includes an additional variance component to adapt correlated data and to 

allow for differences among clusters [15]. Therefore, the GEE is more appropriate than the GLM for 

panel data analysis. Brillinger, Preisler, and Benoit [17] use a generalized mixed effect model (GMM) 

to assess wildfire risk. The GMM and GEE are the most widely used analytical techniques for 

longitudinal data. Even though these two models share some similar characteristics, the GEE has 

several advantages over the GMM because the GEE is a partial-likelihood method [15], which makes 

computation easier and can be more easily applied to different distribution forms [18]. 

Second, we aim to assess the impact of future climate change on wildfire risk using our regression 

model coupled with the future climates projected by Global Climate Models (GCMs). GCMs provide 

simulated future climates that reflect the responses of the global climate system to GHG emissions 

scenarios [19]. We use newly updated GCMs based on the fifth phase of the Coupled Model [1].  

The new GCMs adopt the Representative Concentration Pathways (RCPs) scenarios that supersede  

the previous GHG emissions scenario. The RCPs are the latest iteration of the scenarios to provide 

time-dependent projections of atmospheric GHGs [20]. They have several advantages. First, the GCMs 

based on RCPs provide more unified metric, grid, and location points. Thus, it is easier to compare one 

model to another. Second, these RCP scenarios are defined by their total radiative forcing pathways 

(cumulative measure of human emissions of GHGs from all sources expressed in Watts per square 

meter) and level [1]. Thus, they use the scientifically specified term to avoid the ambiguous definition. 

For example, the most moderate scenario, RCP2.6, assumes the radiative forcing will peak at ~3 W/m2 

before 2100 and then decline. 

This study not only advances the modeling approach but also reveals the impact of climatic 

conditions and demographics on wildfire activity and provides projections of wildfire risk under 

climate change. Our modeling results foster a better understanding of the linkage between wildfire risk 

and climatic conditions and can aid in developing more effective wildfire response strategies under 

climate change. 
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2. Methods 

2.1. Statistical Model Specification and Estimation 

To estimate the statistical relationship between wildfire risk and climatic conditions, we use the 

GEE approach. The GEE requires three components including mean response, variance, and a working 

correlation assumption [21]. Given the GLM estimation with conditional expectation, ( | X )it it itE Y   , 

the link function G(·) (a non-linear function that links predicted values and independent variables) can 

be expressed as:  

( )it itG X    (1) 

Then the conditional variance of the response variable itY , given the independent variables, is:  

Var( ) ( )it itY v    (2) 

where   is a known parameter that depends upon the distribution of the response variable; and ( )itv   

is the variance function of mean ( | X )it it itE Y   . The GEE is defined by substituting the variance term 

in the GLM with the following variance-covariance matrix [15]:  

1/2 1/2

( )V( ) [D(V( )) R( ) D(V( )) ]it it ni ni it ni ni       (3) 

where:  

  = the correlation parameter; 

D = the diagonal matrix; V( )it  = the variance of marginal mean it ; 

( )R( ) ni ni  = the working correlation matrix. 

We define wildfire risk as a ratio of area burned to the total forested area. As this ratio is bounded 

between zero and one (inclusive), it is a fractional variable. As such, we adopt a non-linear factional 

response model in this study. The most often used fractional response models are fractional probit and 

fractional logit. Here, we use the fractional probit model because the probit function is computationally 

simple in the presence of unobserved heterogeneity. For the panel data form, which usually includes 

many cross-sectional units observed at a few time points, the GEE has an advantage over the GLM by 

separating the nuisance variation due to the population-wide behavior from the variation related to 

time trends [18]. The fractional probit model with unobserved effect can generally be written as:  

1, 2, ,( ..... ) ( )it i i iT iit
E y X X X X c   (4) 

where i = 1, 2, …, N for cross-sectional units; t = 1, 2, …, T for time; y = the response variable;  

X  = the 1K   vector of explanatory variables;   = the 1K   vector of constants; ic  = the unobserved 

effect which is defined as 2

1, 2| ( ..... ) ~ Normal( , )ii ai i iTc x x x X   . A simple way to express ic  is that 

2, where | ~ N(0, )ii i i i ac X a a X   . We use the GEE to estimate the scaled coefficients of 

Equation (4) and then calculate the average structure function (ASF) to identify average partial effects 

(APEs) because in the fractional response model the estimated coefficient alone cannot explain the 

estimation result properly. The ASFs are estimated using the following equation: 
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T

t tX T X


   is the 1 K  vector of time averages, and , ,a aa    are the scaled coefficients. The 

APEs can be calculated by taking partial derivatives of Equation (5) with respect to tx , and the 

estimated ASFs can be obtained from Equation (6) by the law of large numbers: 

𝐴𝑃𝐸̂(𝑋𝑡) = 𝑁−1∑Φ(+ a + 𝑋𝑖𝑡β̂𝑎 + i aX  )

𝑁

𝑖=1

 (6) 

In addition to considering correlations between states observed over years, it may be more 

reasonable to consider the time dependence correlation. To consider the correlation within a year 

observed over all states, we used the autoregressive, AR(1), covariance structure form [15]. The AR(1) 

structure allows for the correlations to diminish over time as corr(
,
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The autoregressive structure is indicated by the AR(1) correlation [15]. 

Next, we need to empirically estimate our model using specified correlation structure. We start with 

identifying relevant independent variables. Drawing on the literature and our study objectives,  

we consider several plausible independent variables. These variables include climatic conditions 

(temperature and precipitation) and fuel characteristics (forest biomass density and tree mortality) as 

they are likely to be associated with wildfire risk [22–24]. Additionally, human population density is 

also included in our model because historical records show that most wildfire incidents have been 

caused by human activity [24]. Rapid population growth into wildland urban interface areas has 

become a major concern for wildfire management. As the population continues to expand, more 

houses will be built in the interface areas, increasing the probability of wildfire occurrence and the  

threat to properties and human life. Furthermore, timber harvest is also considered because it affects 

forest structure and fuel accumulation and because machine operations associated with timber 

harvesting could be fire hazards [12]. Thus, the set of the independent variables can be  

written as it{POP , BIOM , HARV , MORT , WNT , SPT , FLT , WNP , SPP , SMP , FLP }it it it it it it it it it it itX  . 

The dependent variable “FORISK” is calculated by ratio of area burned to total forested area in 100 ha. 

The total forest area implies private and federal forest area qualified for protection. Therefore, the 

value of “FORISK” is bounded between 0 and 1. The fractional probit model can be specified as:  

2 3 4

5 6 7 8 9

1 2 1

10 1

it

1

E(FORISK , ...., ) (POP BIOM HARV MORT

WNT SPT FLT WNP SPP

SMP FLP )

it i i iT it it it

it it it it it

it it i

X X X

c

        

         

    

 (7) 

where:  
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i = 1, 2, …, N for individual state in the US; 

t = 1, 2, …, T for year; 

FORISK = the wildfire risk (ratio of area burned to total forested area in 1000 ha); 

POP = human population density (person/km2); 

BIOM = total tree biomass density (Mg/ha); 

HARV = annual tree removals ( 3m /ha); 

MORT = annual tree mortality ( 3m /ha); 

WNT = winter average monthly temperature (K: Kelvin); 

SPT = spring average monthly temperature (K); 

SMT = summer average monthly temperature (K); 

FLT = fall average monthly temperature (K); 

WNP = monthly total winter precipitation (mm); 

SPP = monthly total spring precipitation (mm); 

SMP = monthly total summer precipitation (mm); 

FLP = monthly total fall precipitation (mm); 

 = standard normal cumulative distribution function; 

ic  = unobserved effect. 

In this study, the climatic condition variables are very important as we focus on assessing climate 

impacts on wildfire. Temperature and precipitation are highly related to fuel moisture, which is an 

important factor influencing wildfire. However, fuel moisture is not specified in the model because the 

climatic condition variables reflect fuel moisture [12]. The occurrence of wildfire has strong 

seasonality. In the US West, 94% of wildfires and 98% of area burned have occurred between May and 

October [25,26]. Therefore, we group months into seasons. The spring season is from March to May; 

the summer is from June to August; the fall is from September to November; the winter is from 

December to February. 

2.2. Projections of Wildfire Risk under Climate Change 

By plugging the projected seasonal temperatures and precipitations in the future years into our 

estimated regression model, Equation (7), we estimate future wildfire risk under climate change.  

To verify the validity of the GCMS in projecting future climate, we compare GCM output of climate 

data and historical climate observations. We take the average of climate data from HadCM3 and 

NOAA-GFDL and perform t-test to compare the means between the projected climate from the GCMs 

and historical observations from the National Climate Data Center for the period 1991 to 1997. Table 1 

shows the t-test results. In all temperature and precipitation series, we fail to reject the null hypothesis 

of equal population means between two groups. 

This approach assumes that the demographic conditions and their impacts on wildfire would remain 

the same in the future. The demographic effects are imbedded in the data and the regression model 

because the data and the model reflect regional differences in adaptations to wildfire and these 

adaptions already include demographic conditions and their impacts. 
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Table 1. Comparisons between observed and Global Climate Models (GCM) projected 

temperatures and precipitations via t-test. 

t-Test Result 

Mean Standard Error 

p-Value 
GCMs 

Historical 

Observation 
GCMs 

Historical 

Observation 

Average spring monthly temperature, F 51.49 50.93 0.438 0.448 0.37 

Average summer monthly temperature, F 71.75 71.35 0.320 0.307 0.38 

Average fall monthly temperature, F 53.65 52.95 0.405 0.410 0.23 

Average winter monthly temperature, F 31.77 32.68 0.574 0.608 0.28 

Monthly total spring precipitation, mm 248.65 251.00 4.913 6.450 0.77 

Monthly total summer precipitation, mm 257.29 267.46 5.793 7.068 0.27 

Monthly total fall precipitation, mm 225.62 231.06 4.967 5.967 0.48 

Monthly total winter precipitation, mm 223.84 212.93 7.078 7.065 0.28 

We use the future seasonal temperatures and precipitations projected by two GCMs: HadCM3 and 

NOAA-GFDL. The projections of future climates are based on the RCP scenarios. There are four RCP 

scenarios in the IPCC fifth Assessment Report (AR5) [20], including RCP 2.6, RCP 4.5, RCP 6.0,  

and RCP 8.5. In this study, we choose two scenarios including RCP 4.5 and RCP 8.5. The RCP 4.5 

scenario assumes a moderate but not extremely low emission case which seems to reflect the feasible 

future. The highest emission scenario (RCP 8.5) is also selected because it is theoretically valuable to 

investigate the most pessimistic case. 

Using the future climates projected by HadCM3 and NOAA-GFDL under RCP 4.5 and RCP 8.5, 

we estimate annual wildfire risk up to 2050. Based on the projected annual wildfire risks, we then 

calculate the average wildfire risk for two time periods: 2011–2030 and 2031–2050. 

2.3. Data 

The historical seasonal temperature and precipitation data are drawn from the National Climatic 

Data Center [27]. Wildfire data are derived from USDA Forest Service [24]. Population density is 

obtained from the census data which implies number of population in square km. Tree biomass, annual 

mortality, and timber removals are obtained from US forest statistics [28]. The data cover from 1991 to 

1997. The inconsistency in wildfire data makes it difficult to use a longer time series; such inconsistency 

was mainly because wildfire data had been recorded and reported by different agencies that used 

different definitions and approaches [12]. The projected future climate data in the Coupled Model 

Intercomparison Project phase 5 (CMIP5) are obtained from “Downscaled CMIP3 and CMIP5 Climate 

and Hydrology Projections” [29]. 

3. Results and Discussion 

3.1. Factors Attributable to Wildfire Risk 

Table 2 shows the average partial effects of various factors on wildfire risk based on the estimated 

fractional probit model. As suggested in Pan (2001) [30], we chose our model specification by 

comparing information criteria for GEE models, QIC and QICu, of which the smaller the better. For 
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example, including quadratic terms for weather variables do not show improvements of the model 

performance (QICu = 55.256 for the full model including quadratic terms and 44.574 for the model 

without quadratic terms). Likewise, the AR(1) correlation structure outperforms other correlation 

matrix specifications according to the QIC statistics. In terms of the goodness of fit, our model shows 

that according to the Wald Chi square statistic, the null hypothesis that at least one coefficient is not 

zero is rejected at the 1% level, which implies that at least one covariate affects our model. For each 

covariate, p-values are calculated (Table 2). 

Table 2. Marginal effect of various factors on wildfire risk in the continental US. 

Independent Variable Marginal Effect Standard ERR p-Value 

Pop (Population density, persons/km2) 0.0110 0.0065 0.093 

BIOM (Tree biomass density, Mg/ha) −0.0140 0.0045 0.004 

HARV(Annual timber removal, m3/ha) 0.0010 0.0017 0.466 

MORT(Annual tree mortality, m3/ha) −0.0020 0.0041 0.640 

SPT (Average spring monthly temperature, K) 0.1500 0.0613 0.014 

SMT (Average summer monthly temperature, K) 0.4540 0.0800 0.000 

FLT (Average fall monthly temperature, K) 0.0540 0.0800 0.499 

WNT (Average winter monthly temperature, K) 0.1200 0.0500 0.015 

SPP (monthly total spring precipitation, mm) −0.0003 0.0007 0.632 

SMP (monthly total summer precipitation, mm) −0.0030 0.0009 0.005 

FLP (monthly total fall precipitation mm) −0.0004 0.0006 0.519 

WNP (monthly total winter precipitation, mm) −0.0003 0.0012 0.818 

The regression result indicates that spring, summer, and winter temperatures, summer precipitation, 

and tree biomass density have a significant impact on wildfire risk at the 5% significance level, and 

that human population density is significant at the 10% level. Population density has a positive impact 

on wildfire risk. An increase in population density suggests increased human activity (interactions with 

the natural area) and thus heightened wildfire risk as most wildfires in the US are caused by humans. 

Surprisingly, an increase in tree biomass density shows a negative impact on wildfire risk. This might 

be partially because more and better wildfire prevention and protection measures are enforced in well 

stocked forests that have high commercial and ecosystem service values. 

Rises in spring, summer, and winter temperatures intensify wildfire risk whereas an increase in 

summer precipitation reduces wildfire risk. Changes in these seasonal temperatures and precipitation 

not only alter vegetation (thus fuel type and structure) but also fuel moisture [31], thus affecting 

wildfire risk. The regression results also show that the magnitude of the temperature impact on wildfire 

risk is larger than that of the precipitation effect. Additionally, an increase in summer temperature has 

a much greater impact on wildfire risk than a rise in spring or winter temperature. Liu et al. [3] report 

that the highest fire potential in the U.S occurs in the summer when temperature is the highest. There 

are at least two reasons for this. First, wildfire is most active in the summer. Second, summer average 

temperature is higher than that of spring or winter. Thus, additional change in summer temperature 

would cause a more dramatic change in fuel moisture and thus a more detrimental impact on wildfire 

risk than a similar change in spring or winter temperature. Given the heterogeneity of impacts of 
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seasonal temperatures and precipitation, changes in temperature and precipitation will have different 

impacts on wildfire risk at different locations. 

3.2. Climate Change Impact on Wildfire Risk 

Figure 1 displays the annual average wildfire risk from 1991 to 1997 based on wildfire statistics [24]. 

We use this historical average as the baseline to compare the climate change impact. Figures 2 and 3 

show the changes in wildfire risk (relative to the baseline) under different climate change scenarios. 

These two figures are created by subtracting the historical wildfire risk (Figure 1) from the projected 

future wildfire risk under climate change for each state in the US. Figures 2 and 3 show the projected 

change in average wildfire risk in the period from 2011 to 2030 and in the period from 2031 to 2050, 

respectively. According to our model projections, almost all states in the continental US would 

experience an increase in wildfire risk under both the moderate and rapid GHG accumulation scenarios. 

The highest risk would occur in the South Central states, including Texas, Oklahoma, Louisiana, and 

Kansas. The climate change impact would be more severe in the long run (2031–2050) than in the 

short run (2011–2030) because the magnitude of projected climate change is expected to be greater in 

the long run than in the short run due to the accumulation of GHG emissions. Additionally, the overall 

direction and spatial patterns of projected change in wildfire risk vary across the GCMs and the RCP 

scenarios. This implies considerable uncertainty associated the projections of climate change impact on 

wildfire risk [31]. 

 

Figure 1. Average annual wildfire risk from 1991 to 1997 in 48 continental US states. The 

wildfire risk is measured in the percent of area burned by wildfire in total forested area. 

Some of our results echo those of previous studies which focus on specific regions in the US, 

particularly the Western US where the most severe impact of climate change on wildfire has been 

anticipated. The Harvard School of Engineering and Applied Science (SEAS) team estimate future 

wildfire activity in the Western US during 2046 to 2065 using GCMs based on the IPCC AR4  

(fourth assessment report) scenarios [32]. They conclude that the biggest driver for fires in the future  

is temperature, so fires would increase in size if we meet large temperature increases overtime. 
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Moreover, the fire season would start earlier (late April instead of mid-May) and end later (mid-October 

instead of early October) due to global climate change. However, our nationwide analysis suggests that 

the greatest impact of climate change on wildfire would occur in the South Central US rather than in 

the Western or Southwestern US. 

 

Figure 2. (a) Change in wildfire risk relative to the baseline (historical average) with the 

future climate projected by the HadCM3 model under the RCP 4.5 scenario; (b) Change in 

wildfire risk relative to the baseline with the future climate projected by the NOAA-GFDL 

model under the RCP 4.5 scenario; (c) Change in wildfire risk relative to the baseline with 

the future climate projected by the HadCM3 model under the RCP 8.5 scenario; (d) Change 

in wildfire risk relative to the baseline with the future climate projected by the NOAA-GFDL 

model under the RCP 8.5 scenario. The changes in wildfire risk are calculated by subtracting 

the historical average wildfire risk from the projected future wildfire risk based on the 

climatic conditions projected by the GCMs. This figure indicates the short-run (2011–2030) 

impact of climate change on wildfire risk. 
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Figure 3. (a) Change in wildfire risk relative to the baseline (historical average) with the 

future climate projected by the HadCM3 model under the RCP 4.5 scenario; (b) Change in 

wildfire risk relative to the baseline with the future climate projected by the NOAA-GFDL 

model under the RCP 4.5 scenario; (c) Change in wildfire risk relative to the baseline  

with the future climate projected by the HadCM3 model under the RCP 8.5 scenario;  

(d) Change in wildfire risk relative to the baseline with the future climate projected by  

the NOAA-GFDL model under the RCP 8.5 scenario. The changes in wildfire risk are 

calculated by subtracting the historical average wildfire risk from the projected future 

wildfire risk based on the climatic conditions projected by the GCMs. This figure indicates 

the long-run (2031–2050) impact of climate change on wildfire risk. 

4. Conclusions 

We apply non-linear panel data modeling to establishing a statistical linkage between wildfire risk 

and climatic and other factors. The model is estimated by using the GEE method. This approach takes 
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into account of the bounded nature of the dependent variable, wildfire risk that is fractional response 

variable. Additionally, the panel data model can better control for missing or unobserved variables and 

alleviate the multicollinearlity problem associated with correlated climate variables, while incorporating 

natural and human adaptations into the modeling. All these represent methodological innovations in 

modeling climate change impact on wildfire risk. Meanwhile, we simulate the impact of climate 

change on future wildfire risk using our regression model coupled with the future climates projected by 

two GCMs under two RCP scenarios. 

According to our modeling results, both climate and non-climate variables are likely to affect 

wildfire risk. Wildfire risk would generally increase with an increase in temperature and a decrease in 

precipitation. Spring, summer, and winter temperatures in particular would have a significant impact 

on wildfire risk with summer temperature having the largest impact. This implies that climate change 

could greatly intensify wildfire risk particularly in the summer, the most active and severe wildfire 

season, and make the wildfire season longer, extending from spring to winter. On the other hand, 

precipitation increases would likely reduce wildfire risk. Temperature increases coupled with human 

population expansion could elevate wildfire risk as humans are a major source of wildfire ignitions. 

Based on the future temperatures and precipitations predicted by the GCMs, future wildfire risk 

would increase in almost all states. The South Central states including Texas, Oklahoma, Louisiana, 

Kansas would experience the highest risk increase, and the climate change impact will be more severe 

in the long run (2031–2050) than in the short-run (2011–2030). This calls for more effective wildfire 

management strategies for all states in general and the South Central region in particular. 

Our simulation results on the climate change impact on future wildfire risk demonstrate considerable 

variations across the future climate scenarios projected by the GCMs under the different RCP 

scenarios. The variations could stem from several sources. First, it is the uncertainty associated with 

the projections of future climate. The variations in the future climates projected by different GCMs  

are substantial even under the same RCP scenario, which contributes greatly to the variations in our 

projected impact of climate change on wildfire risk. Second, our regression model indicates that 

temperature in general has a positive impact on wildfire risk whereas precipitation tends to dampen 

wildfire risk. According to the simulation results from the GCMs, changes in temperature and 

precipitation (in both magnitude and direction) under climate change vary tremendously from location 

to location. This adds to the uncertainty in projecting climate change impact on wildfire risk, 

particularly given the difficulty in projecting future climate on a finer scale or at the local level. Third, 

our regression model is estimated using seven-year data due to the unavailability of consistently 

recorded nationwide wildfire data. Although the spatial variations in our data compensate for the 

limitation imposed by the short time series, using the data of a longer time series available in the future 

could improve the estimation of our regression model and thus the projections of climate change 

impact on wildfire risk. Hence, there is a need for future studies to address these uncertainties. 

This study focuses on the impact of climatic conditions on wildfire risk. Although our data and 

modeling approach can incorporate some human response (e.g., adaptation) to wildfire into the 

analysis, national wildfire policy is not explicitly included in the model. National wildfire policy can 

interact with wildfire risk; future studies can also explore their interaction. Additionally, to overcome 

the limitations of current GCMs, future studies can apply statistical downscaling models, such as 

Multivariate Adapted Constructed Analogs (MACA) [33]. 
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